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In this paper, we present a model of language acquisition which can be used to explain how
children learn a grammar by interacting with their surroundings. We build upon the model
proposed by Komarova et al in the context of evolution of grammars. We test our model for two
situations : One, in which an individual is trying to learn a grammar in an environment where
everybody uses the same grammar, and the other in which different groups in the population
use different grammars.

1. Introduction

Komarova et al (Komarova, Niyogi, & Nowak, 2001; Komarova & Nowak, 2002)
have proposed a computational model for the evolutionary dynamics of grammar
acquisition in a population of individuals. Along similar lines we propose a model
for grammar acquisition for a new language learner. The fact that a human learner
acquires a language and in particular its grammar, coupled with impossibility re-
sults from computational learning theory (Gold, 1967; Angluin & Kharitonov,
1995) imply that there exists an inherent learning bias that makes learning the
grammar of a language from limited input computationally feasible. One pos-
sibility is the presence of a finite set of candidate grammars one of which gets
selected as the most appropriate based on linguistic input (Nowak, Komarova,
& Niyogi, 2002). Here, we study language acquisition mainly in the context of
learning the correct grammar from the available linguistic data.

2. The grammar system

Komarova et al’s model is briefly as follows:

• UG = Finite search space of candidate grammars, G1, G2, . . .Gn, also
called the Universal Grammar.

• sij = Probability that a speaker who uses Gi utters a sentence compatible
with Gj . It represents the similarity between different grammars.

• F (Gi, Gj) = (sij + sji)/2, the payoff for mutual understanding.



• xi = Relative abundance of individuals who use grammarGi.

• fi =
∑n
j=1 xjF (Gi, Gj) , This is the payoff for an individual using gram-

mar Gi.

• {qij} is the stochastic learning matrix, qij denotes the probability that a
child born to an individual using Gi will develop Gj .

The population dynamics of grammar acquisition (Komarova et al., 2001; Ko-
marova & Nowak, 2002) is:

dxj
dt

=
n∑

i=1

fiqijxi − φxj , j = 1, 2, . . . , n. (1)

where φ =
∑n

i=1 fixi denotes the average fitness, or grammatical coherence of
the population. In general, φ is a number between 0 and 1.

To model language acquisition dynamics for a single individual, we introduce
the following concepts:

• A = number of individuals in the population

• pij = probability that the ith individual uses Gj at a particular instant in
time. Clearly,

∑n
j=1 pij = 1, and also xj = 1

A

∑A
k=1 pkj .

• ψi =
∑n

j=1 pijfj , this represents the payoff for the ith individual.

3. Grammar acquisition dynamics of an individual

Following Komarova et al, the learning model for the evolutionary dynamics of
grammar acquisition is: Let {qij} be the stochastic learning matrix, where qij
denotes the probability that an individual using grammar Gi will switch to using
grammarGj in the next turn. Note that this interpretation of the stochastic learning
matrix is different from the one described in the previous section. Using this
stochasticity matrix, the learning dynamics of an individual is given by:

dpij
dt

=
n∑

k=1

fkqkjpik − ψipij , (2)

i = 1, . . . , A, j = 1, . . . , n

In all, we have A × n differential equations, where pij corresponds to the proba-
bility that individual i uses grammarGj from the UG.



4. A simple learning model

The simplest learning model is to assume that all qij are constants. To simplify
our analysis, we assume the q matrix is symmetric, and is given by

qii = q, , i = 1, . . . , n (3)

qij =
1 − q

n− 1
, i 6= j (4)

Further, we assume a fully symmetrical system, that is

sij = s, i 6= j, 0 < s < 1 (5)

4.1. Language acquisition dynamics when all population members use
the same grammar

This problem can be formulated as follows : We assume that there are n grammars
in the universal grammar set, and there are A individuals in the population. With-
out loss of generality, we assume that individuals from 1 to A − 1 have chosen
grammarG1, and we are interested in studying the dynamics of theAth individual.
Assuming that the Ath individual uses all the grammars except G1 with uniform
probability, the above equation reduces to the following form

dpA1

dt
= αp3

A1 + βp2
A1 + γpA1 + δ (6)

where, α = −( 1−s
A ), β = (1 − s)( q+1−A

A ), γ = q(1 − 1−s
A ) − s(1−q)

n−1 − s and

δ = s(1−q)
n−1 .

The initial condition for the equation is

pA1 = 1/n, t = 0 (7)

that is, initially each grammar has equal probability of being used. We are inter-
ested in studying the behavior of this initial value problem, in particular we want
to see whether pA1 always attains an equilibrium, if so what is the equilibrium
value and how do the parameters s, q, A and n influence the acquisition process.
Mathematica was used to study the behaviour of the differential equations.

The probability pA1 (henceforth referred to as p in this section for convenience)
always converges, though the value to which it converges depends upon the val-
ues of the parameters. The value of p reaches 1.0 only if q = 1.0 (i.e. learning
fidelity is perfect). The effect of changing the parameters q, s, n and A can be
summarized as follows :



• If the value of q is increased, keeping other variables fixed, the value of p
converges to a higher value as shown in Fig 1. At q = 1.0, the final value
of p is 1.0, irrespective of the value of s.

• If only s is changed, the value to which p converges decreases, and so does
the rate of convergence, as shown in Fig. 2. (q = 0.7, n = 10 and A = 10).

• With increasing n, the convergence is attained at a slower rate, although it
always converges to the same value.

• Changing the value of A does not show any significant impact on grammar
acquisition dynamics.

Figure 1. Plot of p versus t when q is varied.

4.2. Learning mechanisms

A learning mechanism defines the dependence of {qij} onN , the number of learn-
ing events. The results for two learning algorithms, both of which have been ex-
tensively studied in the literature, are presented here.

• Memoryless learning: The learner starts with a randomly chosen hypothe-
sis (say Gi) and stays with this hypothesis as long as the sentence heard is
compatible with this hypothesis. If a sentence is not compatible, the learner
randomly chooses another grammar from the UG. The process stops after
N sentences. For a fully symmetrical system, the dependence of q on N is



Figure 2. Plot of p versus t when s is varied

given by

q = qii = 1 − (1 −
1 − s

n− 1
)N

n− 1

n
(8)

• Batch learning: The Batch learner is first exposed to and memorizes all N
sentences and then chooses a grammar from the UG that is most compatible
with the input. For a fully symmetrical system,

q = qii =
(1 − (1 − sN )n)

sNn
(9)

It can be seen that the value of q will be higher for the batch learner compared
to the memoryless learner, for the same values of s, n and A. Human learning
is likely to be intermediate between these two algorithms, and therefore human
performance is expected to lie somewhere between these two. Fig. 3 shows the
plot of pA1 when s = 0.4, N = 40, n = 25 and A = 10. The memoryless
algorithm converges to p = 0.40, whereas the batch learner algorithm converges
to p = 0.85. The corresponding values of q for the two algorithms are 0.65 and
0.92 respectively.

4.3. Language acquisition dynamics when different population members
use different grammars

We formulate this problem as follows : The UG has n grammars in . Members
1,2,. . . , A use grammar G1, members A + 1, A + 2, . . . , 2A use G2, and so on.
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Plot of p versus t for memoryless and batch learner algorithm

Figure 3. Plots for memoryless and batch learner algorithm

The (nA + 1)th member is the learner and is interacting uniformly with all the
groups. The dynamics of grammar acquisition for this member is given (in a fully
symmetrical situation) by:

dpj
dt

= (
1 − q

n− 1
)

n∑

k=1,k 6=j

fkpk + qfjpj − (

n∑

k=1

fkpk)pj

we use pi for the probabilities of the learning individual.

xj =

∑nA+1
k=1 pkj
nA+ 1

=
A+ pj
nA+ 1

fi =
[(n− 1)s+ 1]A+ s(1 − pi) + pi

nA+ 1

ψ =
n∑

k=1

fkpk

For this situation, irrespective of the initial values of the probabilities, and the
values of s, q, n and A, it is observed that the probability values p1, . . . , pn all
converge to the same value. Figure 4 shows the plot for one such case, when
s = 0.2, n = 3, A = 5 and q = 0.8.

5. A simulated annealing learning model

In the learning models described above, the value of q (the learning coefficient)
had been kept constant. In the simulated annealing learning model, the value of q
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Plot for multiple languages equilibrium

Figure 4. Plots for multiple languages case

changes with time and is given by:

q = e(ψ−1)/kt (10)

where ψ =
∑n

k=1 fkpik, and k is a constant (fixed at 1.0).
Such a choice of q satisfies the following two important properties (note that q is
qii).

1. If the individual’s grammatical coherence is high (i.e. ψ is close to 1, then
q is close to 1, i.e. the individual has a lower tendency to switch to another
grammar.

2. As time progresses, q tends to 1, i.e. if learning has taken place initially,
then there is less likelihood the individual will change to another grammar.
However, when t is small q is close to 0 and the learner is likely to switch
grammars during early learning.

For the case when all the population members use the same grammar and the sim-
ulated annealing learning model is used, the probability of using that particular
grammar always converges to 1, irrespective of the values of s or n. For the mul-
tilingual environment case, the probabilities tend to converge to the same values
initially, but subsequently only one of the grammars attains the probability 1 and
for other grammars the probability of usage tends to zero. This is shown in Fig. 5.

6. Conclusion

In this paper, we have presented two possible models of learning (the simple learn-
ing algorithm and the simulated annealing learning algorithm), and analyzed the
behavior of a learner for monolingual and multilingual environments. The sim-
ulated annealing model has the interesting consequence that the learner learns a



0 200 400 600 800 1000
Time t

0.2

0.4

0.6

0.8

1

P
r
o
b
a
b
i
l
i
t
y

p

Plot for multiple languages equilibrium

Figure 5. Plot for the multiple language case when simulated annealing model is used.

single language perfectly. The work can be extended by studying the dynamics
using more realistic assumptions for the variation of q with time and for the nature
of interaction between the learner and the group of mature individuals.
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