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Topology of the conceptual network of language
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We define two words in a language to be connected if they express similar concepts. The network
of connections among the many thousands of words that make up a language is important not only
for the study of the structure and evolution of languages, but also for cognitive science. We study
this issue quantitatively, by mapping out the conceptual network of the English language, with
the connections being defined by the entries in a Thesaurus dictionary. We find that this network
presents a small-world structure, with an amazingly small average shortest path, and appears to
exhibit an asymptotic scale-free feature with algebraic connectivity distribution.

PACS numbers: 87.23.Ge,89.75.Hc

Any language is composed of many thousands of words
linked together in an apparently fairly sophisticated way.
A language can thus be regarded as a network, in the
following sense: (1) the words correspond to nodes of
the network, and (2) a link exists between two words if
they express similar concepts. Clearly, the underlying
network of a language is necessarily sparse in the sense
that the average number of links per node is typically
much smaller than the total number of nodes. Identify-
ing and understanding the common network topology of
languages is of great importance, not only for the study
of languages themselves, but also for cognitive science
where one of the most fundamental issues concerns as-
sociative memory, which is intimately related to the net-
work topology.

Recently, there has been a tremendous amount of in-
terest in the study of large, sparse, and complex networks
since the seminal papers by Watts and Strogatz [1] on the
small-world characteristic and by Barabási and Albert on
scale-free features [2]. The small-world concept is static

in the sense that it describes the topological property
of the network at a given time. Two statistical quan-
tities characterizing a static networks are clustering C
and shortest path L , where the former is the probabil-
ity that any two nodes are connected to each other, given
that they are both connected to a common node, and the
latter measures the minimal number of links connecting
two nodes in the network. Regular networks have high
clusterings and small average shortest paths, with ran-
dom networks at the opposite of the spectrum which have
small shortest paths and low clusterings [3]. Small-world
networks fall somewhere in between these two extremes.
In particular, a network is small world if its clustering
coefficient is almost as high as that of a regular network
but its average shortest path is almost as small as that

of a random network with the same parameters. Watts
and Strogatz demonstrated that a small-world network
can be easily constructed by adding to a regular network
a few additional random links connecting otherwise dis-
tant nodes. The scale-free property, on the other hand, is
defined by an algebraic behavior in the probability dis-
tribution P (k) of k, the number of links at a node in
the network. This property is dynamic because it is the
consequence of the natural evolution of the network. The
ground-breaking work by Barabási and Albert [2] demon-
strates that the algebraic distribution in the connectivity
of scale-free network is caused by two basic factors in the
temporal evolution of the network: growth and preferen-
tial attachment, where the former means that the number
of nodes in the network keeps increasing and the latter
stipulates that the probability for a new node to be con-
nected to an existing node is proportional to the number
of links that this node already has. The scale-free prop-
erty appears to be universal for many networks and most
of the scale-free networks are also small world. As of
today, the small-world and scale-free features have been
discovered in many networks in nature, and there has
also been a large number of theoretical models proposed
to explain these features [4, 5].

In this paper, we study the network structure of lan-
guage [6]. We present results for the English language,
but they are expected to hold for any other languages
because the fundamental role of the language, i.e., to
communicate ideas, is shared by all the languages. We
construct a conceptual network from the entries in a The-
saurus dictionary and consider two words connected if
they express similar concepts. The network is clearly
evolving and sparse. We argue that this network ex-
hibits the small-world property as a result of natural op-
timization and, interestingly, the network is asymptoti-
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FIG. 1: Illustration of the connections in the conceptual net-
work for a few words. The thick line is the shortcut between
the words “universe” and “character”, which are connected
by “nature”.

cally scale-free due to its dynamic character. We believe
and shall argue that these findings are important not only
for linguistics, but also for cognitive science.

A Thesaurus dictionary gives for every entry a list of
words that are conceptually similar to the entry word.
For example, the list for the word “nature” includes “uni-
verse”, “world”, and “character”. We define a network
from this in a natural way, where each word is a node,
and two nodes are connected if one of the corresponding
words is listed in the entry of the other one. To build this
network, we use an online English Thesaurus dictionary
that is freely available [7], which has over 30,000 entries,
and lists on average over 100 words per entry. The words
that have an entry in the dictionary are called root words.
Not all words in the list of a given root word are them-
selves root words. In the construction of the network,
only words that are root words are considered, and the
others are dropped. The resulting network has an aver-
age of about 60 connections per node. This number is
much less than the total number of nodes, and thus we
are dealing with a sparse network, where each node is
connected to only a small fraction of the network. This
is a necessary condition for the notion of small world to
make sense. The construction of the network is depicted
in Fig. 1.

We first present results concerning the small-world
property of the network. We expect the network to be
highly clustered, because there are many sets of related
words that are highly interconnected. For example, “na-
ture” is connected to “universe”, and is also connected to
“world”, and “world” and “universe” are connected. The
numerical calculation of C yields 0.53, which is compared
in Table I with the corresponding value for a random net-
work with the same parameters, in which the clustering
approaches zero, since the probability that two nodes are
connected is independent on whether they are connected
to a common node or not. We see that in fact C is more
than 250 times larger than the random network value

TABLE I: Results for the conceptual network defined by the
Thesaurus dictionary, and a comparison with a corresponding
random network with the same parameters. N is the total
number of nodes (root words), k̄ is the average number of
links per node, C is the clustering coefficient, and L is the
average shortest path.

N k̄ C L

Actual configuration 30,244 59.9 0.53 3.16

Random configuration 30,244 59.9 0.002 2.5

computed from the relation C = k̄/(N − 1) [4]. On the
other hand, because each word is linked to only 60 oth-
ers (on average), compared to over 30,000 in total, and
since only words expressing similar concepts are linked,
one might be tempted to conclude that L should be large,
and that one might need to cross hundreds or even thou-
sands of links to go from one word to another with a very
different meaning. However, a calculation of L yields the
amazingly low number of 3.2, which is very close to the
value of about 2.5 of the corresponding random network
estimated from the relation L ≈ lnN/ ln k̄ [4], as shown
in Table I. This means that one only needs 3 steps on
average to connect any two words in the 30,000-words
dictionary.

The reason why the average shortest path for the con-
ceptual language network is so low is related to the exis-
tence of words that correspond to two or more very dif-
ferent concepts. For example, “nature” is connected to
“universe”, but it is also connected to “character”. Thus,
two words with such distinct meanings such as “universe”
and “character” are separated by only 2 links in the net-
work (c.f. Fig. 1). The word “nature” is thus a shortcut
that connects regions of the network that would other-
wise be separated by many links. The presence of such
shortcuts is what makes L small. In fact, less than 1 per-
cent of the words require more than 4 steps to be reached
from any given word, on average, as shown in Table II.
For example, one can reach any other word starting from
“nature” with 5 steps or less.

Our first result is thus that the conceptual network
is highly clustered and at the same time has a very
small length, i.e., it is a small-world network. Since the
length L in small-world networks grows only logarithmi-
cally with the number of nodes [1], even if we included
more words in the dictionary (and consequently more
nodes), L would not change by much, and our conclu-
sions still hold. Another important point is that even
though we used the dictionary of a particular language
(English), since the Thesaurus associates words based on
their concepts, we expect similar results to hold for other
languages as well. In fact, in any language the network
will be highly clustered, and any language has words that
function as shortcuts, guaranteeing that L is very small,
even though the particular words that act as shortcuts
may be different for different languages.

Next we consider the dynamical feature of the con-
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TABLE II: Average number Nn of nodes at a shortest path
L = n from a given node in the conceptual network. ρ ≡

Nn/N is the fraction of nodes corresponding to Nn.

n Nn ρ

1 59.9 0.002

2 2,961 0.098

3 19,762 0.653

4 7,205 0.238

5 222 0.007

6 28.5 0.001

7 4.7 ∼ 10−4

8 0.06 ∼ 10−6

ceptual network. The language is an evolving system,
where new words are continually created and added to
the network. The conceptual network of language can
thus be regarded as a growing network. But, how are
the new nodes attached in the conceptual network? The
answer is encoded in the probability distribution P (k)
of the connectivity. If new nodes are randomly added
to the network, P (k) follows an exponential distribution
[8]: P (k) ∼ exp(−βk). If new nodes are preferentially
added to the network, e.g., if the probability Πi for an
already existing node i to acquire a link from the new
node is proportional to ki, the number of links that node
i already has, then P (k) exhibits the following algebraic
scaling [2, 8]:

P (k) ∼ k−α, (1)

where α = 3. The algebraic scaling law (1) reflects the
fact that there is a self-organizing principle governing the
growth of the network, which has indeed been discovered
in many realistic networks [2, 5]. For our conceptual
network of language, we expect the distribution P (k) to
reflect the intrinsically coherent manner by which a lan-
guage is supposed to evolve. However, the rule of a per-
fect preferential attachment Πi ∼ ki appears to be too
idealized as there are also random factors affecting how
a new word is added to the language. We thus hypothe-
size that for the conceptual network of language, a new
node is added to the network with both preferential and
random attachments. Specifically, we assume,

Πi ∼ (1 − p)ki + p, (2)

where p and (1−p) are the weights of random and prefer-
ential attachments, respectively. A recent work [9] indi-
cates that the attachment rule (2) leads to the following
connectivity distribution:

P (k) ∼ (k +
p

1 − p
)−γ , γ = 3 +

p

m(1 − p)
, (3)

where m is the number of new links added to the network
at each time step. We see that for small k, P (k) exhibits
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FIG. 2: Algebraic scaling behavior of P (k) for the conceptual
network of the English language. The inset shows the initially
exponential decay of P (k).

an approximately exponential behavior, while for large k,
P (k) appears to be algebraic with an exponent greater
than 3. We then expect to observe a crossover from the
exponential to algebraic behavior as k is increased. This
indeed appears to be the case for the conceptual network
of language, as shown in Fig. 2, where the asymptotic al-
gebraic scaling exponent is about 3.5, which is consistent
with the theoretical prediction in Eq. (3). This indi-
cates that our hypothesis of mixed contributions from
preferential and random attachments in the development
of the conceptual network of language is plausible, and
there is indeed a self-organized structure in the network
to certain degree.

A heuristic justification for our hypothesis (2) is as fol-
lows. Because of the small-world topology, each node of
the conceptual network on average has a large fraction
of local connections and a small fraction of long range
connections. When a new node is added to the network,
it has the same probability of attaching to any one of
the already existing nodes. But, once it attaches a node
j it has the tendency to connect preferentially to the
nodes that are already connected to j [10]. Preferential
attachment comes from the second step, since the prob-
ability that a node i is in the neighborhood of node j is
proportional to the number of links ki of node i; while
the random component comes from the random choice
of the first connection j and the subsequent long range
connections. The small-world property is consistent with
the evolutionary character of the network, as the growing
process tends to keep high clustering and small shortest
path.

In comparison with the small-world model originally
proposed in Ref. [1], a scale-free network presents a
highly heterogeneous distribution of links per node. In
spite of this, the evolution of the conceptual network is
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demonstrated to be robust, in that most of the words
correspond to nodes connected to few other nodes, and
can be removed without affecting the structure of the
network [9, 11]. There are also words that are the most
visible ones, but they are unlikely to be suddenly lost or
undergo an abrupt transformation in the evolution with-
out a self-organized reconnection of the neighbors [12].

We conclude with some thoughts on the meaning of
our results for cognitive science. It is well known that
human memory is associative, which means that infor-
mation is retrieved by connecting similar concepts, just
as in our network above [13, 14]. From the standpoint
of retrieval of information in an associative memory, the
small-world property of the network represents a maxi-
mization of efficiency: on the one hand, similar pieces of

information are stored together, due to the high cluster-
ing, which makes searching by association possible; on
the other hand, even very different pieces of information
are never separated by more than a few links, or associa-
tions, which guarantees a fast search. We thus speculate
that associative memory has arisen partly because of a
maximization of efficiency in the retrieval by natural se-
lection. This issue may be related to the fact that the
neural network is probably a small-world network as well
[15, 16], which is probably necessary for the brain to be
able to hold a conceptual network that is needed for as-
sociative memory.
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