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Chaos and language
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Human language is a complex communication system with unlimited expressibility. Children spon-
taneously develop a native language by exposure to linguistic data from their speech community. Over
historical time, languages change dramatically and unpredictably by accumulation of small changes and
by interaction with other languages. We have previously developed a mathematical model for the acqui-
sition and evolution of language in heterogeneous populations of speakers. This model is based on game
dynamical equations with learning. Here, we show that simple examples of such equations can display
complex limit cycles and chaos. Hence, language dynamical equations mimic complicated and unpredict-
able changes of languages over time. In terms of evolutionary game theory, we note that imperfect learning
can induce chaotic switching among strict Nash equilibria.
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1. INTRODUCTION

Human language consists of a stream of sounds that give
rise to phonemes, words, phrases, sentences, poetry and
publications. Grammar is the internal computational sys-
tem of language (Pinker 1990; Jackendoff 2002). Native
speakers have a subconscious internal representation of a
grammar, which enables them to generate and understand
sentences of their language. Children build this internal
grammar by generalizing from linguistic data they receive
from their speech community (Lightfoot 1991, 1999).
Languages change over time. The purpose of this research
is to model language change by using tools from evol-
utionary game dynamics, and to use such models to gain
insight into the evolution of the language faculty.

Given an unrestricted set of languages and the problem
of identifying a target language based on a sequence of
example sentences, no learning algorithm can guarantee
that it will correctly identify every possible target in finite
time (Gold 1967; Valiant 1984; Osherson et al. 1986;
Angluin 1987; Vapnik 1995; Nowak et al. 2002). Univer-
sal grammar (UG) specifies the restricted set of languages
that is learnable by the human brain (Chomsky 1988).
UG is influenced by evolution; it is a consequence of the
architecture of our brain, which in turn is genetically
determined (Hauser 1996; Lai et al. 2001; Nowak et al.
2001).

Languages are not static. Phonological systems tend to
change systematically but unpredictably, as in Grimm’s
Law, which describes consonant changes from Proto-
Indo-European to Germanic languages, and vowel shifts
such as those taking place in English (Trask 1996). Con-
tact with other languages can bring about catastrophic
changes in syntax. For example, the loss of case endings
on nouns in Old English is thought to be due to contact
with Old Norse (Lightfoot 1999). Language change also
has the potential for oscillations, such as the morphology
type cycle. Languages tend to use either isolating
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morphology, with many small words each carrying a single
piece of meaning, or agglutinating morphology, in which
words consist of a stem plus many affixes carrying a single
piece of meaning, or inflecting morphology, in which each
affix carries many pieces of meaning. Roughly, languages
tend to change from isolating to agglutinating to inflecting
and back to isolating (Crowley 1998). English, for
example, has lost case endings and other forms of inflec-
tion and is changing from inflecting to isolating mor-
phology.

Changes such as these arise through learning error,
meaning that a child has acquired a grammar different
from the parents’. Errors arise when the primary linguistic
data fail to trigger the acquisition of the expected gram-
mar, as may happen when the data underspecify the gram-
mar or are inconsistent with every available hypothesis.
Such data can arise from natural variation in speech and
when sample sentences are drawn from multiple gram-
mars as in language contact. Acquisition is often robust
enough to ignore meaningless variation and detect the
presence of multiple languages, resulting in bilingualism.
However, this is not always the case, and history shows
that learning errors are possible.

We would like to use mathematical models to study lan-
guage change. Several different models have been pro-
posed (Niyogi & Berwick 1996; Steels 1997; Hurford et
al. 1998; Briscoe 2000; Cangelosi & Parisi 2001; Kirby
2001). The goal of this paper is to display instances of a
model developed by Nowak et al. (2001) that are as simple
as possible and also exhibit change and sensitivity anal-
ogous to that observed in real languages.

2. THE MODEL

Let us consider a group of individuals whose UG admits
a finite set of grammars G1, G2, … Gn. Denote by Qij the
probability that a child learner will acquire grammar Gj

when exposed to sample sentences generated by a parent
speaking Gi. The linguistic data available to the child and
the acquisition algorithm determine Q. Imperfect learning
means that Qii � 1 for at least some i, which implies that
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Figure 1. (a) A stable limit cycle. The oscillations are caused
by the learning algorithm. Errors from children learning G1

feed into G2, G2 feeds into G3, and G3 feeds back into G1.
(b) A spiral sink that results from the limit cycle in (a) when
the Q matrix is changed as shown. The B matrix is common
to both figures.

sometimes the learner will end up with a different gram-
mar. As a simplifying assumption, the Q matrix is taken
to be constant in time. Hence, it most accurately reflects
scenarios such as an isolated population or one subject to
a constant level of contact, and is of limited use when
learning probabilities are fluctuating.

Consider a large well-mixed population where each
individual speaks one of the grammars G1, G2, …, Gn. The
fraction of the population that speaks Gi is denoted xi. We
have Σixi = 1. The population is subject to natural selec-
tion: individuals derive a benefit from communicating suc-
cessfully with each other. Let us define a pay-off matrix
B, where Bij is the benefit to a speaker of Gi from an
encounter with a speaker of Gj. The entries of this matrix
may include effects such as the benefit of correct com-
munication, cost of ambiguity, and so forth. A natural
assumption is that people communicate best with others
who have the same grammar. In this case, B is diagonally
dominant, which implies that each grammar is a strict
Nash equilibrium. With perfect learning, each language
would then be an evolutionarily stable equilibrium.

The fitness associated with grammar Gj is the weighted
average pay-off F j = ΣkB j kxk. Here, we make the simplify-
ing assumption that communication is the dominant
source of fitness, thereby incorporating selection in favour
of individuals who communicate well.

The average fitness of the population is given by
� = Σ jF jx j . The language dynamical equation is given by

ẋ j = �n
i = 1

FixiQij � �x j . (2.1)

This system can be interpreted as a replicator (or game
dynamical) equation (Hofbauer & Sigmund 1998) with
learning or mutation (Stadler & Schuster 1992). The stan-
dard replicator equation is obtained in the limit of perfect
learning. Furthermore, there is a correspondence between
equation (2.1) and the Price equation, which is a general
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description of evolutionary dynamics (Price 1972; Page &
Nowak 2002). Equation (2.1) can also be formulated to
describe competition among multiple UGs (Mitchener &
Nowak 2003).

3. LIMIT CYCLES AND CHAOS

As a specific example, let us consider the following pay-
off matrix for a case of three grammars:

B = �0.88 0.2 0.2

0.2 0.88 0.2

0.2 0.2 0.88�. (3.1)

All grammars are equally good. For perfect learning, this
pay-off matrix leads to very simple dynamics: all trajector-
ies converge to one of three stable equilibria where the
whole population speaks the same language. Imperfect
learning, however, can induce very different behaviour.
For example, let us consider the following learning matrix
in conjunction with equation (3.1):

Q = �0.79 0.2 0.01

0.01 0.79 0.2

0.2 0.01 0.79�.

For each grammar, the most likely outcome of the learning
process is the correct grammar, and there is one second-
most-likely outcome. As shown in figure 1a, these para-
meters produce stable oscillations, as learning errors in the
subpopulation speaking G1 feed into G2, and G2 feeds into
G3, and G3 feeds back into G1. This cycle is suggestive of
the morphology type cycle. Note that stable limit cycles
such as this are impossible for three-dimensional rep-
licator equations (Hofbauer & Sigmund 1998, p. 78).

If learning becomes less accurate, then the limit cycle
breaks down, resulting in a spiral sink, as shown in fig-
ure 1b.

This spiral opens the way for more complex behaviour,
as it can be used to construct a period doubling cascade
similar to Šilnikov’s mechanism (Guckenheimer &
Holmes 1990): we add two more grammars, and set up
the learning matrix so that the spiral sink is unstable in
the new dimensions. We fix B as follows:

B = �
0.88 0.2 0.2 0 0.3

0.2 0.88 0.2 0 0.3

0.2 0.2 0.88 0 0.3

0.3 0.3 0.3 0.88 0

0 0 0 0.3 0.88
�. (3.2)

Thus, we consider five languages, each of which is a strict
Nash equilibrium. For perfect learning, there would again
be stable equilibria where all individuals speak the same
language. Instead of perfect learning, let us consider a one
parameter family of Q matrices:
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Q = �
0.75 0.2 0.01 0.04 0

0.01 0.75 0.2 0.04 0

0.2 0.01 0.75 0.04 0

0 0 0 � 1 � �

1 � � 0 0 0 �
�. (3.3)

The parameter � denotes the learning accuracy of gram-
mars G4 and G5. For appropriate choices of �, trajectories
can escape from the middle of the G1, G2, G3 spiral. The
population slowly leaks into G4, then into G5, and back
into G1 to return to the spiral. Varying � alters how tra-
jectories escape the spiral. The result is a limit cycle in four
dimensions that can undergo period-doubling bifurcations
that lead to chaos, as shown in figure 2.

4. DISCUSSION AND CONCLUSION

Much of the existing literature on language models
focuses on equilibrium behaviour, modelling the fact that
languages are generally stable on time-scales of about a
century. By contrast, the behaviours displayed here
attempt to capture two important features observed in
changing languages. First, some language change arises
from re-analysis and variation among speakers, and fol-
lows regular patterns; examples are lenition, vowel shifts
and changes of morphology type. Thus, for time-scales on
the order of several centuries, the oscillations discussed
here appear to be more realistic than stable equilibria as
in Mitchener (2003). Second, language change is unpre-
dictable and highly sensitive to perturbations. Many
changes, particularly those associated with borrowed
vocabulary, are triggered by language contact. The same
kind of unpredictability and sensitivity is exhibited by
chaotic dynamical systems.

It is known that the game dynamical equation for four
or more dimensions can generate limit cycles and chaos
(Stadler & Schuster 1992; Nowak & Sigmund 1993). By
contrast, the present example of chaos is not caused by
game dynamics, but rather by learning errors.

Briscoe (2000) has proposed an agent-based model for
language acquisition and evolution. He uses a specific
detailed learning algorithm and UG motivated directly by
linguistic research. With the intent of producing a more
mathematically tractable model, the formulation of equ-
ation (2.1) assumes a larger population where individual-
level details influence the dynamics through aggregate
effects. It would be a fascinating task to express Briscoe’s
model in terms of equation (2.1) and study the possible
range of evolutionary dynamics.

In summary, the language dynamical equation is a game
dynamical equation with learning. Here, we show that
complex limit cycles and chaos can arise even for very sim-
ple choices of the pay-off and the learning matrices. In our
example, we considered five languages (strategies), each of
which is a strict Nash equilibrium. Pure game dynamics
would have five stable equilibria corresponding to linguis-
tically homogeneous populations. However, a carefully
structured learning matrix is sufficient to induce chaos.
Thus, very conservative natural choices of pay-off and
learning matrices lead to deterministic chaos.
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Figure 2. (a) Cascade diagram. The horizontal axis shows a
range of values of �. For each value of �, an orbit is traced.
Each time x4 crosses 0.19, a dot is plotted at (�, x1). Sample
orbits are drawn for the three values of � indicated by
arrows. (b) When � = 0.75, there are two dots representing
two extremes of this stable limit cycle. (c) When � = 0.7475,
there are twice as many dots because the limit cycle has
undergone a period doubling bifurcation. (d ) For � = 0.735,
the orbit appears to be chaotic.

Our analysis has implications for historical linguistics,
language evolution and evolutionary game theory. Simple
learning errors can lead to complex, unpredictable and
seemingly stochastic changes in languages over time. For
game dynamics, we note that imperfect learning can lead
to chaotic switching among strict Nash equilibria.

This research took place at the Institute for Advanced Study
and Princeton University in Princeton, New Jersey, USA.
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