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Abstract.

We investigate a model of language evolution, based on population game dynamics with learning.
Specifically, we examine the case of two genetic variants of universal grammar (UG), the heart of
the human language faculty, assuming each admits two possible grammars. The dynamics are driven
by a communication game. We prove using dynamical systems techniques that if the payoff matrix
obeys certain constraints, then the two UGs are stable against invasion by each other, that is, they
are evolutionarily stable. These constraints are independent of the learning process. Intuitively, if a
mutation in UG results in grammars that are incompatible with the established languages, then it will
die out because individuals with the mutation will be unable to communicate and therefore unable
to realize any potential benefit of the mutation. An example for which the proofs do not apply shows
that compatible mutations may or may not be able to invade, depending on the population’s history
and the learning process. These results suggest that the genetic history of language is constrained
by the need for compatibility and that mutations in the language faculty may have died out or taken
over depending more on historical accident than on any simple notion of relative fitness.
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1. Introduction. Language is perhaps the most striking and specialized aspect
of the human species. The ability of children to learn a language instinctively by
listening to adult speech is especially remarkable, and many questions may be posed
about the biological processes behind this ability [28, 3, 15, 20]. Using the framework
of population game dynamics [6], this paper addresses the questions of whether ge-
netic variation might exist in the language faculty, and under what circumstances can
a mutation in the language faculty spread through a population. Mathematical mod-
els are extremely important in exploring the evolutionary history of human language,
given the limited physical evidence [5, 14, 2, 8, 9, 29, 7, 22, 21]. The fundamental
questions of how changes in the genetic code for language arise and propagate, in
addition to being fascinating from the biological and philosophical perspectives, leads
to interesting mathematics: The interaction of game dynamics and learning leads to
a system of differential equations with rich behavior. A genetic variant is evoluti-

narily stable if the set of population states in which everyone has that variant are
attracting. In this paper, we investigate a particular case of this dynamical system,
and derive sufficient conditions for evolutionary stability of genetic variants of the
language faculty.

Following prior work [24, 27, 31, 25, 30, 26, 13, 23], the benefit of language are
represented by payoffs in a communication game, leading to reproductive success.
However, genetic diversity in combination with learning adds extra complexity: The
learning process is determined genetically, but the payoff comes from a strategy se-
lected by the learning process. Thus, learning is an extra layer of indirection between
the genome and the payoff. In the specific case of language, human beings are en-
dowed with a set of innate hints and limitations known as universal grammar or UG

[3, 28] that determine what languages are possible, and how children acquire a native
language. UG may be thought of as a means for selecting a language, which in turn is
a strategy for a communication game. That observation suggests the term metastrat-

egy for traits such as UG which specify a strategy for selecting a strategy in a game.
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The mathematical task at hand is to formulate a model of competition among UGs
by adapting game dynamics to include metastrategies.

For such a mathematical model, a fundamental question is: Given a homogeneous
population, if a small sub-population with a different UG is introduced, does the
invasion die out, take over, or coexist? Initially, one might expect to find some
measure of fitness such that the UG of greater fitness wins. However, as this paper
shows, there is no such simple measure of fitness for metastrategies, because the payoff
leading to fitness is not derived directly from a player’s metastrategy.

This paper focuses on a restricted but non-trivial case where there are two UGs,
each of which admits two grammars. There is considerable debate about exactly
what parts of human intelligence are part of UG. For the purposes of this paper,
a UG consists of a set of admissible languages and a learning algorithm that takes
sample sentences and leads a child to acquire an admissible grammar. The main
result is a mathematical statement of the following intuition. One might expect that
if two UGs specify incompatible languages, then neither should be able to invade the
other. Invaders confined to incompatible languages would die out not because their
genetic endowment is less fit in any simple sense, but because they cannot realize the
potential benefit of language if the majority of the population cannot communicate
with them. For a range of parameter settings of the mathematical model, it is possible
to have two UGs, each of which is stable against invasion by the other.

Furthermore, it is possible to have accidental stability, that is, two UGs, each of
which can invade the other or not, depending on the dominant language. In this case,
the population chooses a dominant language more or less at random, based on its
initial state, and that accident determines whether or not a future invasion succeeds.

Section 2 formulates the language dynamical equation with multiple universal
grammars. The resulting system of differential equations takes a payoff matrix and
a learning matrix as parameters. From the general case, we restrict our attention to
the case of two UGs with two grammars each. Section 3 derives conditions on the
payoff matrix that imply that genetically homogeneous populations are stable against
invasion by the other UG. These conditions are independent of the learning matrix
and apply to any learning algorithm within the scope of the model. The conditions
rigorously describe when a mutated UG is sufficiently incompatible with the existing
UG to invade. Section 3.1 is a simplified proof for the case of two highly symmetric
UGs, and Section 3.2 is the complete proof for general parameter settings. A brief
discussion of these results, including an example of accidental stability, appears in
Section 3.3. Finally, Section 4 draws some conclusions and indicates directions for
further research.

2. The model. Following [12, 11, 16, 18, 19], we assume a large, well-mixed pop-
ulation, where all members have one of N genetically-determined UGs U1, U2, . . . , UN

and learn to speak one of n grammars G1, G2, . . . , Gn. For simplicity, we assume that
everyone speaks to everyone else, and that the lexicon is common to all speakers. In
addition, reproduction will be modeled asexually, and we will ignore bilingualism.

The population as a whole is represented by variables xj,K representing the frac-
tion of the population with UK that speaks Gj . The sum of all segments of the
population must total 100%, so

∑

K

∑

j xj,K = 1. Since each xj,K ≥ 0, the set of all
population states is a simplex. The fractions of the population with UK , denoted yK ,
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are defined as

yK =

n
∑

j=1

xj,K . (2.1)

For ease of notation, we also define variables for the fraction speaking Gj ,

wj =

N
∑

K=1

xj,K . (2.2)

The dynamics are driven by a communication game. The payoff matrix is denoted
B where Bi,j is the payoff to a speaker of Gi when interacting with a speaker of Gj .
One would expect that the maximum payoff occurs when both participants use the
same grammar, so B ought to be diagonally dominant. As a concrete example, one
could consider a communication game where Bi,j is the probability that a speaker of
Gi understands a random sentence spoken by a speaker of Gj . However, no particular
form of B is required in this paper.

Learning is modeled by a stochastic matrix Q where Qi,j,K is the probability
that a child of a speaker of Gi ends up speaking Gj , given that both have UK . All
children are assumed to learn some language, so for all i and K,

∑

j Qi,j,K = 1. Since
natural languages are generally passed on successfully, it is typical to assume that the
diagonal entries Qj,j,K are close to 1, although that assumption is not required in this
paper. In other papers on language dynamics [16, 11], the Q matrix is restricted to be
constant. Here, that restriction is not necessary, and Q may in fact depend on x and t.
We assume that parents always pass their UG to their children unchanged. Genetic
mutation is assumed to be rare, and will be introduced through discrete invasion
events, that is, perturbations of the game dynamics.

As in [18], the language dynamical equation for multiple UGs is

F = Bw,

φ = wT F =
∑

j

wjFj ,

ẋj,K =
n

∑

i=1

Fixi,KQi,j,K − φxj,K

= xj,K(FjQj,j,K − φ) +
∑

i6=j

Fixi,KQi,j,K .

(2.3)

Each entry Fj of the vector F represents the average payoff to a speaker of Gj , given
that each Gj is spoken by a fraction wj of the population. The base reproductive
rate for speakers of Gj is tied directly to its payoff Fj . The average fitness over the
whole population is given by φ. The second form of the equation for ẋj,K is perhaps
the easiest to explain, as it shows the resemblance to the standard replicator model
[6]. Roughly, the change in xj,K is determined by how much the fitness (or basic
reproductive rate) of Gj exceeds the population average φ. The remaining terms
involving Q represent imperfect learning.

The dynamical system (2.3) does not account for spatial and social structure of
the population, and the representation of learning as a stochastic matrix ignores much
of the complexity of true language acquisition. However, it is simple enough that one
can hope for significant theoretical results. Alternative models include greater detail
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at the expense of additional complexity, and the analysis of such simulations is often
limited to statistical results [1, 2, 10].

For the remainder of the paper, we assume that there are two UGs with two
grammars each. Thus, U1 admits G1 and G2 and U2 admits G3 and G4. We require
xj,K to be fixed at 0 if UK does not admit Gj , and the necessary slots in Q must also
be zero, so for example Q1,3,1 is zero because children with U1 cannot learn G3.

Determining all possible behaviors of even the two UG system in general is an
extremely difficult problem, so we focus only on those population states where initially
everyone has the same UG and the other UG attempts to invade. Section 3 poses
the question mathematically by examining population states where yK = 1 − ε. An
attracting set [4] is a closed invariant subset of the phase space surrounded by a
neighborhood in which every trajectory tends to the set in forward time. If the
population tends back to yK = 1, then the set of all states with yK = 1 forms an
attracting set, and UK is stable against invasion by the other UG. Thus the dynamics
of the yK variables will be crucial. Since Q is row stochastic, the expression for ẏK

simplifies considerably, leaving just

ẏK =
∑

i

Fixi,K − φyK . (2.4)

Remarkably, the Q matrix disappears. The learning process still influences the dy-
namics of yK in that it steers the xi,K . However, as will be shown in Section 3, there
is the possibility that the overall behavior of the yK ’s, and hence the evolutionary
stabilities of U1 and U2, can sometimes be determined without reference to Q. In
such cases, the B matrix alone determines whether a UG is stable, and any learning
algorithm, even one that depends on x and t, will yield the same result.

The curious reader is invited to read Chapter 5 of [17] for additional results in
more specific cases.

2.1. New coordinates. To analyze (2.3), we begin by changing coordinates so
that the behavior of the yK ’s is more readily apparent. The original variables xj,K

will be called simplex coordinates, and the phase space will be drawn as a pyramid as
in Figure 2.1. The corner points Xj,K represent extreme populations where xj,K = 1
and the other x’s are 0. The following new variables will be called box coordinates :

r =
x2,1 − x1,1

x2,1 + x1,1

,−1 ≤ r ≤ 1,

s =
x4,2 − x3,2

x4,2 + x3,2

,−1 ≤ s ≤ 1,

z = x1,1 + x2,1 = y1, 0 ≤ z ≤ 1.

(2.5)

The balance between G1 and G2 is represented by r. Likewise, the balance between
G3 and G4 is represented by s. Since z = y1, it represents the fraction of the popu-
lation with U1. These three pieces of information are enough to identify all possible
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population states. The reverse change of coordinates is:

x1,1 =

(

1 − r

2

)

z,

x2,1 =

(

1 + r

2

)

z,

x3,2 =

(

1 − s

2

)

(1 − z),

x4,2 =

(

1 + s

2

)

(1 − z).

(2.6)

It is worth noting that the change of coordinates is singular: It expands the simplex in
xj,K coordinates into a box in (r, s, z) by blowing up the edges X1,1X2,1 and X3,2X4,2

into squares, as illustrated in Figure 2.1.
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Fig. 2.1. The singular change of coordinates. (a): The planes given by r = 0 and s = 0 in
(r, s, z) or box coordinates. (b): The corresponding sets in simplex coordinates. Note that the top
edge of the simplex, where y1 = 1, corresponds to a square in box coordinates. Similarly for the
bottom edge, where y1 = 0.

3. Stability conditions. The learning algorithm does not explicitly appear in
the time derivative of the size of the sub-population with a given UK , shown in (2.4).
This observation motivates a series of calculations that yields sufficient conditions for
evolutionary stability. These six inequalities may be easily interpreted in a number
of special cases, thus building mathematical intuition for when evolutionary stability
occurs.

A simple calculation using (2.4) shows that ẏK = 1 if yK = 0, so for each K the
set of points where yK = 1 is closed and invariant. These are the upper and lower
edges of the simplex in Figure 2.1. To show that these edges are attracting, we will
divide the simplex into three regions, one in which all populations tend toward the
top edge where U1 takes over, one in which all populations tend toward the bottom
edge where U2 takes over, and an intermediate region. To illustrate the argument,
we first analyze a case with a highly symmetric payoff matrix B, then generalize the
argument to the case of general B.

3.1. Illustration of the null-cline argument in the case of permutation

symmetry. To illustrate the argument, consider the case where all the grammars are
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interchangeable as far as the payoff they generate, so

B =









1 a a a
a 1 a a
a a 1 a
a a a 1









. (3.1)

This symmetry simplifies the dynamical system considerably. There are two universal
grammars, so we have two variables of interest, y1 = x1,1 + x2,1 and y2 = x3,2 + x4,2.
Since y1 +y2 = 1, we need only analyze the behavior of y1. The following proposition,
describes how the limiting behavior of y1 is largely determined by the initial population
state.

Proposition 3.1. The simplex contains two trapping regions which are inde-

pendent of the Q matrix: Trajectories for which y1(0) > 2/3 tend to y1 = 1, and

trajectories for which y1(0) < 1/3 tend to y1 = 0. In the region in between, the Q
matrix influences whether y1 approaches 1 or 0.

Proof. We work in box coordinates. Observe that y1 = z, from which we may
calculate that

ż = ẏ1 =
1

2
(1 − a)(1 − z)z(−1− s2(1 − z) + (2 + r2)z). (3.2)

To find the Q-independent trapping regions, we first look for the z null-clines. These
are the sets of points for which ż = 0. From (3.2) it is clear that ż = 0 if and only if
z = 0, z = 1, or z = h(r, s) where

h(r, s) =
1 + s2

2 + s2 + r2
.

The first two cases are the upper and lower edges of the simplex, and the third is a
surface in the middle. See Figure 3.1. Thus, ż is of one sign above the surface and the
opposite sign below. Looking at the vertical line given by r = 0 and s = 0, we have
ż = − 1

2
z(−1 + z)(−1 + 2z) which is positive for z > 1/2 and negative for z < 1/2.

Therefore, the overall picture is that the simplex decomposes into upper and lower
trapping regions and a boundary region in the middle. If a trajectory starts above the
topmost point of the z null-cline, then ẏ1 > 0, which means y1 will increase over time
until it reaches y1 = 1. Likewise, any trajectory that starts below the bottommost
point of the surface will continue downward until y1 = 0.

To find the topmost and bottommost points, observe that the surface is saddle
shaped, so the extrema will appear on the boundaries. Looking on the faces of the
box given by s = ±1, we have h(r,±1) = 2/(3 + r2) which has a maximum at
h(0,±1) = 2/3 and minima on the edges at h(±1,±1) = 1/2. Likewise, looking on
the surfaces given by r = ±1, we have h(±1, s) = 1−2/(3+s2) which has a minimum
at h(±1, 0) = 1/3. Furthermore, it has maxima on the edges at h(±1,±1) = 1/2.
Therefore, if either universal grammar holds a 2/3 majority of the population, it will
eventually take over regardless of the Q matrix.

In the boundary region near the z null-cline, many orbits obey the simple rule
that if they start above the surface, they approach y1 = 1 and if they start below,
they approach y1 = 0. However, orbits may pass through the surface horizontally,
thereby starting above it but converging to y1 = 0 or starting below it but converging
to y1 = 1. For example, Figure 3.2 shows the values of y1 and y2 starting from a point
just above the z null-cline for which y1 → 1. However, a nearby initial condition
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produces the trajectories in Figure 3.3, where y1 passes horizontally through the z
null-cline and turns downward.

The actual surface dividing orbits that go to y1 = 1 from those that go to y1 = 0
depends on Q. For example, it might be the stable manifold of a saddle point in the
middle of the simplex, or perhaps something more complicated.

X1,1
X2,1

X3,2

X4,2

Fig. 3.1. The upended simplex and z null-cline.
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a = 1/10, Qi,j,1 =









0.7 0.3 0 0
0.3 0.7 0 0
0 0 1 0
0 0 0 1









, Qi,j,2 =









1 0 0 0
0 1 0 0
0 0 0.7 0.3
0 0 0.3 0.7









Fig. 3.2. Trajectories starting from x1,1 = 57/160 = 0.35625, x2,1 = 19/160 = 0.11875, x3,2 =
x4,2 = 21/80 = 0.2625 which lies just above the z null-cline.

The proposition implies that in this case, the learning algorithms employed by
the two universal grammars and specified by Q are largely irrelevant to determining
which universal grammar takes over the population. As long as a certain majority of
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Fig. 3.3. Trajectories starting from x1,1 = 7/20 = 0.35, x2,1 = 7/60 = 0.116̄, x3,2 = x4,2 =
4/15 = 0.26̄. Here, the trajectory passes through the z null-cline, and y1 increases, reaches a
maximum, then turns downward and tends to 0. The parameters are the same as in Figure 3.2.

the population uses one universal grammar, it will be evolutionarily stable.

3.2. Null-cline argument in the general case. In this section, we extend
the null-cline argument of Section 3.1 to the case of fully general B and Q matrices.
We first find sufficient conditions under which the null-cline does not intersect the
top and bottom edges of the simplex. This guarantees that there are regions that lie
completely above or below it. Second, we find a condition that implies that trajectories
above the surface move upward, and those below it move downward, thereby assuring
that the top and bottom edges are attracting sets.

We will allow the B matrix to be completely general, with entries bi,j . In what
follows, more concise expressions result if the following parameters are used instead
of the entries of B:

α0 =
1

2
(b11 + b12 + b21 + b22) α1 =

1

2
(b11 − b12 − b21 + b22)

α2 =
1

2
(b11 + b12 − b21 − b22) α3 =

1

2
(b11 − b12 + b21 − b22)

β0 =
1

2
(b13 + b14 + b23 + b24) β1 =

1

2
(b13 − b14 − b23 + b24)

β2 =
1

2
(b13 + b14 − b23 − b24) β3 =

1

2
(b13 − b14 + b23 − b24)

γ0 =
1

2
(b31 + b32 + b41 + b42) γ1 =

1

2
(b31 − b32 − b41 + b42)

γ2 =
1

2
(b31 + b32 − b41 − b42) γ3 =

1

2
(b31 − b32 + b41 − b42)

δ0 =
1

2
(b33 + b34 + b43 + b44) δ1 =

1

2
(b33 − b34 − b43 + b44)

δ2 =
1

2
(b33 + b34 − b43 − b44) δ3 =

1

2
(b33 − b34 + b43 − b44)
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We will work in box coordinates again, as defined in (2.5). After simplification,

ż =
1

4
(−1 + z)zg(r, s, z), (3.3)

where

g(r, s, z) =2
(

− β0 + δ0 + rβ2 + s(β3 − δ2 − δ3) − z(α0 − β0 − γ0 + δ0)

− rsβ1 + rz(α2 + α3 − β2 − γ3) − sz(β3 + γ2 − δ2 − δ3)

+ s2δ1 + rsz(β1 + γ1) − r2zα1 − s2zδ1

)

(3.4)

The factorized form (3.3) shows that there are three z null-clines: the top (z = 1),
the bottom (z = 0), and the surface determined by g(r, s, z) = 0. This surface will
be called the interior z null-cline. The goal of this section is to determine sufficient
conditions on B such that the interior z null-cline creates trapping regions around the
top and bottom edges of the simplex.

3.2.1. Step 1: The non-intersection constraints. The first condition is that
the interior z null-cline must not touch the top and bottom, implying that there is
some space between the vertical extrema of the surface and the top and bottom edges
of the simplex. See Figure 3.4 for an example.
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Fig. 3.4. The interior z null-cline in simplex coordinates (left) and box coordinates (right).
The asymmetric B matrix used to generate these pictures is as shown.
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Proposition 3.2. Suppose the following expressions are all strictly positive:

ν1 = 4δ1(δ0 − β0 + β2) − (β1 − β3 + δ2 + δ3)
2

ν2 = 4δ1(δ0 − β0 − β2) − (β1 + β3 − δ2 − δ3)
2

ν3 = 4α1(α0 − γ0 + γ2) − (α2 + α3 + γ1 − γ3)
2

ν4 = 4α1(α0 − γ0 − γ2) − (α2 + α3 − γ1 − γ3)
2

(3.5)

and also that

β0 − δ0 > 0 and γ0 − α0 > 0. (3.6)

Then, the interior z null-cline lies strictly between the top and bottom of the simplex

at a strictly positive distance from each.

Proof. The mathematical formulation of the conclusion in box coordinates is that
if −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1, then g(r, s, 0) 6= 0 and g(r, s, 1) 6= 0. We proceed by
proving that g is of one sign on the bottom plane z = 0, and also of one sign on the
top plane z = 1. We must add the technical assumptions that α1 and δ1 are nonzero
to eliminate some degenerate cases that would cause division by zero in what follows.
These assumptions are harmless, as ν1 and ν2 cannot possibly be positive if δ1 = 0,
and ν3 and ν4 cannot possibly be positive if α1 = 0.

For the bottom, we are interested in g(r, s, 0), which happens to be a quadratic
form in r and s, so the equation g(r, s, 0) = 0 must define a conic section in the plane
z = 0. To classify it, we complete the square in r and s and change variables to ρ and
σ so as to put it in a standard form:

r =
2β2δ1 + β1(β3 − δ2 − δ3 − 2δ1ρ)

β2
1

.

s =
β2

β1

− ρ + σ.

With these new variables, the equation g(r, s, 0) = 0 becomes

−
2(β0β

2
1 − β2

1δ0 − β2
2δ1 + β1β2(−β3 + δ2 + δ3))

β2
1

− 2δ1ρ
2 + 2δ1σ

2 = 0,

which is the form of a hyperbola in ρ and σ. If it happens that β1 = 0, then the above
change of variables is not applicable, and the curve turns out to be a parabola. Either
way, if we want to specify that the interior z null-cline does not touch the bottom, it
is sufficient to require that the curve specified by g(r, s, 0) = 0 lies outside the square
given by −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1. For a picture of an example of this curve, see
Figure 3.5. That constraint is equivalent to requiring the expression g(r, s, 0) to be
of one sign on the sides of the square. To avoid having two separate cases (g > 0 or
g < 0), we transform the constraint by dividing g(r, s, 0) by the coefficient of s2 and
requiring the resulting expression g2(r, s) to be positive on the sides of the square:

g2(r, s) = s2 +
−β0 + rβ2 + δ0

δ1

−
s(rβ1 − β3 + δ2 + δ3)

δ1

. (3.7)

(See Figure 3.6.)
Note that on the sides where r = ±1, the expressions g(±1, s) are quadratic in s,

and open upward because the coefficient of s2 is 1. So, to guarantee that g2(r, s) > 0
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Fig. 3.5. Contour plot of g(r, s, 0). The light hyperbola is g(r, s, 0) = 0, that is, the curve
where the interior z null-cline intersects the plane z = 0. For other points, dark shading indicates
a negative value of g(r, s, 0) and lighter shading indicates a positive value. The square is the bottom
face of the phase space. See Figure 3.4 for the particular B used in this illustration. This is where
we have to think outside the box.
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Fig. 3.6. Plot of g2(r, s), which differs by a constant factor from g(r, s, 0), using the same B
as in Figure 3.4. The region shown is the phase space in box coordinates. Observe that the surface
intersects with two faces of the phase space in parabolas, and with the other in lines.
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on these two sides, it suffices to require that the minima of g2(±1, s) be positive.
The minimum of a general quadratic function x2 + ax + b is b − a2/4, so the exact
constraints are

min
s

g2(1, s) = −
−4(−β0 + β2 + δ0)δ1 + (β1 − β3 + δ2 + δ3)

2

4δ2
1

> 0,

min
s

g2(−1, s) = −
4(β0 + β2 − δ0)δ1 + (β1 + β3 − δ2 − δ3)

2

4δ2
1

> 0.

Both denominators are square, so only the numerators matter in satisfying the in-
equalities. We therefore simplify the constraints to the first two inequalities in the
statement of the proposition, namely ν1 > 0 and ν2 > 0.

Observe that if these constraints are satisfied, then g2(r, s) > 0 on all four corners
of the square. With that observation, the sides where s = ±1 are easy to check, as
g2(r,±1) is a linear function of r, and it is therefore enough to require that g2(r, s) > 0
on the corners. In summary, if ν1 > 0 and ν2 > 0, then g is of one sign on all four
sides of the bottom square in box coordinates, and therefore, the z null-cline does not
intersect the bottom of the simplex.

The constraint that the interior z null-cline cannot intersect with the top of the
simplex can be enforced by imposing a second set of inequalities similar to those
discovered above. Again, the equation for where the null-cline intersects z = 1 is
g(r, s, 1) = 0 which defines a hyperbola in the plane z = 1 in terms of r and s.
To specify that the null-cline does not touch the top edge of the simplex, it suffices
to require that this hyperbola lie outside the square in box coordinates given by
−1 ≤ r ≤ 1 and −1 ≤ s ≤ 1. As before, we ensure this by requiring g(r, s, 1) to be of
one sign on all four sides of the square. Equivalently, we define g3(r, s) to be g(r, s, 1)
divided by the coefficient of r2, and require g3(r, s) to be positive on all four sides of
the square. The expression for g3 is

g3(r, s) = r2 +
α0 − γ0 + sγ2

α1

−
r(α2 + α3 + sγ1 − γ3)

α1

. (3.8)

Furthermore, g3(r,±1) are monic quadratic functions of r, so it suffices to require
that their minima be positive, which yields

min
r

g3(r, 1) = −
−4α1(α0 − γ0 + γ2) + (α2 + α3 + γ1 − γ3)

2

4α2
1

> 0,

min
r

g3(r,−1) = −
4α1(−α0 + γ0 + γ2) + (α2 + α3 − γ1 − γ3)

2

4α2
1

> 0.

As before, the denominators are all square, so only the numerators matter, and the
constraints reduce to ν3 > 0 and ν4 > 0. These imply that g is of one sign on the
top of the phase space in box coordinates, and that the z null-cline does not intersect
with the top of the simplex.

The final two constraints in the statement of the proposition are there to ensure
that the interior null-cline lies inside the simplex rather than completely above or
below it, and are derived as follows. Choose z̄ such that g(0, 0, z̄) = 0, that is, the
point at which the null-cline intersects the vertical line given by r = 0 and s = 0:

z̄ =
δ0 − β0

α0 − γ0 + δ0 − β0

. (3.9)
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A short calculation proves that the constraints δ0 − β0 > 0 and α0 − γ0 > 0 imply
0 < z̄ < 1, which guarantees that the null-cline lies completely inside the simplex.

It turns out that g(r, s, z) = 0 can actually be solved in terms of z, and the
resulting solution z = h(r, s) is the quotient of two polynomials in r and s. Under
the constraints derived in this proposition, h must be bounded for −1 ≤ r ≤ 1 and
−1 ≤ s ≤ 1, which means its denominator never vanishes. Therefore, h is continuous,
and since the region of interest for r and s is a closed square, h actually takes on
its extreme values. It follows that there is a strictly positive distance between the
null-cline and the top and bottom of the simplex.

3.2.2. Step 2: Direction of the vector field. Now we must show that ż > 0
above the interior z null-cline, and ż < 0 below it. This claim implies that trajectories
that pass above the uppermost point on the null-cline continue to rise, and those that
pass below the lowermost point continue to fall, thereby establishing the existence of
the two trapping regions.

Proposition 3.3. Assume that the interior z null-cline is strictly between the

top and bottom edges of the simplex, and that δ0−β0 > 0 and α0−γ0 > 0. Then there

are trapping regions above and below the null-cline.

Proof. The null-clines are by definition the set of points where ż = 0, so in regions
between them, ż is of one sign. It therefore suffices to show that for some point above
the interior null-cline, ż > 0, and for some point below it, ż < 0. Consider the vertical
line given by r = 0 and s = 0, as illustrated in Figure 3.7. Along this line,
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Fig. 3.7. The z null-cline in box coordinates with the line r = 0, s = 0 indicated by a bar. The
B matrix used for this picture is the same as in Figure 3.4

ż|r=0,s=0
=

1

2
(−1 + z)z(−β0 + z(−α0 + β0 + γ0 − δ0) + δ0).
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That is, ż is a cubic function f(z) along this vertical line, as in Figure 3.8. We need

0.2 0.4 0.6 0.8 1

-0.01

-0.005

0.005

0.01

f(z) = ż|r=0,s=0

Fig. 3.8. The vertical component of the vector field along the central vertical line in Figure 3.7

only require that f ′(0) < 0 to ensure that ż is negative below the null-cline and
positive above it, which is equivalent to the inequality

f ′(0) =
β0 − δ0

2
< 0. (3.10)

Equivalently, we may require that f ′(1) < 0, which yields the inequality

f ′(1) =
γ0 − α0

2
< 0. (3.11)

Both of these inequalities follow immediately from the hypotheses.

3.3. Discussion. What makes these two propositions possible is the fact that
Q is row-stochastic, so that it disappears in ẏK in (2.4). The same would happen
if Q depended on t or x. The trapping regions described in Propositions 3.2 and
3.3 are also independent of Q. Thus, for any collection of grammars that satisfies
the hypotheses of these propositions, as long as one of the universal grammars has
a sufficiently large majority of the population, it will take over no matter what the
learning algorithm, static or dynamic. Although these propositions do not rule out the
possibility of stable coexistence, they do provide conditions under which homogeneous
populations are stable against invasion by the other UG.

Here is some intuition concerning the constraints in Proposition 3.2. Let us
consider ν1. If the greatest payoff occurs when two people with the same language
interact, then the payoff matrix B should be diagonally dominant, which implies that
δ1 > 0. The parameter β0 is the sum of payoffs to individuals with U1 when speaking
to individuals U2. The parameter δ0 is the sum of payoffs to individuals with U2 when
speaking to others with U2. So roughly, ν1 > 0 means that δ0 − β0 is large, which
means that U2 receives a greater payoff when interacting with U2 than U1 does. That
agrees with the concept of evolutionary stability.

We may also examine some more specific forms of the B matrix to see what
payoffs lead to stable UGs. For example, consider the question of two very different
UGs, where G1 and G2 do not communicate well with G3 and G4. The payoff matrix
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for such a situation might look like this:

Bdiff =









c a ε ε
a c ε ε
ε ε c a
ε ε a c









. (3.12)

where c is relatively large, ε is small, and a is in between. For a picture, see Figure 3.9.
The constraints simplify greatly in this case:

ν1 = ν2 = ν3 = ν4 = 4(c − a)(c + a − 2ε),

α0 − γ0 = δ0 − β0 = a + c − 2ε.

Clearly, if ε is small enough, then all six constraints are positive. Therefore, the two
UGs are stable against invasion by each other no matter what their learning processes
are.
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Fig. 3.9. Null-cline for the case of two very different UGs, using the payoff matrix Bdiff with
c = 1, a = 1/2, and ε = 1/8. Left: Phase space in simplex coordinates. Right: Phase space in box
coordinates.

On the other hand, consider the case of two very similar UGs, where G1 ≈ G3

and G2 ≈ G4. The payoff matrix for this example might look like this:

Bsim =









c a (1 − ε)c (1 − ε)a
a c (1 − ε)a (1 − ε)c

(1 − ε)c (1 − ε)a c a
(1 − ε)a (1 − ε)c a c









. (3.13)

The constraints simplify to

ν1 = ν2 = ν3 = ν4 = −(c − a)2 − 2(a2 + 2ac − 3c2)ε − (a − c)2ε2,

and

α0 − γ0 = δ0 − β0 = (a + c)ε.
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If ε is small enough, then ν1, ν2, ν3 and ν4 are dominated by −(c − a)2 which is
negative, implying that the null-cline might intersect with the top and bottom of the
phase space as illustrated in Figure 3.10. Propositions 3.2 and 3.3 do not apply, so it
is possible that one UG might be able to invade the other, and the learning process
is critical to understanding the long-term behavior of the system.
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Fig. 3.10. Null-cline for the case of two very similar UGs, using the payoff matrix Bsim with
c = 1, a = 1/2, and ε = 1/32. Left: Phase space in simplex coordinates. Right: Phase space in box
coordinates, with planes z = 0 and z = 1 indicated. Note that the null-cline intersects with these
planes within the phase space.

The case of similar grammars leads to a remarkable situation called accidental

stability, illustrated by the 3-D phase portrait in Figure 3.11. This is a case of two
similar UGs where G1 ≈ G3 and G2 ≈ G4, so it is no surprise that the two UGs
can invade one another. What is surprising is the mechanism. Consider an initial
population whose members all have U1. These states are all on the top edge of the
simplex and remain on that line unless subject to an external perturbation. Such
a population will tend to one of the two fixed points on the top edge, one of which
is dominated by G1 and the other by G2. The fixed point dominated by G1 is a
stable sink, and if U2 tries to invade that population, it will fail. However, the fixed
point dominated by G2 is a saddle, and if U2 tries to invade that population, the
invasion succeeds, U2 takes over completely, and the population tends to the sink
on the bottom edge of the simplex dominated by G4. The initial state of the all-U1

population determines whether a later invasion by U2 succeeds or not, and that initial
state is essentially random. Hence, this instance of the language equation is sensitive
to historical accidents.

4. Conclusion. For a range of values of the payoff matrix in the communication
game, genetically homogeneous populations are evolutionarily stable. Roughly, a large
difference in the languages admitted by two UGs causes them to be stable against
invasion by each other. This fact has significant consequences for the evolution of
UG: The benefits of communicating with the rest of the population limit evolution
to innovations that are fairly compatible with the existing UG. Other potentially
beneficial mutations are likely to die out before their benefits can be realized. In the
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B =









1 0.2 0.99 0.1
0.2 1 0.1 0.99
0.99 0.1 1 0.2
0.1 0.99 0.2 1









Q =

















0.908 0.092 0 0
0.130 0.870 0 0

0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 0.858 0.142
0 0 0.092 0.908

















Fig. 3.11. A 3-D phase portrait showing accidental stability. The boundary of the simplex is
indicated by glassy rods, and fixed points are indicated by metallic spheres. The figure’s shadow is
visible on the left.

case of very similar UGs, evolutionary stability cannot be assured just by constraints
on the payoff matrix. The initial conditions and learning algorithms of the different
UGs can determine the outcome.

These mathematical results suggest that one should be especially careful when
formulating hypotheses about the origins and genetic history of human language.
Specifically, mutations leading to linguistic innovations must be reasonably compatible
with the established language and UG to have any chance of taking over. Even then,
historical accident and properties of the learning process influence the outcome. As
the propositions and examples explored in this paper show, the relative fitness of one
UG with respect to another is difficult to define, and any potential definition must be
parameterized by the linguistic environment: Since UGs are metastrategies, they are
one level removed from the payoff, so the particular mixture of languages present in
a population may determine whether or not a mutation dies out or spreads.

This research could be extended in a number of directions. A discrete stochastic
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model of a finite population might shed light on the question of how likely it is for a
mutation in UG to spread. The results of Section 3 are independent of the learning
algorithm, and give no indication of how the acquisition process might change over
time. Thus, it would be informative to study cases of the model for two UGs that differ
only in their learning algorithm. Also, the linguistic environment could be modeled
in more detail, including features such as noisy linguistic data and social and spatial
structure.
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