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Abstract

Human language is a remarkable communication system, apparently unique among an-
imals. All humans have a built-in learning mechanism known as universal grammar or
UG. Languages change in regular yet unpredictable ways due to many factors, including
properties of UG and contact with other languages. This dissertation extends the standard
replicator equation used in evolutionary biology to include a learning process. The resulting
language dynamical equation models language change at the population level. In a further
extension, members of the population may have different UGs. It models evolution of the
language faculty itself.

We begin by examining the language dynamical equation in the case where the param-
eters are fully symmetric. When learning is very error prone, the population always settles
at an equilibrium where all grammars are present. For more accurate learning, coherent
equilibria appear, where one grammar dominates the population. We identify all bifurca-
tions that take place as learning accuracy increases. This alternation between incoherence
and coherence provides a mechanism for understanding how language contact can trigger
change.

We then relax the symmetry assumptions, and demonstrate that the language dynami-
cal equation can exhibit oscillations and chaos. Such behavior is consistent with the regular,
spontaneous, and unpredictable changes observed in actual languages, and with the sensi-
tivity exhibited by changes triggered by language contact.

From there, we move to the extended model with multiple UGs. The first stage of
analysis focuses on UGs that admit only a single grammar. These are stable, immune to
invasion by other UGs with imperfect learning. They can invade a population that uses a
similar grammar with a multi-grammar UG. This analysis suggests that in the distant past,
human UG may have admitted more languages than it currently does, and that over time
variants with more built-in information have taken over.

Finally, we address a low-dimensional case of competition between two UGs, and find
conditions where they are stable against one another, and where they can coexist. These
results imply that evolution of UG must have been incremental, and that similar variants
may coexist.

This research was conducted under the supervision of Dr. Martin A. Nowak (Program
in Theoretical Biology at the Institute for Advanced Study, and Program in Applied and
Computational Mathematics at Princeton University).
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�
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1.2.1. The replicator equation 9
1.2.2. A communication game 11
�
1.3. Replicator dynamics with learning as a model for language change 13

�
1.4. Outline 17

This dissertation is the product of several years of interdisciplinary research, combining
ideas from theoretical biology, linguistics, computer science, and psychology all under the
umbrella of applied mathematics. One of the pleasures of interdisciplinary research is the
opportunity to learn exciting things about other fields, linguistics and biology in my case.
My initial impression of linguistics from several years ago was that it must be a horribly
dull subject, associated with images of well-meaning teachers drilling the “proper” ways
of speaking and writing into defenseless students who cannot overcome their urges to split
infinitives and end sentences with prepositions. Needless to say, I quickly changed my mind,
and linguistics has turned out to be one of my favorite subjects, full of experts who in fact
take delight in splitting infinitives and ending sentences with prepositions while attempting
to understand why such constructions are perfectly grammatical. Likewise, mathematical

1



2 1. Introduction and Background

biology is a very rich field, growing out of the need for a more precise understanding of
increasingly complex observations and experimental data.

I will begin with a section introducing linguistics, focused on the subject of language
change. The next section gives background information about replicator dynamics, which
is the mathematical framework that will be extended in the rest of this dissertation. I will
conclude by summarizing my results, and connecting the background information in this
introduction to the material to follow.

1.1. Linguistics and language change

Human language is a remarkable communication system, apparently unique among animals
in its overall complexity [27, 28]. Bird songs, for example, are thought to all mean the same
thing despite their variation: “This is my spot and I’m available.” Vervet monkeys have
fixed alarm calls for various predators, but these seem to be innate rather than learned
and lack the flexibility of human vocabulary. Chimpanzees and other apes can learn to
communicate through simplified forms of sign language, but do not in general make much
use of syntax, such as word order and relative clauses, as is central to human language.

Human language may be roughly divided into two parts, although there is considerable
debate over exactly what goes in which part [34]. The lexicon is a table of words, parts
of words, and phrases, together with their associated meanings. The grammar is the set
of rules for combining lexical items into more complex phrases and sentences to express
composite meanings.

1.1.1. Parts of grammar. Grammar consists of several sub-divisions, and again there is
considerable debate over exactly what goes into each. For the purposes of this dissertation, it
suffices to divide grammar into the areas of phonology, morphology, syntax, and semantics.

The phonology of a language is the set of rules of allowed sound combinations, syllable
construction, and stress placement.1 Each language has a set of rules for determining
what combinations of sounds are acceptable. For example, plooper, stad, and blicket are
distinctly English nonsense words, conforming to the rules of English phonology, and dongle
and spam are distinctly English words that have taken form within only the last century.
On the other hand, the names Svetlana, Dvořák, and Nguyen are distinctly non-English
because they violate English phonology while conforming to the phonology of their original
language (Russian, Czech, and Vietnamese, respectively): English does not make use of the
consonant mixture /sv/, the trill2 /ř/, or syllables beginning with the consonant /N/.

The morphology of a language is the set of rules for forming words out of fragments
called morphemes. For example, the prefix re- on a verb changes its meaning to include
the idea of “doing again” or “putting back to an earlier state,” as in repaint or replace.
English also allows the formation of an endless variety of compound words: underwear,

1A large set of symbols known as the International Phonetic Alphabet or IPA has been developed for precisely
recording pronunciations without the confusion of language-specific alphabets and spelling conventions. Characters in
phonemic slashes, as in /tIp/ for the word tip, represent fairly loose transcriptions capturing only the most important
information. More detailed transcriptions are written in phonetic braces, as in ["thIp].
2According to Dr. Mirjam Fried of Princeton University, this is an accepted phonetic symbol for this sound.
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earring, bellybutton, Christmas tree, guard dog, joystick, speed bump, pocketbook, good-for-
nothing. French morphology is less accepting of pure compound words, preferring to include
prepositions and form a short phrase instead: soupe à l’oignon, coq au vin, sac à main, bon
à rien.

The syntax of a language is the set of rules for forming phrases and sentences. In
English, the subject typically comes first, followed by the verb and its complement. In
Japanese on the other hand, verbs follow their complements. French makes use of small
words called special clitics for pronouns that are objects of verbs, and they must precede
the verb in a specific order. Syntax also include rules for determining binding of pronouns
such as him and anaphors such as himself to antecedents:3

(1.1.1) John1 likes pictures of himself1. (where himself refers to John)

(1.1.2) *Mary likes pictures of himself. (where himself refers to a man in the surrounding
discourse)

Many languages include syntactic rules for moving words around, as in the formation of
questions from statements:

(1.1.3) Who1 did you see t1?

(1.1.4) *Who1 do you wonder whether John saw t1?

(1.1.5) Do you know the muffin man?

(1.1.6) *Know1 you t1 the muffin man? (acceptable in 17th century forms of Modern
English)

The t1 is called a trace and is an unpronounced place holder left behind when something
moves.

Semantics is the interface between the raw structure of language and meaning. For
example, the following sentences are grammatical:

(1.1.7) The man climbs.

(1.1.8) The man rises.

but there are significant semantic differences between climb and rise, as illustrated by:

(1.1.9) The man climbs down.

(1.1.10) *The man rises down.

The study of semantics very quickly becomes intertwined with theories of knowledge and
philosophy [34]. Such tangled subjects will be avoided for the most part in this dissertation
as they are not immediately relevant.

The idea of a language also spans multiple scales. On the large end, the term English
describes the native speech patterns of most people in the United Kingdom, the United
States, Canada, Australia, New Zealand, and India, spanning the past several centuries.

3In linguistic notation, a * indicates an ungrammatical or otherwise ill-formed example. A ? indicates a grammatically
not-quite-right example. Subscripted indices are used to indicate that two elements of a sentence are co-referential.



4 1. Introduction and Background

Within the world-wide English-speaking community there are any number of regional, so-
cial, and age-group dialects, all with slightly different grammars. At the finest level, each
individual may use the language a little bit differently at different times and in varying
situations. The analogy with biology is that language is something like species, in that both
terms describe a group of non-identical individuals with much in common.

1.1.2. Acquisition. Children acquire their native language by hearing example sentences
from their parents through which they learn both the lexicon and the grammar [12, 45, 61].
Grammar acquisition is thought to be based solely on positive evidence, in that children
attempt to build a grammar that is somehow consistent with what they hear, while ig-
noring explicit instructions and corrections from adults [44]. Negative evidence, meaning
information that a particular sentence is not grammatical, is discarded. The general prob-
lem of acquiring grammar only from example sentences is known to be impossible without
constraints on the rules of the grammar [24]. In short, any finite set of sentences is insuf-
ficient to specify a unique grammar. For example, the sample set S = {s1, s2, . . . , sn} of
finite strings of symbols from a lexicon Σ is consistent with the grammar containing just
the sentences of S and with the grammar containing all finite strings of symbols from Σ.
Hence, linguists hypothesize that the human mind includes a set of innate constraints and
hints known as universal grammar or UG that provide additional information to children
and guide them to acquire one particular grammar [11, 61].

UG operates even when the input is exceptionally impoverished, as in the cases of cre-
olization [7] and the spontaneous invention of sign languages [68]. In both of these cases, the
example input comes from a more or less ad hoc and artificial system of communication that
does not conform to UG. Children in these situations develop a fully functional grammar
despite the lack of grammatical input and speak or sign quite differently from their parents.

Some aspects of grammar, such as the requirement that nouns be assigned case, appear
to be universal across all languages. Other aspects of grammar, such as the word order,
seem to be represented in the brain as a finite number of parameters with a small number
of possible settings [12], and learning these parameter settings is equivalent to choosing
among a finite number of possible classes of grammars [23]. This model is known as the
principles and parameters framework. Phonological rules are better modeled by systems of
constraints that may override one another, and learning such a system involves determining
the priorities of the different constraints. This model is known as optimality theory [72].

1.1.3. Language change. Children do not acquire their native language perfectly. Given
that languages include variation in time, situation, and speaker, it is not even clear what
perfect learning would mean. Instead, children may make certain “mistakes” in acquiring
the language of the preceding generation. These mistakes can be caused by any number of
factors, such as style, systematic phonological changes, or contact with another language.
Over time, small changes can accumulate and transform a language significantly. Every so
often, a catastrophic change occurs.

I will begin by describing some examples of fairly recent changes in English, based
on common knowledge and some personal observations. From there I will proceed to some
examples of older, more drastic, and more carefully studied changes in English over the past
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several centuries. Finally I will discuss some changes in other languages. These examples
illustrate that language change may be regular while remaining unpredictable, and how
seemingly minor changes to the linguistic environment can lead to large-scale language
change.

The pronoun whom is the equivalent of who but with objective (or accusative) case:

(1.1.11) Whom did you see?

(1.1.12) Who saw you?

But after many generations, it has simply fallen out of use, and now, who is typically used
in both cases, unless the speaker is making an effort to be formal:

(1.1.13) Who did you see?

Another example concerns the influence of style on grammar. Most school children are
successfully taught that when mentioning oneself as part of the subject of a sentence, it is
proper to put the I last:

(1.1.14) My friend and I went to the store.

(1.1.15) ?I and my friend went to the store.

People often extend this rule to objects as well. Instead of unquestionably correct sentences
using the object pronoun me:

(1.1.16) Alice talked to me and Jim.

(1.1.17) Alice talked to Jim and me.

it is common to use the subject pronoun I instead:4

(1.1.18) � Alice talked to Jim and I.

English grammar does not seem to require nouns joined by and to have any particular
case, and although me is the obvious choice for an object, many people choose I, perhaps
because of style [61, p. 390]. Another example from Modern English appears to be due to
the frustration that in some dialects (those lacking ain’t) there is no contraction for am not.
Hence the following:

(1.1.19) I’m right, am I not?

(1.1.20) � I’m right, aren’t I?

(1.1.21) ?Aren’t I right?

(1.1.22) *Are I right?

(1.1.23) *I aren’t right.

(1.1.24) *I are right.

This seems to be possible because the verb be is completely irregular. Every form has
slightly different properties, and seems to be stored as a separate item in the lexicon [45,�

7.1]. A transformation from style to grammar centuries ago may also be the origin of

4I will use � to indicate an example that seems to be grammatical according to common usage despite some apparent
problem.
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do as an auxiliary verb, replacing Thou sing’st with Thou dost sing, which was easier to
pronounce and more conducive to poetry [45, p. 97].

Let us continue with some older changes in English. The history of English has been
traced back roughly five or six thousand years, all the way to Proto-Indo-European (or PIE),
the ancestor of most languages spoken in Europe, the Mediterranean area, the Middle East,
and India. Over time, changes took place in one location but not another, and the result was
vast diversification and the present variety of Indo-European languages. The vocabulary
of PIE has been reconstructed by comparing words from a wide range of languages and
guessing the most likely phonological changes that lead from one to the other.

In parts of Europe, PIE developed into Old Germanic, which later split into North,
East, and West Germanic. English, Dutch, and German are descendants of West Germanic
[13, 74, 80]. Or rather, this is roughly what seems to have happened. The actual history of
Germanic languages seems to be more complicated, with some parallel changes happening
in different languages and words being borrowed, so the lineage is not completely clear [79].
The transition from PIE to Old Germanic included several regular phonological changes
known as Grimm’s Law and Verner’s Law. Grimm’s Law says that an unvoiced stop in
PIE becomes the corresponding fricative in Old Germanic, so for instance /p/ becomes /f/.
Furthermore, a voiced stop becomes the corresponding unvoiced stop, and an aspirated
voiced stop becomes unaspirated. Verner’s Law, developed to explain what were originally
thought to be exceptions to Grimm’s Law, says that unvoiced stops become voiced stops
when preceded by an unstressed syllable. The final exception is that no change occurs to
consonants preceded by an unvoiced consonant. So for example, the PIE word5 /p@2"ter/
became the Old English word /"fæder/, and eventually the Modern English /"faD@r/ or father
[80]. The original PIE word was transferred to Greek as /pa"ter/ with the consonants and
stress intact. Changes such as these have been noted in any number of the world’s languages.
Although phonological changes are often very regular, it is not clear why they happen, or
when they will happen. So despite its regularity, this form of language change is still
unpredictable.

The English case system used to be as rich as that of any other Germanic language. In
fact, Old English used to inflect its equivalent of that stone as follows:6

Singular Plural
Nominative se stān þā stānas
Accusative þone stān þā stānas
Genitive þæs stānes þāra stāna
Dative þæm stāne þæm stānum

Old English was in use until about 1066 A.D. (the invasion of England by the Normans).
Around that time, the language transformed into Middle English, and part of the trans-
formation was the loss of this rich case system. One theory is that the loss was caused
(or perhaps accelerated) by the presence of Scandinavian invaders who spoke Old Norse, a

5The /@2/, also written /h2/, is one of the disputed laryngeal sounds in PIE.
6The Old English character þ named thorn represents the sound [T] of an unvoiced th as in thick, except when
surrounded by voiced sounds where it represents the sound [D] of a voiced th as in them. The symbol æ has the sound
/æ/ of the vowel in at. The macron ¯ over a vowel means it is pronounced for a longer duration.
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similar Germanic language with a similar case system. The theory says that children heard
both sets of case endings and were unable to acquire either one, so they started leaving out
the case endings and the system disappeared.

This example brings up an interesting point. One of the questions that tends to come
up concerning this research has to do with bilingualism: Children brought up in a multi-
lingual environment appear to have no trouble acquiring several native languages. It is
therefore something of a paradox that language contact should have such consequences.
The paradox may be due to some kind of phase transition. If children are exposed to several
clearly distinguishable languages, they can acquire them all. If children are only exposed to
variations of one language, they overlook those variations and acquire some average form
of the language as spoken by the whole population. However, the speech of two individuals
may be too different to be considered variations of one language, but too similar to be
considered separate languages. If children are brought up in such an environment, it is not
clear what language they will acquire, as there is no strong push toward either bilingualism
or monolingualism. It is therefore possible that they will end up with some language that
is different from either of the ones in the environment.

As a last example, there are roughly three types of morphology systems in the world’s
languages. An isolating language has many small words that each carry one small fragment
of meaning, and sentences are formed by combining many small words. Vietnamese is just
such a language:7

(1.1.25) ���	��
������������ ������� � � 
����� �!�#" �	$ 
���%�&�' 
(�%)*,+�- �,./���,�
when I come house friend I, Plural I begin do lesson
“When I arrived at my friend’s house, we began to do lessons.” [74, p. 126]

Observe that we is expressed by a plural word plus the equivalent of I. In an agglutinating
language, words are formed from a stem plus many small morphemes, each of which carries
a fragment of meaning, as in Turkish:

(1.1.26) Yap-tiǧ-ım hata-yı memleket-i tanı-ma-ma-m-a ver-ebil-ir-siniz
make-Part-my mistake-Obj country-Obj know-not-Ger-my-to give-can-Tense-
you
“You can ascribe the mistake I made to my not knowing the country.” [74, p. 126]

The third morphology type is inflecting, in which a single morpheme carries several frag-
ments of meaning. The typical example is Latin:

(1.1.27) Arm-a vir-um-que can-ō.
weapon-NeutPluralObj man-MascSingObj-and sing-FirstPresIndicAct

“Arms and the man I sing.” [74, p. 126]

An isolating language can change into an agglutinating language by running all those short
words together. An agglutinating language can become inflecting through phonological
changes in which commonly combined morphemes are contracted into a new morpheme

7 The abbreviations used here for syntactic information are as follows: Sing–singular, Plural–plural, Masc–
masculine, Neut–neuter, First–first person, Obj–object, Part–participle, Ger–gerund, Tense–tense, Pres–present
tense, Indic–indicative mood, Act–active.
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with a compound meaning. Inflecting languages can become isolating through a process
where the initial or final sounds of words are systematically reduced, thereby erasing mor-
phemes. The result is a cycle between the three morphology types. The changes in this
cycle are generally so slow, requiring perhaps thousands of years, that no complete cycle
has been observed, however, instances of languages changing from one type to another have
been found. It certainly seems possible for languages to make the reverse transformations,
but the general trend seems to be isolating to agglutinating to inflecting and back to iso-
lating. Furthermore, many languages such as Navaho have maintained their morphology
type despite other changes for a very long time. Thus, the morphology type cycle is a fairly
regular language change that is still unpredictable.

1.1.4. Language and evolution. Language changes on geological as well as historical
time scales, in that the language faculty within the brain itself changes through genetic
mutation and natural selection. The study of the evolution of language has a messy history,
an infamous episode of which came in 1866 when the Société de Linguistique in Paris
banned papers on the subject. There is essentially no evidence for what human language
was like more than a few thousand years ago. Reconstructions as for Proto-Indo-European
are convincing, but fragmentary and limited to a few thousand years. Once we begin asking
questions about the language capacities of hypothetical ancestor species, there is essentially
no data other than anatomical indications from fossils that they might have been able to
pronounce certain sounds. Hence, the subject is vulnerable to ungrounded speculation.
Furthermore, the genetic encoding of the language ability is very poorly understood. It is
not even known how much genetic variation there is in the human language faculty across
the entire population. It may be that several significant variations exist among humans, or
perhaps the need to communicate limits UG to inconsequential variations.

Recent advances in neurology, psychology, and genetics have sparked new interest in
language evolution. For example, a gene has been linked to a specific language impairment
[18, 42], confirming that there is at least some variation in UG. New ideas in linguistics, arti-
ficial intelligence, simulation, and mathematical modeling have led to an extensive literature
and more precise theories [2, 8, 22, 25, 27, 29, 32, 33, 39, 41, 43, 61, 62, 65, 71].

1.1.5. Opportunities for mathematical modeling. Language change is a complex sub-
ject, involving interactions of effects at multiple scales in time and space, and mathematical
models can be used to explore how these interactions work. There have already been sev-
eral models of the lexicon [19, 37, 59, 73], the origins of grammar [54, 57, 58, 63], grammar
acquisition [4, 5, 23, 24, 50, 51, 56, 72, 77, 78], and evolutionary dynamics of grammar
[36, 38, 52, 55], as well as linguistic simulations [9, 10, 35]. There are any number of start-
ing points from which to proceed in formulating such models. Models of the actual learning
process operate at the scale of the individual. Alternatively, we could begin at the popu-
lation level with a highly simplified model of learning, and ask questions about the overall
behavior of the population. This dissertation takes the latter approach. In particular, we
would like to address the following questions:

What causes a population to come to a consensus on a grammar? That is, given an
initial state of a large population that includes speakers of many grammars, under what
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circumstances do they reach a state after several generations in which most individuals use a
common grammar? What circumstances result in an equilibrium where multiple grammars
remain present? This is a fundamental question for modeling the tendency of languages
to remain largely unchanged for decades or centuries. This question will be addressed in
Chapter 2 where it will be shown that single-grammar equilibria are possible only if learning
is sufficiently accurate. This equilibrium result can still be used to understand language
change: A language can be stable until some outside influence changes the conditions of the
model to a state where a single grammar state is no longer stable. When the influence is
removed, the population may once again settle on a single grammar, perhaps different from
the original one.

Can a model based on the idea that survival depends on communication reproduce the
phenomena observed in language change? By linking survival to communication, we can
build on the existing frameworks of evolutionary game theory and population dynamics.
This question will be addressed in Chapter 3. Note that the goal at this point is to reproduce
certain phenomena, in particular, spontaneous fluctuations, systematic yet unpredictable
changes, and sensitivity, as described in this section. Reproducing a particular change in
detail would require a more elaborate model beyond the scope of this dissertation, as well
as very thorough data that may not be available.

What can such a model tell about the evolution of the language faculty? Assuming that
universal grammar has been shaped by natural selection, what can be determined about it?
Chapter 4 investigates the question of why UG admits more than one grammar. Chapter 5
addresses more general questions of multiple UGs within a population, providing the start
of a general framework for understanding when a new UG can invade an established UG,
and when multiple UGs can coexist stably.

There are many other questions that could be addressed, concerning for example the rate
of spread of language change [40], the phase boundary for a particular learning algorithm
between those grammars that are too similar to be distinguished and those that are clearly
different, spatial effects and the preservation of regional dialects, multilingualism, and so
on. These issues may be addressed by future research.

1.2. Biological models of population game dynamics

In this section, I will give a brief review the replicator equation, a well-studied model
of population dynamics where survival is based on an individual’s expected payoff in an
abstract game. To model interacting languages, we set up a communication game where
grammars are the strategies. The resulting dynamical system has very restricted behavior,
and cannot directly model language change. In Section 1.3, I will describe an extended
model based on replicator dynamics that can model language change.

1.2.1. The replicator equation. The replicator equation is a thoroughly studied model
of population dynamics under natural selection driven by an abstract game. Hofbauer and
Sigmund [31] is a fairly complete reference, and we will begin with a summary of some
important results from it.
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Consider a large population, with n strategies available for use in an abstract game.
Each individual must play one of these strategies. The fraction of the population using
strategy i is denoted xi, and we require

∑

xi = 1. Each fraction must satisfy 0 ≤ xi ≤ 1.
Therefore, the population state may be represented as a point in the n-vertex simplex Sn,
defined as follows:

(1.2.1) Sn =

{

x ∈ Rn : xi ≥ 0,

n
∑

i=1

xi = 1

}

.

The population changes according to a measure of fitness. The fitness of strategy i is given
by Fi, which may take on a variety of forms. Hofbauer and Sigmund [31] considers cases
where each Fi is a function of the population state x. The average fitness of the population
is defined to be

(1.2.2) φ =
n
∑

i=1

Fixi.

The rate of change of xi with respect to time is modeled as being proportional to xi and
to how far the fitness Fi exceeds the average fitness, yielding the system of differential
equations

(1.2.3) ẋi = xi(Fi − φ) where i = 1 . . . n.

Observe that if xi = 0 at time 0, then it remains 0 for all time, so the sub-simplexes that
form the boundary of the simplex are invariant. Furthermore, let M1 =

∑

xi. Then

Ṁ1 =

n
∑

i=1

ẋi

=

(

n
∑

i=1

xiFi

)

− φM1

= φ(1 − M1).

Thus, if the total population starts at M1 = 1, it will remain so for all time, so the plane
containing the simplex is invariant. All orbits of interest are therefore trapped inside the
simplex.

It is typical to use a linear function of the xj ’s for Fi:

(1.2.4) Fi =

n
∑

j=1

Bi,jxj, or F = Bx,

where B is interpreted as a payoff matrix: Bi,j is the payoff to a player of strategy i against
a player of strategy j. The fitness of strategy i in this case is an average of all possible
payoffs to strategy i weighted by the appropriate fraction of the population. The average
payoff simplifies to

φ =

n
∑

i=1

n
∑

j=1

xiBi,jxj = xT Bx.
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The payoff matrix B represents the abstract game that drives the dynamics. There are
several invariants: If a constant is added to each entry in a column of B, the overall
behavior is preserved. Furthermore, if B is multiplied by a positive constant, the time can
be rescaled to restore the original dynamics. It is helpful to re-write the differential equation
in the following form:8

(1.2.5) ẋi = xi

(

eT
i Bx − xT Bx

)

.

This dynamical system is equivalent to the Lotka-Volterra equation via a change of variables
[31, sec. 7.5].

A point x ∈ Sn represents a population state consisting of a particular mixture of the
available strategies. A Nash equilibrium is a point x̂ ∈ Sn such that

(1.2.6) ∀x ∈ Sn : x̂T Bx̂ ≥ xT Bx̂.

The term Nash equilibrium may also refer to a strategy that does at least as well against
itself as every other strategy. Definition (1.2.6) is an extension of that idea to population
states. Likewise, an evolutionarily stable strategy is one that cannot be invaded by any
other strategy. This concept can be extended to also be extended to population states: An
evolutionarily stable state or ESS is a point x̂ ∈ Sn that satisfies

(1.2.7) x̂T Bx > xT Bx

for all x 6= x̂ in some neighborhood of x̂.

We will need the following results, which may be proved using the Lyapunov function

(1.2.8) P (x) =

n
∏

i=1

xx̂i

i .

Theorem 1.2.1 (7.2.4 in [31]). If x̂ ∈ Sn is an ESS, then it is an asymptotically stable
fixed point.

Corollary 1.2.2 (p. 71 in [31]). If x̂ ∈ S◦
n is an ESS on the interior of Sn then it is a

globally stable fixed point, meaning all orbits in S◦
n converge to x̂ in forward time.

1.2.2. A communication game. For a communication game, the available strategies
are the grammars G1, G2, . . . , Gn. We assume that the members of the population have a
common lexicon and that certain lexical aspects of grammar, such as the forms of pronouns
and tense morphemes, are fixed. The principles and parameters framework and optimality
theory both imply a finite number of grammars. We assume further that each grammar
communicates best with itself, and all payoffs are positive. The payoff matrix B is therefore
diagonally dominant, meaning each diagonal element is greater than each other element in
its row and column.

Replicator dynamics for such a game are fairly constrained. In particular, the vertices
ek of the simplex are stable fixed points. Substitution into (1.2.3) demonstrates at once
that they are fixed points, and the following proposition shows that they are asymptotically
stable.

8Recall that ek represents a fundamental basis vector: All entries zero except the k-th, which is 1.
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Proposition 1.2.3. Suppose B is diagonally dominant. Then ek is an ESS, and conse-
quently, asymptotically stable.

Proof. We must show that eT
k Bx − xT Bx > 0 for all x ∈ Sn sufficiently close to ek. First,

observe that

eT
k Bx − xT Bx =





n
∑

j=1

Bk,jxj



−





n
∑

i=1

n
∑

j=1

xiBi,jxj



 .

The two terms can be combined if the first term is multiplied by 1 =
∑

i xi, which gives

eT
k Bx − xT Bx =

n
∑

i=1

n
∑

j=1

xi(Bk,j − Bi,j)xj .

All the terms with i = k are zero, and we will need to treat the terms with j = k separately,
so the sum may be rewritten as

eT
k Bx − xT Bx =



xk

∑

i6=k

(Bk,k − Bi,k)xi



+





∑

i6=k

∑

j 6=k

xi(Bk,j − Bi,j)xj



 .

To proceed, we need two new constants:

c = min
i

Bk,k − Bi,k > 0.

d = −min
i,j

Bk,j − Bi,j.

The diagonal dominance of B guarantees that c > 0, but d may be of either sign. Substitut-
ing c for Bk,k − Bi,k in the first sum and −d for Bk,j − Bi,j yields the following inequality:

eT
k Bx − xT Bx > xkc

∑

i6=k

xi − d





∑

i6=k

xi









∑

j 6=k

xj





= cxk(1 − xk) − d(1 − xk)
2.

If d ≤ 0, then we are done, as the resulting expression would be positive. If not, then we
must perform one last transformation to arrive at

eT
k Bx − xT Bx > (1 − xk)((c + d)xk − d),

which is positive for all x close enough to ek that

xk >
d

c + d
.

Either way, ek is an ESS. Asymptotic stability follows immediately from Theorem 1.2.1. �

Corollary 1.2.4. If B is diagonally dominant, the only evolutionarily stable states are the
corners.

Proof. Corollary 1.2.2 implies that there can be no ESS in S◦
n, because trajectories near the

corners converge to a corner and an interior ESS would be globally asymptotically stable.
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Having an ESS on the boundary is ruled out by focusing on the sub-simplex in question,
and observing that it is governed by lower-dimensional replicator dynamics under a sub-
matrix of B. Since the sub-matrix inherits diagonal dominance, the above argument applies,
and there can be no ESS. �

It is still possible to have asymptotically stable fixed points on the interior of the simplex,
but they cannot be evolutionarily stable. See Figure 1.2.1 for example phase portraits. As a
consequence of these results, the replicator equation can only say that languages are static,
and robust when perturbed; these properties are true of human language only for short time
spans. So, the replicator equation as it stands is of limited value in understanding language
change.

1.3. Replicator dynamics with learning as a model for language change

In this section, we will extend the replicator equation (1.2.3) to include an abstract learning
process. This extended dynamical system will be able to model spontaneous change, regular
oscillations, and sensitivity as observed in actual languages.

The setup is as in Section 1.2.2, with the addition of a row-stochastic matrix Q that
represents the learning process: Qi,j is the probability that a child of a speaker of Gi ends
up speaking Gj . The diagonal entry Qi,i represents the learning reliability of Gi, and the
off-diagonal entries represent the probabilities of making each possible learning mistake. A
reasonable assumption is that Q should be diagonally dominant, meaning that it is most
likely that children learn their parents’ grammar correctly.

The new model, known as the language dynamical equation [36], is as follows:

F = Bx.

φ = xT Bx.

ẋj =
n
∑

i=1

xiFiQi,j − xjφ.

= xj(FjQj,j − φ) +
∑

i6=j

FixiQi,j.

(1.3.1)

The second form of ẋj shows the relationship to the replicator equation. The left-hand term
is the same as (1.2.3) except for the learning reliability term Qj,j. The summation represents
contribution due to learning error. The original replicator equation may be recovered by
imposing perfect learning, that is, by setting Q to the identity matrix. Like the replicator
equation, this dynamical system has a cubic non-linearity.

The same model may be used with the interpretation that Q is a mutation process among
genotypes or variants of a complex molecule or quasispecies [15, 16, 17, 31, 66, 67, 69]. In
that case, the Q terms are generally treated as a small perturbation from pure replicator
dynamics. In the linguistic interpretation on the other hand, the learning process itself
is an object of primary interest, and learning errors may not be rare enough for Q to be
interpreted as a perturbation. Furthermore, there is a correspondence between the language
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(a)

B =





0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88





(b)

B =





4 1 3
1 4 3
3 3 4





(c)

B =





1.3 1 1.2
1 4 3
1 3 4





Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Figure 1.2.1. Example phase portraits for replicator dynamics with diagonally dominant
payoff matrices. In these pictures, there are three grammars, so the phase plane is S3,
which may be represented as a triangle. The payoff matrix for each picture is as indicated.
Observe that the corners are always stable sinks. The bottom left corner of each triangle
is e1, representing a population state where everyone speaks G1. The bottom right corner
is e2, and the top is e3.

dynamical equation and the Price equation, which is considered to be a general description
of evolutionary dynamics [21, 60, 64].
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The language dynamical equation shares many properties of the replicator equation.
Note that

∑

j xj is always 1 as required. As before, we may define

(1.3.2) M1 =

n
∑

j=1

xj,

and compute

Ṁ1 =

n
∑

j=1

ẋj

=
n
∑

j=1

(

n
∑

i=1

FixiQi,j − φxj

)

=

n
∑

i=1



Fixi

n
∑

j=1

Qi,j



− φ
∑

j

xj

= (1 − M1)φ,

which has a stable fixed value M1 = 1. All orbits of interest are therefore confined to
an invariant hyperplane defined by x · 1 = 1, where 1 is a vector whose entries are all 1.
Furthermore, if xj = 0, then ẋj ≥ 0 as it is a sum of terms each of which is at least 0. In
particular, if xj (t0) ≥ 0, it cannot at some later time cross the hyperplane perpendicular
to the basis vector ej because the vector field points the wrong way. Therefore, the positive
orthant, defined as the subset of Rn where each xj ≥ 0, is a trapping region. As with the
replicator equation, the phase space of the language dynamical equation is limited to the
simplex Sn.

The payoff matrix B has a certain dimensionless quality, arising from the following
scaling invariant. Let B̄ = cB, where c is a scalar constant, and let x̄, F̄ , and φ̄ be the
variables in a language dynamical equation based on B̄. Then,

˙̄xj =

n
∑

i=1

x̄iF̄iQi,j − x̄jφ̄

=

n
∑

i=1

x̄i(e
T
i B̄x̄)Qi,j − x̄j(x̄

T B̄x̄)

= c

(

n
∑

i=1

x̄i(e
T
i Bx̄)Qi,j − x̄j(x̄

T Bx̄)

)

.

Now rescale time by setting t = cτ , so that

dx̄j

dτ
=

˙̄xj

c

=
n
∑

i=1

x̄i(e
T
i Bx̄)Qi,j − x̄j(x̄

T Bx̄),
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which is exactly the vector field for the language dynamical equation with payoff matrix B.
Thus, if B is scaled, then a rescaling of time restores the original dynamical system.

Additionally, an “index explosion” technique allows several generalizations of (1.3.1)
to be re-interpreted as instances of the same equation in higher dimensions. For example,
consider bilingualism. Let (h, k) be an index representing a person who speaks Gh and
Gk. A monolingual individual is associated to an index such as (h, h). We may denote by
x[(h, k)] the fraction of the population that speaks Gh and Gk, and by Q[(h1, k1), (h2, k2)] the
probability that a child growing up in a household that uses Gh1 and Gk1 ends up speaking
Gh2 and Gk2 . We may now number the indices (h, k) from 1 to n2, and use the language
dynamical equation with n2 variables to represent the dynamics. As another example,
consider spatial effects, such as clustering, which may be crucial in maintaining linguistic
diversity. For example, Papua New Guinea is home to many isolated tribes separated by
mountains, and hundreds of languages are spoken there. Suppose that there are m counties,
and we are interested in the effects of spatial locality on language dynamics. Now, an index
(i, c) represents someone in county c who speaks Gi. In this case, x[(i, c)] represents the
part of the population in county c that speaks Gi, and Q[(i1, c1), (i2, c2)] represents the
probability that a parent in c1 who speaks Gi1 produces a child who speaks Gi2 and moves
to county c2. Again, the result is a new instance of the language dynamical equation with nm
variables. Of course, such index explosions could also be combined to model multilingualism
with spatial effects, for example. Since index explosion can turn so many extensions into
higher dimensional instances of the original model, we will focus on the original model for
now and leave those extensions to future work.

At this point, it should be clear that this model can get out of hand in a hurry. Since
the number of parameters is roughly the square of the number of variables, even a relatively
small number of grammars results in a model that is practically impossible to analyze in
full. Thus to make progress, it will be helpful to try one of the following techniques.

Symmetry: We can keep the number of variables arbitrary, but impose some sort
of symmetry, so that the number of parameters is manageable.

Low dimensions: We can keep the parameters fully general, but limit the number
of dimensions to 2 or 3 so that the resulting dynamical system is manageable.

Parameter independence: Some properties of the dynamical system may be in-
dependent of the parameters under certain circumstances.

Several mixtures of these techniques are used in the rest of this dissertation to analyze the
language dynamical equation.

The model can also be extended to include genetic variation, which opens the door to
analysis of many more situations. For studying language change on geological time scales,
it is necessary to include evolutionary change to the language faculty itself, and therefore
variation among UGs. As noted earlier, it is not clear how much variation is present in
human UG, and this model can be used to formulate questions about which UGs can
coexist, and which exclude one another. By addressing these issues, the multi-UG model
can be used to understand the evolution of language.
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The multi-UG extension is straightforward: We assume that there are N possible UGs,
denoted U1, U2, . . . , UN , that collectively admit n possible grammars G1, G2, . . . , Gn. The
payoff matrix B is the same as before, but the learning matrix Q must be augmented by a
third index: Qi,j,K is now the probability that a child of a speaker of Gi ends up speaking
Gj , given that both have UK . The population will be represented by variables xi,K that
represent the fraction of the population with UK that speaks Gi. We will also be interested
in the fraction of the population with UK , denoted yK ,

(1.3.3) yK =

n
∑

j=1

xj,K ,

and the fraction speaking Gj ,

(1.3.4) wj =

N
∑

K=1

xj,K .

The language dynamical equation for multiple universal grammars is

F = Bw.

φ = wT Bw.

ẋj,K =

n
∑

i=1

Fixi,KQi,j,K − φxj,K.

(1.3.5)

A few remarks are in order. First, index explosion could be used to turn a multi-
UG language dynamical equation into a high-dimensional case of the single-UG equation.
However, enough interesting results may be obtained from the multi-UG equation that it is
worth the trouble to analyze separately and in detail. Second, it is possible that some UK

does not admit a particular Gj . To handle this case, the corresponding population variable
xj,K is frozen at 0, and Q must be consistent with this restriction: For all i, it must be
true that Qi,j,K = 0 because it is impossible for someone with UK to acquire Gj , even by
mistake.

Finally, the multi-UG equation represents a theoretical extension to population models
under game dynamics. Consider a communication game among universal grammars. The
difficulty is in defining a payoff function P (UH , UK) that gives the payoff of UH playing
against UK . Such a payoff function cannot be defined, because the reward in a communica-
tion game comes from the players’ strategies, their grammars in this case, and not directly
from a UG, which is a strategy for selecting a strategy. Hence, a UG might be called a
metastrategy, and a competition among UGs might be called a metastrategy game. Since
UGs do not directly determine payoff, the notions of Nash equilibrium and ESS cannot be
directly applied to metastrategy games, and other methods of analysis must be found.

1.4. Outline

The rest of the dissertation is organized as follows. Chapter 2 extends some of the cal-
culations in [36] concerning the language dynamical equation in an arbitrary number of
dimensions, but with maximum symmetry. The results include a complete characterization
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of the possible behavior of the system under full symmetry. All populations approach either
an incoherent steady state, where many different candidate languages are represented in the
population, or a coherent steady state, where the majority of the population speaks a single
language. The main result of the paper is a description of how learning reliability affects the
stability of these two kinds of equilibria. Although this form of the system has fairly static
behavior, it can still be used to understand language change: If the environment changes,
due to contact with other languages for example, then the learning process may also change,
thereby destabilizing an equilibrium population. (The replicator equation lacks this inter-
pretation as the only parameters represent payoff from communication ability, which seems
less subject to change.)

Chapter 3 describes some more exciting behavior for the language dynamical equation:
oscillations, period doubling, and chaos. Remember that part of the goal of this research is
to qualitatively reproduce different types of observed language change through a dynamical
system. This chapter shows that the model can indeed mimic spontaneous fluctuations,
regular changes, unpredictability, and sensitivity.

The second part of the dissertation is concerned with the extended language dynamical
equation that allows for multiple universal grammars. It can be used to study genetic vari-
ation in UG and potentially to answer questions about the genetic history and evolution of
the language faculty. Chapter 4 is about competition between UGs in some low-dimensional
cases, specifically, when one of the UGs in question admits only one grammar. The chapter
includes examples for competitive exclusion and stable coexistence of different UGs. We
will analyze conditions for single-grammar UGs to out-compete multi-grammar UGs and
vice versa. An interesting finding is that multi-grammar UGs can resist invasion by single-
grammar UGs if learning is more accurate. In other words, accurate learning stabilizes UGs
that admit large numbers of candidate grammars.

In Chapter 5, we will continue the discussion of competition between UGs, focusing this
time on a three dimensional case: Each UG admits two grammars. This case is distinctly
non-trivial, and several exact results are presented for parameters with low symmetry, as
well as a general result concerning when the two UGs are each stable against invasion by
the other. Chapters 4 and 5 form the beginning stages of analysis of metastrategy games.

Finally, in Chapter 6, we will draw some conclusions and sketch some possibilities for
future work.
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2.1. Introduction

As described in Chapter 1, any number of mathematical frameworks have been proposed
for modeling the evolution of languages. This dissertation is concerned with the model

†The bulk of this chapter has been published as [48], Copyright 0 Springer-Verlag 2002.
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described in [36], in which Komarova, Niyogi and Nowak use evolutionary principles to
model a population where each member speaks one language and benefits from being able
to communicate with the rest of the population. This chapter extends the analysis in [36]
and adds several new results. The focus of this chapter is to provide a complete bifurcation
analysis of the language dynamical equation in a special case where the number of grammars
is arbitrary, but the parameters are chosen to make the dynamical system highly symmetric,
and therefore tractable.

Two classes of population states are of primary interest. A coherent population is one
in which the majority of members speak one language, and an incoherent population is
one in which many languages are spoken by a significant fraction of the population. The
tension between learning error and selection influences whether a given initial population
reaches equilibrium in a coherent or incoherent state. The language dynamical equation
contains selection terms which drive the population toward coherence, and mutation terms,
corresponding to imperfect learning, which drive the population toward incoherence. If
children are very likely to make mistakes in acquiring their language, then all languages
can be equally distributed in the population, and the selection terms which give people a
benefit for their ability to communicate have little effect. When children learn reliably, a
language which is already widespread tends to become even more popular. Parents who
speak it will almost surely pass it on to their children, and the selection term will be high
for that language because its speakers can communicate perfectly with each other, and
they form a large fraction of the population. When learning is very unreliable, the only
stable equilibrium is an incoherent state. As the parameters of the model change to reflect
increased learning reliability, stable coherent equilibria appear. The incoherent equilibrium
eventually becomes unstable, and almost all populations tend to a coherent equilibrium.

The main result of this chapter is a description of how learning reliability affects the
stability of these two kinds of equilibria. We will rigorously find all fixed points, determine
their stabilities, and prove that all populations tend to some fixed point. We will also
demonstrate that the fixed point representing an incoherent steady state becomes unstable
in an Sn-symmetric transcritical bifurcation as learning becomes more reliable. The bifur-
cation analysis presented here provides a mathematical description of how the transition
from incoherence to coherence takes place.

In its fully general form, the language dynamical equation is a system of non-linear
ordinary differential equations (ODEs) in an arbitrary number of dimensions, and a complete
analysis of such a system is probably not possible. However, a considerable amount of
information can be derived from a special case of the model in which the parameters are
set to make the different grammars completely interchangeable. Section 2.2 describes these
parameter settings.

The resulting system of ODEs has permutation symmetry and can be analyzed in detail.
The fixed-point analysis here adds detail to the results in [36]. Section 2.3 gives an outline
of the bifurcation scenario and pictures from the three-grammar case. In Section 2.4, we
determine the locations of all fixed points and the parameter values for which they exist.
Section 2.5 describes the linear stability analysis of all fixed points. Bifurcations occur when
the parameters are such that the linearization of the system is singular at a fixed point.
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All such bifurcations of fixed points are found in Section 2.6, including the Sn transcritical
bifurcation in which the incoherent equilibrium reverses stability.

Further analysis in Section 2.7 shows that the symmetric language dynamical equation
happens to be nearly a gradient system, and a number of results about gradient systems can
be adapted and applied to it. With a few short arguments, we will rule out closed orbits,
homoclinic loops, and directed heteroclinic cycles. Finally, we show that all populations
tend to some fixed point.

2.2. Parameter settings

The fully general model (1.3.1) is too complex to analyze without some simplifying assump-
tions. Following Komarova et al. [36], we will constrain the B and Q matrices so that there
are only two free parameters and the system as a whole exhibits permutation symmetry,
that is, all the grammars will be interchangeable. With these constraints, we can analyze
the dynamical system thoroughly despite its non-linearity.

Consider an idealized abstract communication game. Given constants Ai,j representing
the probability that a sentence spoken at random from Gi can be parsed by a speaker of
Gj , we define the payoff matrix by

(2.2.1) Bi,j = (αAi,j + (1 − α)Aj,i) .

That is, payoff depends on the ability for a speaker of Gi to be understood by and to
understand a speaker of Gk. This is a measure of the similarity of the two grammars and
is independent of the actual speakers. If the parameter α is large, more benefit comes from
being understood, and if it is small, more benefit comes from being able to understand. For
the rest of this analysis, we give equal weight to both terms by setting α = 1

2 which yields

(2.2.2) Bi,j =
Ai,j + Aj,i

2
, or B =

1

2
(A + AT ).

We will also assume that all grammars in question are unambiguous, so Ai,i = 1. For the
rest of this chapter, we will assume the following form for A and Q:

A =











1 a · · · a
a 1 · · · a
...

...
. . .

...
a a · · · 1











,(2.2.3)

Q =











q u · · · u
u q · · · u
...

...
. . .

...
u u · · · q











, where u =
1 − q

n − 1
.(2.2.4)

Since A = AT , it follows that B = A. The parameters a and q now completely determine
the model. All off-diagonal entries of A are the same, so the probability that two people
who use different grammars understand each other is the same no matter which grammars
they use. Children acquire their grammar without error with probability q and mistakenly
acquire each other grammar with probability u.
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For convenience, we define variables Mk representing the k-th moment of the vector x:

(2.2.5) Mk =
n
∑

j=1

xk
j .

Simplifying the original form of the language dynamical equation (1.3.1) and incorporating
the restrictions on A and Q yields the following two expressions for the dynamics:

ẋj = (1 − a)



−x3
j + qx2

j + (u − xj)
∑

i6=j

x2
i



− au (nxj − 1)(2.2.6a)

= (1 − a)
(

(q − u)x2
j + uM2 − xjM2

)

− aunxj + au.(2.2.6b)

Note that this vector field has the permutation group on n letters, commonly denoted Sn,
as its symmetry group, as all variables xj are interchangeable. We will refer to (2.2.6) as
the fully symmetric language dynamical equation, and the rest of this chapter is concerned
with this restricted form of (1.3.1).

2.3. Outline of the bifurcation scenario

To illustrate the bifurcation scenario for the fully symmetric language dynamical equation,
we display here some pictures from the three-grammar case. They show the simplex as
a triangle, where the corners represent the extreme values of (x1, x2, x3), namely (1, 0, 0),
(0, 1, 0), and (0, 0, 1). The parameter a is fixed at 0.5, and q varies.

For low values of q, the picture is as shown in Figure 2.3.1. There is a single fixed point
which will be called the uniform fixed point in the middle of the simplex. It is a stable sink,
meaning nearby populations tend to it in forward time. In this case, all populations tend
to the uniform fixed point. It represents an incoherent population where each language is
spoken in equal proportion. Here, the inaccuracies in learning drown out the effects of the
selection terms in the model.

As q increases, a number of symmetric saddle-node bifurcations occur, resulting in
Figure 2.3.2. In each corner of the simplex, a pair of fixed points appears, one stable
sink close to the corner, and one unstable saddle between the sink and the uniform fixed
point. The stable sinks in the corners represent coherent populations, where one language is
spoken by a large portion of the population. Populations which start close to a corner move
to a coherent state, and populations which start close to the center move to the uniform
fixed point and incoherence. All the stable sinks have a basin of attraction, meaning a set
of nearby population states which tend to them in forward time. The saddle points have
only a thin manifold of population states which tend to them in forward time, and these
stable manifolds form the boundaries between the basins of attraction of the sinks. In this
situation, learning has become accurate enough that the population can choose a dominant
language. When a large portion of the population speaks one language, the fitness term in
the ODE for that language is high because those people understand each other perfectly.
This causes the language to be spoken more widely in the future. However, populations
still have a choice between coherence in the corners, and incoherence in the middle.
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When q exceeds a particular value, the saddle points collide with the uniform fixed
point in what is known as an Sn-symmetric transcritical bifurcation. The result is shown in
Figure 2.3.3. In this bifurcation, the uniform fixed point reverses its stability and becomes
an unstable source. The saddle points pass through it and re-organize themselves, as their
stable manifolds must now form boundaries between basins of attraction in the corners,
but no longer in the middle. All populations (except the few on the stable manifolds of
saddle points) now choose a dominant language and move toward one of the sinks in the
corners. In this case, the inaccuracies of learning are drowned out by the selection term,
and incoherence is no longer stable.

Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Figure 2.3.1. Phase portrait with a = 0.5, q = 0.85.

Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Figure 2.3.2. Phase portrait with a = 0.5, q = 0.8575.

In higher dimensions, the basins of attraction of the various sinks are more complex, and
there are more saddle points which come into existence before the Sn-symmetric transcritical
bifurcation. The higher dimensional cases are hard to draw; however the three-language case
drawn here provides enough illustration to give the reader some intuition for the analysis
that follows.
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Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Figure 2.3.3. Phase portrait with a = 0.5, q = 0.9.

2.4. Locating the fixed points

We will now locate all the fixed points of the fully symmetric language dynamical equation,
and identify the parameter ranges for which they exist. In particular, the order in which
fixed points come into existence can be completely determined. It is reasonable to guess
that the fixed points of (2.2.6) will have some symmetric form. In particular, we make
the assumption that at fixed points, m grammars will share the majority of the population
equally, and the rest will split the remainder equally.

Proposition 2.4.1. Every fixed point x̄ of (2.2.6) has m entries equal to some number Z
and n − m entries equal to (1 − mZ)/(n − m).

Proof. Suppose x̄ is a fixed point. At that point, M2 is some constant which depends upon
x̄. Then each coordinate x̄j must be a root of the polynomial

(2.4.1) (1 − a)
(

(q − u)Z2 + uM2 − ZM2

)

− aunZ + au = 0.

This polynomial, which comes from (2.2.6b), is quadratic in Z, so it has at most two real
roots. Therefore, each x̄j is limited to be one of at most two values, and we may assume m
of them are of one value and n − m are of the other. Since

∑

x̄j = 1, the fixed point must
be of the required form. �

We define X(m) and Y (m) to be the roots of (2.4.1), with X(m) referring to the larger.

A fixed point with m entries equal to X (m) and n − m entries equal to Y (m) will be called
an m-up fixed point.1 There are

(

n
m

)

ways to distribute m grammars of majority frequency

X(m) and m − n grammars of minority frequency Y (m) among the n entries of x, yielding
(

n
m

)

symmetrical m-up fixed points.

1 Komarova et al. [36] refers to these as m-grammar fixed points because in most cases, the fixed points represent
states of the population in which most of the population speak one of m of the grammars, and only a small fraction

speak the others. This convention is confusing in the case m = 1 because for a range of q, both the 1-up and (n−1)-up
fixed points correspond to states where a single grammar dominates. So, the m-up convention is used here in the
hope that it will be less confusing.
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The next step is to give explicit expressions for all of these fixed points, and determine
the values of q for which they appear. We fix a, and consider what happens as q increases
from 1/n to 1.

First, there is one fixed point corresponding to m = 0 or m = n called the uniform
solution. It is given by

xj =
1

n
, where j = 1 . . . n.

This fixed point represents a population where all grammars are spoken with equal fre-
quency. It exists for all a and q, as can be seen by plugging it into (2.2.6a). When solving
for m-up fixed points, the uniform solution will always show up as an extra solution where
X(m) and Y (m) are both 1/n.

Other fixed points can be found by substituting the form described in Proposition 2.4.1
into (2.2.6b). That is, we solve for the possible values of each xj by setting

xj = Z,

M2 = mZ2 + (n − m)

(

1 − mZ

n − m

)2

,

which yields the following cubic equation:
(

−(1 − a)mn

n − m

)

Z3

+

(

(1 − a)
(

m + n − 3mn + 2mnq − n2q
)

(n − m)(n − 1)

)

Z2

−
(

n − 1 − 2m(q − 1) + a
(

1 − n + n2 + m(n + 2)(q − 1) − n2q
)

(n − m)(n − 1)

)

Z

−
(

(a(1 + m − n) − 1)(1 − q)

(n − 1)(n − m)

)

= 0.

(2.4.2)

Note that Z = 1/n is always a root of this equation. This reflects the fact that the uniform
solution is of the required form for every m. Extracting the factor of (nZ−1)/((n−m)(n−1))
from the cubic yields the following quadratic:

(a − 1)m(n − 1)Z2

+ (a − 1)(1 + 2m(q − 1) − nq)Z

− (a(1 − m − n) − 1)(q − 1) = 0.

(2.4.3)

The roots are found with the quadratic formula, yielding

(2.4.4) Z
(m)
± = −1 − 2m + 2mq − nq

2m(n − 1)
±

√
d

2m(1 − a)(n − 1)
,

where the discriminant d is given by

d =(1 − a)
(

4m(n − 1)(1 − q)(a + am − an − 1)

+ (1 − a)(1 − 2m(1 − q) − nq)2
)

.
(2.4.5)



26 2. Bifurcations of the Fully Symmetric Language Dynamical Equation

The cubic equation (2.4.2) was set up to look for values of Z such that some fixed point
has m elements equal to Z. Therefore,

X(m) = Z
(m)
+ ,

Y (m) = Z
(n−m)
− =

1 − mZ
(m)
+

n − m
.

(2.4.6)

If q is small enough, d will be negative, and there will be no m-up fixed points. When
q is such that d = 0, there will be some sort of saddle-node bifurcation, as the m-up and
(n−m)-up fixed points will be identical. The bifurcation value of q may be found by solving
the quadratic equation d = 0. The appropriate root is

q̂m =
1

(a − 1)(n − 2m)2

(

2m(n − m)(2 + a(n − 3)) + (a − 1)n

− 2(n − 1)
√

(1 + a(m − 1))(1 + a(n − m − 1))m(n − m)
)

.

(2.4.7)

Note that q̂m = q̂n−m, which implies that the m-up and (n−m)-up fixed points will appear
at the same time as q increases. See Figure 2.4.1 for an example graph of q̂m. As can be
seen from its concave-down shape, the m-up fixed points appear in a particular order: first
the 1-up and (n − 1)-up fixed points, then the 2-up and (n − 2)-up, and so on.

q̂m

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
m

Figure 2.4.1. Plot of q̂m, with a = 0.2 and n = 10. The m-up fixed points do not exist
until q > q̂m.
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More rigorously, we can make the substitution m = n/2 + h. After some simplification,
(2.4.7) becomes

(2.4.8) q̂m =
2 + a(n − 3)

2(1 − a)
+

(n − 1)n
(

1 − a + an
2

)

4(1 − a)
g(h),

where

g(h) =

√

(1 − β1h2) (1 − β2h2) − 1

h2
,

and

β1 =
a2

(

1 − a + an
2

)2 and β2 =
4

n2
.

Note that β1 = β2 only when a = 1, in which case all the languages are identical, or
a = 1/(1 − n) < 0; neither case is of interest here, so β1 6= β2. The important thing to
notice is that q̂m is a positive constant plus a positive constant times g(h), and β1 and β2

are positive and unequal. Thus, we only need to establish the shape of the graph of g(h)
to determine the shape of the graph of q̂m.

Proposition 2.4.2. The function g(h) has a global maximum at h = 0 and is concave down
for −n/2 ≤ h ≤ /2.

Proof. Observe that g, being a quotient of two analytic functions, is meromorphic near
h = 0, so g(0) = limh→0 g(h) does exist in the sense of complex numbers, although it
may be infinity. To prove that g(0) is in fact finite, note that for small h, we can expand
√

1 − βh2 into the Taylor series 1 +βh2/2 +βh4/8 +O (() h6). Thus, the numerator of g is
−(β1 + β2)h

2/2− (β1 −β2)
2h4/8 +O (() h6) which means that g(h) = −(β1 + β2)/2− (β1 −

β2)
2h2/8 + O (() h4) which is bounded for small h. From this series, we can read off

g(0) = −β1 + β2

2
< 0,

g′(0) = 0,

g′′(0) = −(β1 − β2)
2

4
< 0.

This analysis proves that g has a critical point at h = 0, which is a local maximum by the
second derivative test. In fact, this is the only critical point of g, and therefore a global
maximum, as may be seen by analyzing its derivative directly:

g′(h) =
(β1 + β2)h

2 − 2 + 2
√

(1 − β1h2) (1 − β2h2)
√

(1 − β1h2) (1 − β2h2)h3
.

If g′ is to be zero, its numerator must be zero, which implies

4
(

1 − (β1 + β2)h
2 + β1β2h

4
)

= 4 − 4(β1 + β2)h
2 + (β1 + β2)

2h4.

After canceling terms, the equation reduces to

β1β2h
4 = (β1 + β2)

2h4,

which has only the solution h = 0. Therefore g has a single critical point, a global maximum
at h = 0, and is concave down everywhere else. �



28 2. Bifurcations of the Fully Symmetric Language Dynamical Equation

This lemma implies that q̂m, which is just a scaled and translated version of g, must
always have the shape suggested by Figure 2.4.1. In particular, q̂m has a global maximum
at m = n/2, given by

(2.4.9) q̂max = q̂m|m= n
2

=
1 + n + a(n2 − n − 1)

n(2 − 2a + an)
,

after much simplification.

2.5. Linear stability analysis

Now that all the fixed points of the fully symmetric language dynamical equation have been
found, their stabilities must be determined by linear stability analysis. In this section, we
will compute the Jacobian matrix of the vector field in (2.2.6) at the various fixed points,
derive expressions for its eigenvalues, and determine their multiplicities. In Section 2.6, we
will determine the parameter values for which each is a source, a sink, or a saddle.

We will work with the n variables x1, . . . , xn and treat them as independent. The fact
that the region of interest is a simplex embedded in an (n− 1)-dimensional hyperplane will
come into play after the n-by-n Jacobian has been computed. An alternative would be
to replace xn by 1 − (x1 + · · · + xn−1) and work in n − 1 independent variables, but that
method yields results that are somewhat harder to visualize as the simplex is no longer
easily visible.2

The Jacobian matrix for (2.2.6) has entries of two types:

(2.5.1)
∂ẋi

∂xi
= (1 − a) (2xi (q − xi) − M2) − aun,

and for j 6= i:

(2.5.2)
∂ẋi

∂xj
= 2(1 − a) (u − xi)xj .

For simplicity of notation in this section, j is assumed to be different from i whenever used
as a subscript. Due to the symmetry of the ODE, the same expression is obtained for any
j 6= i.

Since each xi will have to be one of two values, the Jacobian matrix has a special
structure which makes its eigenvalues relatively easy to find. In particular, define the

2 It is tempting to start with the simplex constraint 1 j xj = 1 and take derivatives with respect to t and xi to arrive

at the identity 1 j ∂ẋj/∂xi = 0; however, the constraint removes one degree of freedom, so the variables xi are no

longer independent. For this reason, this identity cannot be used in the following analysis. Other identities do hold,
however, that simplify the calculation of the eigenvalues of the Jacobian.
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following variables:

c1 = ∂ẋi

∂xi

∣

∣

∣

xi=X(m)
c2 = ∂ẋi

∂xi

∣

∣

∣

xi=Y (m)

c3 = ∂ẋi

∂xj

∣

∣

∣

xi=X(m),xj=X(m)
c4 = ∂ẋi

∂xj

∣

∣

∣

xi=X(m),xj=Y (m)

c5 = ∂ẋi

∂xj

∣

∣

∣

xi=Y (m),xj=Y (m)
c6 = ∂ẋi

∂xj

∣

∣

∣

xi=Y (m),xj=X(m)

With the preceding definitions, the Jacobian of (2.2.6) at an m-up fixed point with the first

m entries equal to X (m) takes the form

(2.5.3) J =





























c1 c3 · · · c3 c4 c4 · · · c4

c3 c1 · · · c3 c4 c4 · · · c4
...

...
. . .

...
...

...
. . .

...
c3 c3 · · · c1 c4 c4 · · · c4

c6 c6 · · · c6 c2 c5 · · · c5

c6 c6 · · · c6 c5 c2 · · · c5
...

...
. . .

...
...

...
. . .

...
c6 c6 · · · c6 c5 c5 · · · c2





























.

The lines separate columns 1 to m and rows 1 to m from the rest. Due to the permutation
symmetry of the dynamical system, the coordinates of any other m-up fixed point may be
derived from this one by shuffling its entries; its Jacobian may be found by conjugating J
with a permutation matrix, so it will have the same eigenvalues. Thus, to determine the
stabilities of all fixed points, it is sufficient to analyze J .

In addition to the special form of J , a further observation makes it possible to quickly
determine eigenvalues of J : We are interested in J only at fixed points within the simplex.
Since the (n − 1)-dimensional hyperplane containing the simplex is invariant, n − 1 of the
eigenvectors should lie within this hyperplane, and the last eigenvector should lie outside.
The special form of J suggests that we try an eigenvector of the form

v =





















r
...
r
s
...
s





















.

The first m entries are the same and therefore invariant under permutations of the first m
variables. The last n − m are similarly invariant. The equation Jv = λv reduces to the
following two-dimensional eigenvalue problem:

c1r + (m − 1)c3r + (n − m)c4s = λr,

mc6r + c2s + (n − m − 1)c5s = λs.
(2.5.4)
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The assumption that v lies in the hyperplane of the simplex gives an additional equation,
v · 1 = 0, which expands into

(2.5.5) mr + (n − m)s = 0.

Using (2.5.5) to solve for s in terms of r and substituting that expression for s in the first
equation of (2.5.4) yields

(2.5.6) λ1 = c1 + (m − 1)c3 − mc4.

Alternatively, we could solve for r in terms of s and use the second equation in (2.5.4),
which gives the solution in a different form:

(2.5.7) λ1 = c2 + (n − m − 1)c5 − (n − m)c6.

A computation confirms that both expressions for λ1 are equal. A particular eigenvector
v1 corresponding to λ1 may be found from (2.5.5), for example, by setting r = (n−m) and
s = −m.

A second eigenvalue may be determined by computing the trace of the system (2.5.4)
and subtracting λ1. The result is

λ0 = c2 + (n − m − 1)c5 + mc4

= c1 + (m − 1)c3 + (n − m)c6,
(2.5.8)

and again, a calculation confirms that both expressions are the same. However, the corre-
sponding eigenvector v0 points outside the simplex and is not of interest here.

The remaining n − 2 eigenvalues may be found by looking at subspaces orthogonal to
v1. In particular, the m − 1 vectors3

−e1 + ek where k = 2 . . . m

are eigenvectors such that

J (−e1 + ek) = (c1 − c3) (−e1 + ek) .

Likewise, the n − m − 1 vectors

−em+1 + ek for k = m + 2 . . . n

are eigenvectors with

J (−em+1 + ek) = (c2 − c5) (−em+1 + ek) .

In summary, if we assume m > 0, then λ0 and λ1 = c1 +(m−1)c3 −mc4 are eigenvalues
of multiplicity 1, λ2 = c1 − c3 is an eigenvalue of multiplicity m − 1, and λ3 = c2 − c5 is
an eigenvalue of multiplicity n − m − 1. In the special case where m = 0, we get only two
eigenvalues, λ0 of multiplicity 1, and λ3 of multiplicity n − 1.

3The notation ek means the k-th standard basis vector of R
n.
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2.6. Bifurcations of fixed points

In Section 2.5, we determined the eigenvalues of the linearized fully symmetric language
dynamical equation at all fixed points. Bifurcations of fixed points can be detected by
looking for parameter settings which cause these eigenvalues to equal zero. The parameter
a is considered to be fixed, and q to vary from 1/n to 1. In this section, we determine what
parameter values cause the eigenvalues to be zero and account for all bifurcations involving
just fixed points. From this information, we can determine the signs of all the eigenvalues
and therefore the stability of each fixed point. First, we handle the m-up fixed points, which
come into existence through saddle-node bifurcations. Then, we discuss the uniform fixed
point, which always exists, but undergoes a reversal of stability.

2.6.1. Bifurcations of the m-up fixed points. There are two special values of q cor-
responding to bifurcations: q̂max which corresponds to a collision of many fixed points at
the center of the simplex, and q̂m which corresponds to several simultaneous saddle-node
bifurcations in which the m-up and (n−m)-up fixed points come into existence. A number
of tricks will be used to solve for these bifurcation points. To illustrate the technique, we
first find the sign changes of λ2 because it is the simplest of the three eigenvalues to work
with and the calculations can be carried out by hand. The same calculations work for λ3

and λ1, but for λ1 they become unwieldy and are best carried out with the aid of a computer
algebra system.

Proposition 2.6.1. For an m-up fixed point where m > n/2, the eigenvalue λ2 is strictly
negative for q < q̂max, zero for q = q̂max, and strictly positive for q > q̂max. If 0 < m ≤ n/2,
then λ2 ≥ 0 for q = q̂m and is strictly positive for q > q̂m.

Proof. We look for the special value of q such that λ2 = 0 by solving a pair of quadratic
equations: The first is (2.4.3) with Z replaced by X, which constrains X to be either X (m)

or Y (n−m). The second line, (2.6.1b), is an expansion of λ2 = 0 assuming X = X (m),
that is, that we are evaluating λ2 at an m-up fixed point. When fully expanded, these two
quadratic equations are as follows:

(a − 1)m(n − 1)X2(2.6.1a)

+ (a − 1)(1 + 2m(q − 1) − nq)X

− (a(1 − m − n) − 1)(q − 1) = 0,

(

−(1 − a)mn

n − m

)

X2(2.6.1b)

+

(

2(1 − a)n(−1 + m − mq + nq)

(n − m)(n − 1)

)

X

+

(

− 1 − a

n − m
− an(1 − q)

n − 1

)

= 0.
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It should be noted that there are solutions to this system that do not correspond to sign
changes of λ2 or to bifurcations in the symmetric language equation. These extraneous
solutions will be eliminated once all solutions are found. Although one could conceivably
substitute the explicit expressions for X (m) and Y (m) into the equation λ2 = 0 hoping to
solve it for q, the resulting equation has several embedded square roots, and in manipulating
it to get rid of them, extraneous solutions are bound to appear. By dealing with this system
instead, it is easier to prove certain things about the solutions that will ensure that we find
all of them, and that we can determine which ones are extraneous.

The first result is that for each value of q which solves the system in question, there are
at most two values of X, and for each value of X, there is at most one value of q. This is
evident because when q is fixed, the two quadratic equations can have at most two common
roots, and when X is fixed, both equations are linear in q.

The second result is that there are two possible values of q, which are found as follows.
Multiplying (2.6.1a) by −n and (2.6.1b) by (n − 1)(n − m) and adding the two results
together yields, after much simplification:

(2.6.2) −(1 − a)(nq − 1)(nX − 1) = 0.

At this point, we have two choices, either q = 1/n, or X = 1/n. In the first case, we get two
solutions for X because when q = 1/n both quadratic equations turn out to have the same
two roots; however, they are both complex, and are of no further interest. In the second
case, the two quadratic equations in X become linear in q upon substituting X = 1/n, and
we get a single solution

(2.6.3) q =
1 + n + a

(

n2 − n − 1
)

n(2 + a(n − 2))
= q̂max.

This is the unique parameter value for which λ2 changes signs. To determine the signs, we
plug the extreme case q = 1, X = 1

m into λ2, which yields

λ2|q=1,X= 1
m

=
1 − a

m
,

which is positive. Therefore, λ2 is negative for q < q̂max and positive for q > q̂max.

It is important to notice that if m < n/2, then X (m) > 1/n, so for these m-up fixed
points, λ2 is positive for all q such that the fixed points exist, and never changes sign. To
prove this inequality, observe from Equations (2.4.4) and (2.4.6) that

X(m) = −1 − 2m + 2mq − nq

2m(n − 1)
+

√
d

2m(1 − a)(n − 1)

≥ 1 − q

n − 1
+

nq − 1

2m(n − 1)
.

The inequality is obtained by striking the second term and expanding the first. For any
fixed q, the term (nq − 1)/(2m(n − 1)) is minimized by making m as large as possible. If
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we require m < n/2, then

X(m) >
1 − q

n − 1
+

nq − 1

2m(n − 1)

∣

∣

∣

∣

m= n
2

=
1

n
.

On the other hand, for m > n/2, the m-up fixed points always satisfy X (m) = 1/n

at q = q̂max. To prove this, recall that (2.4.3) is a quadratic equation whose roots X (m)

and Y (n−m) are numbers which appear m times as entries of m-up fixed points. It can
be seen by substitution that if q = q̂max, then 1/n is a root of this quadratic, so either

X(m) or Y (n−m) has to be 1/n. Assume that m > n/2 and Y (n−m) = 1/n. It follows that
X(n−m) = 1/n which yields a contradiction because n − m < n/2 and from a preceding

argument X(n−m) > 1/n. Therefore, X (m) = 1/n and Y (n−m) is the other root.

In the case where n is even and m = n/2, the m-up fixed points come into existence at

q = q̂m = q̂max and X(m) = 1/n, so for them, λ2 = 0 at that point and λ2 > 0 for all larger
q.

In summary, the sign change in λ2 takes place for the m-up fixed points where m > n/2
and for no others. �

Proposition 2.6.2. For an m-up fixed point where m > n/2, the eigenvalue λ3 is strictly
positive for q < q̂max, zero for q = q̂max, and strictly negative for q > q̂max. If 0 < m ≤ n/2,
then λ3 ≤ 0 for q = q̂m and is strictly negative for q > q̂m.

Proof. The analysis for λ3 is quite similar to that for λ2, and λ3 is zero exactly when
q = q̂max and X = 1/n. It turns out that

λ3|q=1,X= 1
m

= −1 − a

m
,

so λ3 is positive for q < q̂max and negative for q > q̂max. Again, the sign change in λ3 takes
place for the m-up fixed points where m > n/2 and for no others. �

Proposition 2.6.3. For an m-up fixed point where m > n/2, the eigenvalue λ1 is strictly
positive for q̂m < q < q̂max, zero for q = q̂m or q̂max, and strictly negative for q > q̂max. If
0 < m ≤ n/2, then the eigenvalue λ1 is zero for q = q̂m and strictly negative for q > q̂m.

Proof. The analysis for λ1 is also similar, but yields two sign changes. The two quadratic
equations are

(a − 1)m(n − 1)X2(2.6.4a)

+ (a − 1)(1 + 2m(q − 1) − nq)X

− (a(1 − m − n) − 1)(q − 1) = 0,
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(−3(1 − a)mn

n − m

)

X2(2.6.4b)

+

(

−2(1 − a)(m + n − 3mn + 2mnq − n2q)

(n − m)(n − 1)

)

X

+

(

1 − n − 2m(1 − q) − a(1 − n + n2 − m(n + 2)(1 − q) − n2q)

(n − m)(n − 1)

)

= 0.

The first one, (2.6.4a), is the same as (2.6.1a) and constrains X to be either X (m) or Y (n−m).
The second one, (2.6.4b), is an expanded form of λ1 = 0. The linear combination of −3n
times (2.6.4a) plus (n− 1)(m− n) times (2.6.4b) yields a large linear equation in X, which
allows us to eliminate X in the first quadratic equation and find two values of q. The first
turns out to be q = q̂m, which requires X = X (m) or Y (n−m). This is the bifurcation in
which the m-up and (n − m)-up fixed points come into existence. The second is q = q̂max,
which requires X = 1/n. Once again, this second sign change takes place for the m-up fixed
points where m > n/2 and for no others. �

2.6.2. Bifurcations of the uniform fixed point. The uniform fixed point, which is
best thought of as the case where m = 0, is a special case, as it has only two distinct
eigenvalues: λ0, which is not of interest, and λ3 = c1 − c3, which determines the stability of
the fixed point. Again, we look for the special value of q that makes λ3 = 0. The expression
c1− c3 = 0 evaluated at xj = 1/n yields a linear equation in q whose solution is the familiar

(2.6.5) q =
1 + n + a

(

n2 − n − 1
)

n(2 + a(n − 2))
= q̂max.

For q < q̂max, the uniform fixed point will be a stable sink, and for q any larger, it will be
an unstable source.

2.6.3. Remarks about the bifurcations. Note that due to the symmetry of this dy-
namical system, q̂max appears as a bifurcation point for many of the fixed points. As q
increases to q̂max, all the fixed points come into existence, and for even n, the n/2-up fixed
points come into existence right when q = q̂max. These are saddle-node bifurcations associ-
ated with the sign change in λ1. At q = q̂max, the m-up fixed points for m > n/2 all collide
with the uniform fixed point in the center of the simplex. This mass collision of fixed points
is associated with sign changes in λ1, λ2, and λ3. As q increases further, the fixed points
all separate, with none being lost, but the uniform fixed point has completely reversed its
stability. This behavior is known as an Sn-symmetric transcritical bifurcation. (See [6].)

2.7. Other properties of the vector field

The vector field given by (2.2.6) can be written as the gradient of a function V (x) plus an
additional term. A number of well-known proofs [26, 30] about gradient dynamical systems
can be adapted to work on this ODE because of its near-gradient form, and the fact that
the trajectories of interest are confined to a simplex.
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Proposition 2.7.1. Define the function V (x) as follows:

(2.7.1) V =
1

3
(1 − a)(q − u)M3 −

1

4
(1 − a)M 2

2 − 1

2
aunM2 + auM1.

If x(t) is a trajectory of (2.2.6) which is confined to the simplex Sn and is not a fixed point,
then the function V (x(t)) is strictly increasing as time advances.

Proof. This function was selected so that ∂V/∂xj accounts for as many terms of the right-
hand side of (2.2.6) as possible:

∂V

∂xj
= (1 − a)(q − u)x2

j − (1 − a)M2xj − aunxj + au.

Thus, (2.2.6) may be re-written as

(2.7.2a) ẋj =
∂V

∂xj
+ (1 − a)uM2,

or in vector notation:

(2.7.2b) ẋ = DV + (1 − a)uM21.

Computing the time derivative of V and using (2.7.2b) to substitute for DV yields

V̇ = DV · ẋ
= (ẋ − (1 − a)uM21) · ẋ
= ‖ẋ‖2 − (1 − a)uM21 · ẋ.

Since the trajectories of interest lie in the simplex, 1 · ẋ = 0, so the second term vanishes,
leaving

(2.7.3) V̇ = ‖ẋ‖2 .

On any trajectory other than a fixed point, ẋ will be non-zero, so V̇ will be strictly positive.
Therefore, V will be strictly increasing with time. �

This proposition implies the following:

Proposition 2.7.2. The ODE given by (2.2.6) has no solutions which are periodic closed
orbits, homoclinic loops, or directed heteroclinic cycles.

Proof. Suppose x(t) is a periodic closed orbit of period T , where T > 0. Then x(0) = x(T ),
which implies

0 = V (x(T )) − V (x(0)) =

∫ T

0
V̇ dt.

However, the integrand is strictly positive, so the right-hand expression cannot be zero, and
we have a contradiction.

A similar argument handles the cases of homoclinic loops and directed heteroclinic
cycles as follows. Suppose x̄1, x̄2, . . . , x̄m, where m ≥ 1, are fixed points, each of which is
connected to the next by an orbit, and x̄m is connected back to x̄1. By a similar argument,
V (x̄1) < V (x̄2) < · · · < V (x̄m) < V (x̄1), so we have a contradiction. �
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Proposition 2.7.3. All orbits of (2.2.6) tend to some fixed point as t → ∞.

Proof. The function V (x) is continuous and its domain, the simplex, is compact. Therefore,
V (x) is bounded. For an orbit x(t) other than a fixed point, the value of V (x(t)) is strictly
increasing and bounded. It must therefore approach a finite limit from below as t → ∞.
This implies that V̇ → 0, and by (2.7.3), ẋ → 0, which is only possible if the orbit converges
to a fixed point. �

2.8. Conclusion

The results of the preceding sections allow us to form a fairly complete picture of the fully
symmetric language dynamical equation. In particular, we have a complete description of
the pattern of bifurcations as q increases from 1/n to 1. For low values of q, there is only
one fixed point, the uniform fixed point, and it is a stable sink. As q exceeds q̂1, the 1-up
and (n− 1)-up fixed points appear in pairs, one pair in each corner of the simplex, through
saddle-node bifurcations. The 1-up fixed points are stable sinks and remain stable as q
increases, but the (n − 1)-up fixed points are saddles. Their stable manifolds initially form
the boundaries between the basins of attraction of the uniform fixed point and those of the
1-up fixed points. As q increases further, the other m-up fixed points appear in saddle-
node bifurcations, and are always saddles. When q finally reaches q̂max, the m-up fixed
points for m > n/2 all collide with the uniform fixed point in an Sn-symmetric transcritical
bifurcation. As q increases, the m-up fixed points separate, having shuffled their stabilities
and become saddles with different stable and unstable manifolds than they had before the
bifurcation. The uniform fixed point continues to exist, but is now an unstable source.

By analyzing the fully symmetric language dynamical equation as a near-gradient sys-
tem, we have shown that its behavior is fairly straightforward. There are no closed orbits,
no homoclinic loops or directed heteroclinic cycles, and all orbits tend to a fixed point as
time increases.

This model provides a mathematical foundation for understanding linguistic phenomena
that have to do with noisy learning environments. Consider for example the transition from
Old English to Middle English. One theory, described in [45], is that part of the change
was due to the influence of Scandinavian invaders from the eighth to eleventh centuries.
Their language, Old Norse, was similar to Old English, both being Germanic languages.
For example, both languages used similar case endings on nouns, as illustrated in their
words for stone [45, p. 11]:

Old English Old Norse

Singular Plural Singular Plural
Nominative stān stānas steinn steinar
Accusative stān stānas stein steina
Genitive stānes stāna steins steina
Dative stāne stānum steini steinum

Before the invaders, the English linguistic environment was relatively uniform apart from
dialectical differences. In this situation, the grammars available to children were a number
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variations of Old English, and learning was very reliable, that is, a was close to 1 but q was
large enough that the population had settled into a single-grammar equilibrium. (Grammars
very different from Old English can be ignored, as the probability that a child makes enough
learning errors to speak something totally different seems to be tiny.) Once the invaders
arrived, the presence of Scandinavian speech caused enough confusion that children were
unable to properly acquire certain features of Old English, such as the case system. That
is, the added linguistic noise caused q to decrease enough to destabilize the single-grammar
equilibrium. When the invasion ceased, q increased again, and the population settled down
into a different single-grammar equilibrium.

The results of this paper can be directly extended in a number of directions. For
example, when the A and Q parameters of the language dynamical equation are set to the
symmetric forms here plus a small, asymmetric perturbation, the mass collision of fixed
points which results in the Sn transcritical bifurcation will not occur, and the transition to
coherence will happen in several small bifurcations instead of one big one. To understand
all possible perturbations would require finding a universal unfolding of the Sn transcritical
bifurcation in an arbitrary number of dimensions. (See, for example, [6] for another instance
of this bifurcation and [20] for a relevant theorem.) An alternative would be to explore
parameter settings which have a smaller symmetry group, for example, cyclic or dihedral
symmetry.
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3.1. Introduction

Over historical time scales, languages change dramatically and unpredictably by accumu-
lation of small changes and by interaction with other languages. The results of Chapter 2
can be interpreted in a manner consistent with language change due to contact or other
external influences. However, when left to itself, the language dynamical equation with
full symmetry will converge to a fixed point, thereby failing to capture the phenomenon of
spontaneous language change. This chapter shows that simple instances of the language
dynamical equation can display complex limit cycles and chaos, thereby mimicking compli-
cated and unpredictable changes of languages over time.

The payoff matrix B is assumed to represent some sort of communication game. Its
entries may include effects such as the benefit of correct communication, cost of ambiguity,
and so forth. A natural assumption is that people communicate best with others who
have the same grammar. Consequently, B is diagonally dominant, which implies that each
grammar is a strict Nash equilibrium: If the whole population speaks the same language,
then no individual can receive a higher payoff by switching to another language. With

39
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perfect learning, each language would then be an evolutionarily stable equilibrium [47], but
imperfect learning can lead to chaotic oscillations.

Section 3.2 describes particular parameter settings that produce regular oscillations and
a spiral sink in two dimensions (that is, three grammars). The spiral sink can be converted
to a higher-dimensional limit cycle, and with the right choice of parameters, this new
limit cycle can undergo period doubling bifurcations that lead to chaos. The mechanism
underlying this instance of chaos seems to be a variation of Smale’s horseshoe [14, 26]. A
Poincaré map illustrating possible horseshoes is given in Section 3.3. The chaotic orbits in
this example are based on a sort of escape-and-return mechanism that is potentially useful
for modeling other phenomena of language change. In particular, any number of “modules”
can be joined by this escape-and-return mechanism, resulting in arbitrarily complex limit
cycles. The connection to the modular structure of language is discussed in Section 3.4.

In Section 3.5, we conclude by drawing parallels between the example regular and chaotic
oscillations and the morphological type cycle, spontaneous fluctuations, and sensitivity
observed in actual languages.

3.2. Limit cycles and chaos

As a specific example, let us consider the following payoff matrix

(3.2.1) B =





0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88



 .

There are only three grammars, G1, G2 and G3. The highest payoff is given for commu-
nication among identical grammars. All grammars are equally good, and all off-diagonal
values are identical.1

For perfect learning, this payoff matrix leads to very simple dynamics: There are stable
fixed points in the corners of the simplex and no stable fixed points in the interior, as in Fig-
ure 1.2.1a. All trajectories converge to one of the three stable equilibria, so at equilibrium,
the whole population speaks the same language.

Imperfect learning, however, can induce very different behavior. For example, let us
consider the following learning matrix in conjunction with (3.2.1):

Q =





0.79 0.2 0.01
0.01 0.79 0.2
0.2 0.01 0.79



 .

For each grammar, the most likely outcome of the learning process is the correct grammar.
For each grammar, there is one second most likely outcome, and the errors are structured so
as to produce rotation in the dynamical system. As shown in Figure 3.2.1a, these parameters
produce stable oscillations, as learning errors in the subpopulation speaking G1 feed into
G2, and G2 feeds into G3, and G3 feeds back into G1. The population never settles for
one language, but continuously oscillates among all three languages. We note that a stable

1The choice of 0.88 as opposed to 1 for the diagonal entries of B is essentially an accident. Recall that B is dimen-
sionless, and could be rescaled without changing the dynamics. See Section 1.3.
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(a)

G1 G2

G3

Q =





0.79 0.2 0.01
0.01 0.79 0.2
0.2 0.01 0.79





(b)

G1 G2

G3

Q =





0.76 0.2 0.04
0.04 0.76 0.2
0.2 0.04 0.76





B =





0.88 0.2 0.2
0.2 0.88 0.2
0.2 0.2 0.88





Figure 3.2.1. (a) A stable limit cycle. The counterclockwise oscillations are caused by
the learning algorithm. Errors from children learning G1 feed into G2, and G2 feeds into
G3, and G3 feeds back into G1. (b) A spiral sink that results from the limit cycle in (a)
when the Q matrix is changed as shown. The B matrix is common to both figures.

limit cycle, as shown in Figure 3.2.1a, is not possible for any 3-variable replicator equation
[31, Theorem 4.2.1 and Section 7.5]. If learning becomes less accurate, then the limit cycle
breaks down, resulting in a spiral sink, as shown in Figure 3.2.1b.

This spiral opens the way for more complex behavior, as it can be used to construct a
period doubling cascade similar to Šilnikov’s mechanism [26, 75, Section 6.5]. We add two
more grammars, and set up the learning matrix so that the spiral sink is unstable in the
new dimensions. We fix B as follows

(3.2.2) B =













0.88 0.2 0.2 0 0.3
0.2 0.88 0.2 0 0.3
0.2 0.2 0.88 0 0.3
0.3 0.3 0.3 0.88 0
0 0 0 0.3 0.88













.

Thus, we consider 5 languages, each of which is a strict Nash equilibrium. For perfect
learning, there would again be convergence to the homogeneous states where all individuals
speak the same language. Instead of perfect learning, let us consider a one-parameter family
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of Q matrices

(3.2.3) Q =













0.75 0.2 0.01 0.04 0
0.01 0.75 0.2 0.04 0
0.2 0.01 0.75 0.04 0
0 0 0 µ 1 − µ

1 − µ 0 0 0 µ













.

The parameter µ denotes the learning accuracy of grammars G4 and G5. For appropriate
choices of µ, trajectories can escape from the middle of the G1, G2, G3 spiral. The population
slowly leaks into G4, from there into G5, and then back into G1 to return to the spiral.
Varying µ changes how accurate the learning algorithm is for G4 and G5, and alters how
trajectories escape the spiral. The result is, initially, a more complex limit cycle in four
dimensions. It can undergo period-doubling bifurcations that lead to chaos, as shown in
Figure 3.2.2 [26, 46]. Note that the most interesting behavior is observed for µ values just
below the learning accuracy of G1, G2 and G3 which is set at 0.75.

The chaotic trajectory of Figure 3.2.2d is depicted in more detail in Figure 3.2.3, which
shows the most abundant grammar at any given time. The oscillation between G1, G2,
and G3 is clearly visible, with irregular interruptions by the escape mechanism via G4. The
return mechanism via G5 can be seen in Figure 3.2.3b, where each increase in x1 is preceded
by a spike in x5.

It is known that the game dynamical equation for four or more dimensions can generate
limit cycles and chaos [31, 53, 67]. Sometimes adding extremely small mutation terms (near
10−5) preserves chaos, but for larger mutation rates, chaos often reverts to stable limit cycles
[69]. In the present example, chaos is not caused by game dynamics, but by learning errors,
which are similar to mutational processes.

3.3. The mechanism of chaos

The mechanism at work appears to be a combination of stretching and twisting, which can
be seen by analyzing the three-dimensional Poincaré map obtained by taking all points with
x4 = 0.19. A partial return map for this Poincaré section shown in Figure 3.3.1. The initial
condition is represented by the multi-colored metallic pyramid. The return map stretches
it, and curls it into the spiral as shown. It appears that this map contains a variation of
Smale’s horseshoe [14, 26] that is responsible for the existence of chaos in this example.

3.4. Modules and clusters

Human language has a modular architecture, which contains phonetic, syntactic, and se-
mantic subsystems that interact in complex ways [34]. Language change also tends to
happen in a modular manner. For example, borrowed words can lead to the development
of new phonetic rules that lead over time to new morphemes and eventually new syn-
tax. (See Chapter 11 of [74] for a discussion of such changes in Turkish and Armenian.)
The language dynamical equation can also exhibit changes with a modular character. The
spiral-and-escape mechanism underlying the chaos in Figure 3.2.2 can be used to join spirals
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Figure 3.2.2. (a) Cascade diagram. The horizontal axis shows a range of values of µ.
For each value of µ, an orbit is traced. Each time x4 crosses 0.19, a dot is plotted at
(µ, x1). Sample orbits are drawn for the three values of µ indicated by arrows. (b) When
µ = 0.75, there are two dots representing two extremes of this stable limit cycle. (c) When
µ = 0.7475, there are twice as many dots because the limit cycle has undergone a period
doubling bifurcation. (d) For µ = 0.735, the orbit appears to be chaotic.

together into complex stable limit cycles, as shown in Figure 3.4.1. That figure illustrates
a case of two spirals of three grammars each linked together via two more grammars, re-
quiring a total of eight grammars. A population in the left-hand part of the picture speaks
primarily G1, G2, and G3. Features common to those grammars will linger until the escape
mechanism kicks in. Then, the population will move via G4 to the right-hand part of the
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Figure 3.2.3. More about the chaotic orbit in Figure 3.2.2d: (a) Dominance plot; the
height at time t is the index of the most populous grammar = argmaxi xi(t). (b) Time
trace, with x1 and x5 plotted against time.
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Figure 3.3.1. A Poincaré map for µ = 0.73. The domain of the map is the set of points
in the simplex with x4 = 0.19. This picture shows how the map transforms the subset of
that domain contained in the multi-colored pyramid. The return image, that is, the result
of flowing the pyramid forward through the vector field until it returns to x4 = 0.19, is
the sail shape with the spiral attached. Although this picture is not conclusive, it suggests
that part of the domain maps back to itself in such a way as to create a generalization of
Smale’s horseshoe, resulting in chaotic behavior. The glassy rods are the outline of a three-
dimensional reference simplex surrounding the domain of the Poincaré map. The mirror
plane underneath shows shadows and reflections of the reference simplex, the multi-colored
pyramid, and the return image.

picture where it will be dominated by G5, G6, and G7, until the second escape mechanism
kicks in, moving it via G8 back to the left. While the population is on the right-hand side of
the picture, features common to G5, G6, and G7 will linger. Thus, it is possible to use the
language dynamical equation to describe changes of modules, or sets of features, on different
time scales. Populations can spend a long time dominated by a cluster of grammars with a
common module. During this time there are rapid changes among the grammars within the
cluster. Eventually the populations leaves the cluster and moves to a different cluster with
a different module. An arbitrary number of spirals can be combined in this way, yielding
extremely complex behavior in any number of dimensions.

3.5. Conclusion

The regular and chaotic oscillations displayed here capture two important features observed
in actual languages. First, languages often change spontaneously, following regular patterns
such as consonant shifts and changes of morphology type [74]. Thus, for time scales on the
order of centuries, the oscillations discussed here are more realistic than the stable equilibria
exhibited in Chapter 2. Second, language change is unpredictable and highly sensitive
to perturbations. Many language changes, particularly those associated with borrowed
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Figure 3.4.1. A complex stable limit cycle among eight grammars, projected from seven
dimensions down to two. The triangle on the left represents the face of the phase space
spanned by G1, G2, and G3. The triangle on the right represents the face spanned by G5,
G6, and G7. The upper cross is the vertex for G4, and the lower cross is the vertex for
G8. The orbit spirals into the left-hand saddle point, then G4 starts to increase. Learning
errors from G4 feed into G5, G6, and G7, yielding another spiral. The orbit escapes the
spiral around the right-hand saddle point as G8 increases, and returns to the spiral on the

left.

vocabulary, are triggered by language contact. The same kind of unpredictability and
sensitivity is exhibited by chaotic dynamical systems.

In summary, the language dynamical equation is a game dynamical equation with learn-
ing. Here, we show that complex limit cycles and chaos can arise even for very simple choices
of the payoff matrix B and the learning matrix Q. In our example, we considered 5 languages
(strategies), each of which is a strict Nash equilibrium. This means that each language is
the best reply against itself. A pure replicator dynamics would have 5 stable equilibria cor-
responding to homogeneous populations where everybody speaks the same language. Then
we add a learning matrix, Q, which is diagonally dominant: The most likely outcome of
learning is always the correct language. For each target language, however, there is one
language which is the second most likely choice. This structure of the learning matrix is
sufficient to induce chaos. Thus very conservative, natural choices of payoff matrix and
learning matrix lead to deterministic chaos.

Our analysis has implications for historical linguistics, language evolution and evolution-
ary game theory. Simple learning errors can lead to complex, unpredictable and seemingly
stochastic changes in languages over time. For game dynamics, we note that imperfect
transmission (learning) of the strategy from one generation to the next can lead to chaotic
switching among strict Nash equilibria.
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4.1. Introduction

While a genetically encoded UG is a logical requirement for the process of language acqui-
sition, there is considerable debate about the nature of the genetically encoded constraints.
Interestingly, in a recent study, a mutation in a gene was linked to a language disorder in
humans [42] providing a specific example of a genetic modification that affects linguistic
performance. It is therefore natural to construct population models which incorporate ge-
netic variation in the form of multiple universal grammars, and to explore the long term
behavior of such models.

Universal grammar has no doubt been influenced by natural selection, as well as by
mathematical or computational constraints that apply to any communication system, and
of course by random chance. It is not clear exactly which aspects of UG are due to natural
selection. In particular, many linguists are skeptical of explanations based on proposed
adaptive benefits of fine-scale features and particular grammatical rules [45, 76]. However,
large-scale properties of UG, such as the number and variety of grammars admitted or the
rough form of the learning process, might have broadly acceptable explanations in terms
of some notion of adaptive benefit. The purpose of this chapter is to begin exploring this
possibility.

Since evolution requires variation, we have to study selection among different UGs, and
an obvious place to begin is with an investigation into what happens when more than one
UG is present in a given population. As described in Section 1.3, the language dynamical
equation may be extended to include multiple UGs, although the number of variables and
parameters can easily get out of hand. So, this chapter will focus on cases where one
of the UGs admits only one grammar, and discuss what forces favor more specific UGs
(those that admit few grammars) or less specific UGs (those that admit many grammars).
An interesting finding is that less specific UGs can resist invasion by more specific UGs if
learning is more accurate. In other words, accurate learning stabilizes UGs that admit large
numbers of candidate grammars.

We explore three possibilities of selective dynamics. The first, dominance, means that
one particular UG takes over the population from any initial state. The second, competitive
exclusion, happens when some UG takes over the population, but the initial state influences
which one. The third, coexistence, means that two or more UGs exist stably. We construct a
dynamical system describing a population of individuals. Each individual has an innate UG
and speaks one of the grammars generated by this UG. Individuals reproduce in proportion
to their ability to communicate with the whole population, passing on their UG to their
offspring genetically, and attempting to teach their grammar to their children. The children
can make mistakes and learn a different grammar than their parents speak, but within the
constraints of their UG.

Section 4.2 briefly reviews the mathematical details of the language dynamical equa-
tion with multiple universal grammars, and specifies the particular form of the abstract
communication game to be used in this chapter.

Section 4.3 analyzes a one-dimensional case with one UG that specifies two candidate
grammars. This simple case is used as a building block for subsequent analysis.
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In Section 4.4, we study the selection between two universal grammars: U1 admits
grammar G1 while U2 admits grammars G1 and G2. This case is of interest because it
illustrates the competition between a more specific UG, that is, one with more constraints
and therefore fewer options, and a less specific UG. We never find coexistence between
U1 and U2. For certain parameter values, U1 dominates U2, meaning that the only stable
equilibrium consists entirely of individuals with U1. For other parameter values, we find
competitive exclusion: Both U1 and U2 can give rise to stable equilibria. In particular, U2

is stable against invasion by U1 if learning is sufficiently accurate and if most individuals
use G2.

In Section 4.5, we study two extensions. First, we consider what happens if a multi-
grammar UG denoted by U0, which allows grammars G1 through Gn, competes with n
single-grammar UGs denoted by U1 through Un, where Uj allows only Gj . To simplify the
analysis, symmetry is imposed on the model. It turns out that U0 is never able to take over
the population, but that any one of the single-grammar UGs can. In a second extension,
U0 only competes against U1. In this case, there can be a stable equilibrium that consists
entirely of individuals with U0, provided its learning algorithm is sufficiently reliable, and
the population does not contain too many speakers of G1.

In Section 4.6 we allow grammars to be ambiguous, and study the case where U1 admits
grammar G1, while U2 admits grammars G2 and G3. We provide an example where U2

dominates U1 and an example where U1 and U2 coexist in a stable equilibrium.

In Section 4.7, we draw some conclusions and discuss possible future steps in this line
of research.

4.2. Language dynamics with multiple universal grammars

Let us review the multi-UG model from Section 1.3. Suppose we have a large population,
each member of which is born with one of the N universal grammars U1, U2, . . . , UN and
speaks one of the n grammars G1, G2, . . . , Gn. Each UG consists of a list of which grammars
it allows, and has an associated language acquisition algorithm. The grammars are assumed
to have an overlap given by the matrix A, where Ai,j is the probability that a sentence spoken
at random by a speaker of Gi can be parsed by a speaker of Gj . A grammar Gi is said to be
unambiguous if Ai,i = 1, because Ai,i < 1 implies that two people with the same grammar
can misunderstand each other due to some sentence with multiple meanings.

Define xj,K to be the fraction of the population which speaks Gj and possesses universal
grammar UK . We have

∑

K

∑

j xi,K = 1. Every population state can be represented as a
point on a simplex S(Nn). The population changes over time in that individuals reproduce
at a rate determined by their ability to communicate with everyone else, passing their
universal grammar to their offspring via genetic inheritance, and passing their language on
through teaching and learning. We assume that genetic mutation affecting UG is sufficiently
rare that such mutations may be treated as isolated events and are not directly included in
the equations governing the population dynamics. Instead, mutation will be handled as an
external perturbation: Starting from a population where everyone has the same UG, a small
fraction is changed to some other UG. Learning errors, in which children mistakenly acquire
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a grammar different from their parents’, are assumed to happen frequently and are modeled
directly. The learning process is expressed by the three-axis matrix Q, where Qi,j,K is the
probability that a parent speaking Gi produces a child speaking Gj given that both have
universal grammar UK . Since every child must speak some language, Q is row-stochastic,
that is,

∑

j Qi,j,K = 1 for all i and K. The reproductive rate Fj depends on which grammar
an individual uses and the composition of the rest of the population, and is given by

(4.2.1) Fj =
N
∑

K=1

n
∑

i=1

Bi,jxi,K where Bi,j =
Ai,j + Aj,i

2
.

To write the ordinary differential equation (ODE) governing the population dynamics, we
also need the variable φ which represents the average reproductive rate of the population:

(4.2.2) φ =
N
∑

K=1

n
∑

j=1

Fjxj,K .

The language dynamical equation with multiple universal grammars is then

(4.2.3) ẋj,K =

n
∑

i=1

Fixi,KQi,j,K − φxj,K where j = 1 . . . n,K = 1 . . . N.

In some cases, such as the one in Section 4.4, we will further restrict our attention to
a face of S(Nn), which is itself a lower-dimensional simplex. This restriction comes from
assuming that some UK disallows some Gj , so that xj,K is fixed at 0.

4.3. Two grammars and one universal grammar

The case to be examined here, that of a single universal grammar which generates two
unambiguous grammars, takes place in S2, a one-dimensional phase space. We use this case
as an essential building block in later sections.

4.3.1. Parameter values. Since there is only one universal grammar, we will omit the
K subscript from x and Q. There are three choices of real numbers which fill in all the
parameters for this case of the language dynamical equation, which come from considering
the possibilities for A and Q as follows. The most general form of the overlap matrix A for
two unambiguous grammars is

A =

(

1 a1,2

a2,1 1

)

.

However, the A matrix only enters the dynamical system through the B matrix, as in
(4.2.1), and since B is a symmetric matrix,

B =
A + AT

2
=

(

1 (a1,2 + a2,1)/2
(a1,2 + a2,1)/2 1

)

,

there is really only one degree of freedom in choosing A. So, we define

(4.3.1) b =
a1,2 + a2,1

2
,
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and allow this to be the one free parameter determined by the overlap between G1 and G2.
The most general form for the learning algorithm matrix Q is

(4.3.2) Q =

(

q1 1 − q1

1 − q2 q2

)

,

which has two degrees of freedom. The ranges of the parameters are 0 < b < 1, 0 < q1 < 1,
and 0 < q2 < 1. Although we can certainly consider the cases where q1 and q2 are less than
1/2, these are somewhat pathological because they represent a situation where children are
more likely to learn the grammar opposite to the one their parents speak. Furthermore, if
b = 0 then G1 and G2 have nothing in common and when b = 1 they are identical. Both of
these settings are degenerate and will not be analyzed here.

4.3.2. Fixed point analysis. In the present case, everything takes place on a unit interval
0 ≤ x1 ≤ 1, and the dynamical system is one dimensional, as can be seen by expanding
(4.2.3) and replacing x2 with 1 − x1:

ẋ1 =(1 − q2)

+ (−3 + b(1 + q1 − q2) + 2q2)x1

+ (1 − b)(3 + q1 − q2)x
2
1

− 2(1 − b)x3
1.

(4.3.3)

It is useful to change coordinates to x1 = 1 − 2r so that the dynamical system inhabits an
interval −1 ≤ r ≤ 1 that is symmetric about 0. The vector field now takes on the form

ṙ = − 1

2

(

(1 + b)(q1 − q2)

+ (3 + b − 2(q1 + q2)))r

+ (1 − b)(q1 − q2)r
2

+ (1 − b)r3
)

.

(4.3.4)

By straightforward calculation, if r = −1 then ṙ = 2(1 − q1) > 0, and if r = 1 then
ṙ = 2(−1 + q2) < 0. By the intermediate value theorem, there must be at least one fixed
point in the interval. Since ṙ is a cubic polynomial in r, there can be either one, two, or
three fixed points, depending on the choice of parameters. Keeping in mind that the vector
field points inward at both ends of the interval, the dynamical system must follow one of
the phase portraits in Figure 4.3.1. Two kinds of bifurcations are possible: saddle-node
and pitchfork. The remainder of this section will be spent developing a partial answer to
the question of which parameter values cause particular bifurcations, and where the fixed
points are when they take place. Rather than solve ṙ = 0 directly, we will make use of the
following variations of some well-known lemmas (see Chapter 1 of [3] or Chapter 4 of [1])
and indirect methods to extract information about the bifurcations.

Lemma 4.3.1. Let f(x) be a polynomial with a root z of multiplicity n ≥ 1. Then z is a
root of f ′(x) with multiplicity n − 1.
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(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(e)
(e)

Figure 4.3.1. Possible phase portraits for the base line of the simplex. Key: • indicates
a sink, ◦ indicates a source, 2 indicates a non-hyperbolic fixed point. Pictures (a) and (e)
are structurally stable, (b) and (d) are saddle-node or transcritical bifurcations, and (c) is
a pitchfork bifurcation.

Proof. Write f(x) = (x − z)ng(x) where g(z) 6= 0. Then

f ′(x) = n(x − z)n−1g(x) + (x − z)ng′(x)

= (x − z)n−1(ng(x) + (x − z)g′(x)).

Observe from the first factor in the bottom line that z is a root of f ′(x) of multiplicity at
least n − 1. At x = z, the second factor takes the value ng(z) which is nonzero, so the
multiplicity of z is exactly n − 1. �

Lemma 4.3.2. Let f(x) be a polynomial with a root z such that f ′(z) = 0. Then z is a
root of multiplicity two or more.

Proof. Let z be a root of f with multiplicity n. Since z is a root of f ′ of multiplicity n− 1
and n − 1 ≥ 1, it follows that n ≥ 2. �

Lemma 4.3.3. Given a real-valued polynomial dynamical system ẋ = f(x), the non-
hyperbolic fixed points are exactly the roots of f of multiplicity two or more.

Proof. From Lemma 4.3.1, every root of f of multiplicity two or more is a non-hyperbolic
fixed point. Conversely, if z is a non-hyperbolic fixed point, then f(z) = 0 and f ′(z) = 0,
and Lemma 4.3.2 guarantees that z is a root of f of multiplicity two or more. �

Lemma 4.3.3 is the most useful, as it allows us to find the bifurcation parameters of
(4.3.4) without explicitly solving a cubic. In particular, for saddle-node and transcritical
bifurcations there is a double root of the polynomial and for pitchfork bifurcations there
is a triple root of the polynomial. Thus, the parameter settings which generate the non-
hyperbolic fixed points in Figure 4.3.1 parts (b), (c), and (d) may be found by matching
(4.3.4) against a general template polynomial with multiple roots, as will be illustrated
below.

As a side note, the results of this section will be used to analyze higher dimensional dy-
namical systems in which both saddle-node and transcritical bifurcations will be possible,
both of which are characterized by a double root. Saddle-node bifurcations are distin-
guished from transcritical bifurcations in that the double root comes into existence at the
bifurcation rather than forming from the collision of two pre-existing fixed points. The
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template polynomial method does not distinguish between these two cases as it can only
locate parameter settings that produce non-hyperbolic fixed points. The way in which the
parameters change so as to pass through such settings determines which type of bifurcation
takes place.

Proposition 4.3.4. The unique parameter setting which produces the phase portrait given
in Figure 4.3.1 (c) (the pitchfork bifurcation) is

q1 = q2 =
3 + b

4
.

The non-hyperbolic fixed point is at r = 0, corresponding to x1 = x2 = 1/2, the center of
the phase space.

Proof. The technique is to set ṙ = 0 and seek parameters that generate a triple root. We
divide the resulting cubic equation by the coefficient of r3 to produce a monic polynomial,
and set the resulting coefficients equal to the corresponding coefficients of (r − p)3 where
p is an unknown variable, corresponding to the non-hyperbolic fixed point. The resulting
system of equations is

−p3 =
(1 + b)(q1 − q2)

1 − b
,(4.3.5a)

3p2 =
3 + b − 2q1 − 2q2

1 − b
,(4.3.5b)

−3p = q1 − q2.(4.3.5c)

It turns out that this system can be solved for q1 and q2 in terms of b. To begin, we use
(4.3.5c) to eliminate q2 in the (4.3.5a) which yields

p3 +
3(1 + b)

−1 + b
p = 0.

This equation has three roots,

p = 0, p = ±
√

3

√

1 + b

1 − b
.

The second and third roots lie outside the interval of interest −1 ≤ p ≤ 1, so the only
possible solution is p = 0 from which it follows that q1 = q2 = (3 + b)/4. �

The cases in which there are two fixed points and one is a double root is significantly
more complicated because there is an additional unknown variable. This next result is a
partial solution.

Proposition 4.3.5. For the phase portraits shown in Figure 4.3.1 parts (b) and (d) (which
are saddle-node or transcritical bifurcations), the sink and non-hyperbolic fixed point lie on
opposite halves of phase space.

Proof. We begin as in Proposition 4.3.4, but this time matching ṙ = 0 against the cubic
template (r − p1)

2(r − p2) where p1 is the non-hyperbolic fixed point and p2 is the sink.
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Since both fixed points are assumed to exist, it must be true that |p1| ≤ 1 and |p2| ≤ 1.
The initial system of equations is

−p2
1p2 =

(1 + b)(q1 − q2)

1 − b
,(4.3.6a)

p2
1 + 2p1p2 =

3 + b − 2q1 − 2q2

(1 − b)
,(4.3.6b)

−2p1 − p2 = q1 − q2.(4.3.6c)

We proceed by solving for p1 in terms of p2. Substituting (4.3.6c) into (4.3.6a) results in a
quadratic equation in p1,

(

1 + b

1 − b

)

(2p1 + p2) = p2
1p2,

whose roots are

p1 =
C

p2
±
√

C2

p2
2

+ C where C =
1 + b

1 − b
> 1.

From here, we demonstrate that p2 > 0 implies p1 < 0. Clearly
√

C2

p2
2

+ C > 1,

which implies that the + root lies outside the phase space and is therefore extraneous.
Hence the non-hyperbolic fixed point must be located at the − root. It is easy to see that

√

C2

p2
2

+ C >
C

p2
,

from which it follows that

p1 =
C

p2
−
√

C2

p2
2

+ C < 0.

A similar argument shows that p2 < 0 implies p1 > 0. If p1 = p2 = 0, we have the case of
Proposition 4.3.4 which is a different phase portrait. �

This next proposition is a constraint that is needed in Section 4.4.

Proposition 4.3.6. There is no setting of the parameters for which three fixed points lie
on the same side of the middle.

Proof. Suppose that we start at parameter values for which there is only one fixed point,
and change them smoothly so that there are three afterward. This means the system
must undergo either a saddle-node or pitchfork bifurcation. In the case of a saddle-node
bifurcation, Proposition 4.3.5 ensures that the two new fixed points lie on the other side of
the middle from the original fixed point. If a pitchfork bifurcation happens, it must occur at
the middle of the phase space according to Proposition 4.3.4, and the two new fixed points
must lie to either side of it.
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Now assume that three fixed points do exist, and the parameters change so that one of
them crosses the middle, that is, at r = 0, we have ṙ = 0. Plugging this assumption into
the dynamical system in (4.3.4) implies that q1 = q2. Thus in this circumstance,

ṙ|q2=q1
=

1

2
r(4q1 − 3 − b − (1 − b)r2),

so the other two fixed points must be at

±
√

4q1 − 3 − b

1 − b
.

Therefore, the only fixed point which can cross the middle of the phase plane is the central
one. �

The complete set of bifurcation parameters can be found implicitly by building from
Lemma 4.3.3 and using the discriminant. By definition, the discriminant of a polynomial is
the product of the squares of the pair-wise differences of its roots, so it will be zero when a
polynomial has a multiple root. The discriminant can be expressed entirely in terms of the
coefficients of the polynomial. For a general cubic a3z

3 + a2z
2 + a1z + a0, the discriminant

is

(4.3.7)
a2

1a
2
2 − 4a0a

3
2 − 4a3

1a3 + 18a0a1a2a3 − 27a2
0a

2
3

a4
3

.

For ṙ, the discriminant is a large expression in terms of q1, q2, and b obtained by filling in
this general formula. The bifurcation parameters are the values of q1, q2, and b which make
this expression zero, and that surface may be plotted implicitly, as shown in Figure 4.3.2.
According to the picture, the surface consists of two curved surfaces which meet in a spine
where q1 = q2 = (3+b)/4 (the pitchfork bifurcation). The bottom corner is at q1 = q2 = 3/4,
b = 0, and the rest of the surface appears to lie in the region q1, q2 > (3+b)/4. The important
thing to notice is that if q1 and q2 are both close to 1, that is, under the surface, then the
dynamical system has three hyperbolic fixed points. Above the surface, there is a single
hyperbolic fixed point, and on the surface, there are one or two fixed points with at least
one non-hyperbolic. The closer b is to 1, the larger q1 and q2 must be to be under the
surface.

4.4. Two grammars and two universal grammars

In this section, we analyze a two-dimensional, asymmetric instance of the language dynam-
ical equation. It models the following scenario: Suppose the population has a universal
grammar U1 which generates exactly one grammar G1; learning and communication are
both perfect. Under what circumstances could the population shift in favor of a new uni-
versal grammar U2 which generates G1 plus an additional grammar G2? That is, within
this model, when is it advantageous to have a choice between two grammars? The analysis
builds heavily on the results from Section 4.3.
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Figure 4.3.2. Bifurcation surface. Observe that in this picture, the q1 and q2 axes run
only from 0.7 to 1. On the tent-shaped surface, there are one or two fixed points with at
least one non-hyperbolic. Above the surface, the system has one hyperbolic fixed point,
and below, it has three.

4.4.1. Parameter settings. The dependent variables of interest are x1,1, x1,2, and x2,2.
The variable x2,1 represents the part of the population which speaks G2 but has universal
grammar U1, and by assumption, this is zero. Thus, the dynamical system in this case is
in three variables with two degrees of freedom and can therefore be analyzed as a planar
system.

As in Section 4.3, the A matrix only enters the dynamical system through the B matrix,
as in (4.2.1), and since B is a symmetric matrix, there is really only one degree of freedom
in choosing A. So, we define

(4.4.1) b =
a1,2 + a2,1

2
,

and allow this to be the one free parameter determined by the overlap between G1 and G2.
The most general form for the learning algorithm matrix Q is

(4.4.2) Qi,j,1 =

(

1 0
∗ ∗

)

, Qi,j,2 =

(

q1 1 − q1

1 − q2 q2

)

,

which has two degrees of freedom. The entries filled with ∗ are always multiplied by x2,1

which is assumed to be 0, so they do not matter. Thus, this model has a total of three free
parameters: b, q1, and q2, all of which are assumed to lie strictly between 0 and 1.
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4.4.2. Geometric analysis of the dynamics. With these parameter settings, and the
fact that x1,2 = 1 − x1,1 − x2,2, the dynamical system (4.2.3) simplifies to

ẋ1,1 = − (1 − b)x1,1x2,2(2x2,2 − 1),

ẋ2,2 =1 − q1 + (−1 + q1)x1,1

+ (−3 + b + q1 + (1 − b)q1 + bq2 + (−1 + b)(−1 + q1)x1,1)x2,2

+ (−2(−1 + b) + (−1 + b)(−1 + q1) + q2 − bq2)x
2
2,2

+ 2(−1 + b)x3
2,2.

(4.4.3)

It lives on the three-vertex simplex S3, that is, a triangle. The vertices correspond to
xj,K = 1 and will be labeled Xj,K in diagrams.

From here, a fairly complete understanding of the bifurcations of this system can be
derived from some simple calculations and geometric considerations. To begin, we will find
lines along which ẋ1,1 = 0, and the vector field is therefore parallel to the base of the
simplex. These are called x1,1 null-clines. From (4.4.3), it is clear that ẋ1,1 is zero in three
places: the lines x1,1 = 0, which is the base of the simplex, and x2,2 = 0, which is the left
edge, and the line x2,2 = 1/2, which runs across the simplex. In particular, the base line
x1,1 = 0 is invariant under this vector field. See Figure 4.4.1.

X1,1

X1,2 X2,2

x2,2 = 0

x2,2 = 0

x1,1 = 0

x1,1 = 0

x2,2 = 1
2

x2,2 = 1
2

Figure 4.4.1. The simplex, with null-clines. The bold lines indicate where ẋ1,1 = 0. The
arrows indicate the sign of ẋ1,1 in the regions in between, up for positive, down for negative.

Several fixed points are easily located. Observe that if x2,2 = 0 then ẋ1,1 = 0 and
ẋ2,2 = (1 − q1)(1 − x1,1). So the apex is the only fixed point on the left side of the simplex.
Also, since the vector field always points upward toward it, it is stable. Another fixed point
may be located on the cross line by substituting x2,2 = 1/2 into (4.4.3) yielding

ẋ1,1|x2,2=1/2 = 0,

ẋ2,2|x2,2=1/2 =
1

4
(1 + b) (q2 − q1 − 2(1 − q1)x1,1) ,

(4.4.4)
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from which we find that

(x1,1, x2,2) =

(

q2 − q1

2(1 − q1)
,
1

2

)

is the unique fixed point on the line x2,2 = 1/2. It is located inside the simplex for q2 ≥ q1

and outside otherwise. Observe that the vertical component of the vector field is upward
above this fixed point, and downward below it, so it must be unstable. The horizontal
component of the vector field to its right points leftward, and to its left it points rightward,
indicating that locally, orbits flow toward the fixed point from either side. Thus, this fixed
point is a saddle.

Consider the base line, which is invariant under this vector field and may therefore be
partially analyzed in isolation. It is exactly the same as the general two-grammar problem
from Section 4.3, and must look like one of the phase portraits in Figure 4.3.1, except that
those pictures show only stability or instability in the horizontal direction. Stability of one
of these fixed points in the vertical direction is determined by which side of the cross line
it lies on: ẋ1,1 is positive on the left side, indicating instability, and negative on the right
side, indicating stability.

We must determine where the fixed points in Figure 4.3.1 may lie with respect to the
point (x1,1, x2,2) = (0, 1/2), which we do by examining the behavior of the saddle point
on the cross line x2,2 = 1/2. The key fact is that the vector field on the cross line points
leftward above the saddle point, and rightward below it, and changes direction only at
that fixed point. Observe that the vector field at the upper right end of the cross line
(x1,1, x2,2) = (1/2, 1/2) is (ẋ1,1, ẋ2,2) = (0,−(1/4)(1 + b)(1 − q2)), which points leftward.
The direction of the vector field at (x1,1, x2,2) = (0, 1/2) is either left or right, depending
on the configuration of fixed points on the base line. If it points to the left, then the fixed
point on the cross line must lie outside the simplex because the vector field must point left
along the entire segment of the cross line within the simplex. Similarly, if the vector field
points to the right at (0, 1/2), then the the saddle point must lie inside the simplex. From
previous analysis, the saddle point lies inside the simplex if and only if q2 ≥ q1, so we have
a link between the values of q1 and q2 and the phase portraits in Figure 4.3.1.

Now we must determine how the saddle point crosses the base line into the simplex.
It must pass through the point (x1,1, x2,2) = (0, 1/2). Substituting this point into (4.4.4),
we see that the parameter values which cause this must satisfy q1 = q2. As it crosses the
base line, it must coincide exactly with one of the fixed points there. Since the saddle point
passes through the collision, the fixed points must cross in a transcritical bifurcation. To
determine which fixed point is crossed, we substitute q2 = q1 = q into the dynamical system
in (4.4.3) and examine the base line. Note that x1,1 = 0 so ẋ1,1 = 0. Also:

(4.4.5) ẋ2,2|q2=q1=q,x1,1=0 = (−1 + 2x2,2)
(

−1 + q + (1 − b)x2,2 + (−1 + b)x2
2,2

)

.

The roots of this cubic correspond to the fixed points on the base line; they are

(4.4.6)
1

2
and

1

2
± 1

2

√

4q − 3 − b

1 − b
.

We now get three cases. If q > (3 + b)/4, then there are three fixed points as in Fig-
ure 4.3.1 (e), one exactly in the middle and two to either side. If q < (3 + b)/4, then there
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is one fixed point, exactly in the middle as in Figure 4.3.1 (a). If q = (3 + b)/4, then there
is one degenerate fixed point exactly in the middle as in Figure 4.3.1 (c), in which case
the pitchfork and transcritical bifurcations happen simultaneously. At any rate, the saddle
point can only enter the simplex by passing through the central fixed point on the base line.

The parameter space breaks up into four regions as shown in Figure 4.4.2. The tent-
shaped surface is the same as the one in Figure 4.3.2. For parameter settings above it, there
is one fixed point on the base line. For parameter settings below it, there are three fixed
points on the base line, two on one side of the middle and one on the other. On the faces,
there are two fixed points, one non-hyperbolic, and on the edge, there is one non-hyperbolic
fixed point. The vertical plane separates the regions where q1 < q2 from the regions where
q2 < q1. The complete bifurcation scenario is shown in Figure 4.4.3. The fixed points on
the base line are constrained by Propositions 4.3.4, 4.3.5, and 4.3.6, so the cases shown are
the only possibilities. Phase portraits in Figure 4.4.3 are labeled according to which part
of the parameter space in Figure 4.4.2 they represent.

Figure 4.4.2. Parameter space with bifurcation surfaces. Areas (a), (c), (g) and (i) are
regions in space, indicated by bold arrows. Areas (b), (d), (f), and (h) are the surfaces
that separate those regions, indicated by black and white arrows. Areas (d) and (f) are the
front and back surfaces of the tent. Area (b) is the part of the plane above the tent, and
(h) is the part below it. Area (e) is a line where the two curved surfaces and the vertical
plane intersect, indicated by thin arrows.

4.4.3. Competition between the universal grammars. The bifurcation scenario de-
picted in Figure 4.4.3 can be analyzed in terms of competition between the two universal
grammars. The structurally stable pictures are (a), (c), (g), and (i); these are the ones that
occur generically. Observe that in (a), there is only one stable fixed point, and it occurs at
the apex of the triangular phase space. All interior orbits will approach this fixed point.
Thus, in the case where q2 < q1 and both are fairly small, U1 dominates. In (c), there are
two stable fixed points, the one at the apex corresponding to a takeover by U1 and the one
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4.3. Phase portraits for the selection dynamics between U1 (apex) and U2 (base
line). U1 admits G1, and U2 admits G1 and G2. Either U1 dominates as in (a), or there is
bistability between U1 and U2. The parameters for each picture come from the region of
the same label in Figure 4.4.2. Key: • indicates a sink, ⊕ indicates a saddle, ◦ indicates a
source, 2 indicates a non-hyperbolic fixed point. Arrows indicate (roughly) the direction
of the vector field. In pictures (c), (f), and (i), the cross line and the horizontal dashed
line through the saddle point define approximate upper and lower trapping regions for the
two sinks. The actual boundary between their basins of attraction is the stable manifold
of the saddle point, which is sketched as a dotted line. Picture (g) also contains such a

boundary.

on the base line corresponding to a takeover by U2. Their basins of attraction are separated
by the stable manifold of the saddle point on the cross line. Approximations to their basins
of attraction can be found by drawing a dashed horizontal line through the saddle. Orbits
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can only cross the left-hand segment of the dashed line by going upward, and the upper seg-
ment of the cross line by going leftward, which means these two segments bound a trapping
region containing the apex. Similarly, orbits can only cross the right-hand segment of the
dashed line by going downward, and the lower segment of the cross line by going rightward,
which means there is another trapping region containing the sink on the base line. In this
case, where q1 < q2 and both are fairly small, there is competitive exclusion between the two
universal grammars. The most direct transition from (a) to (c) is a transcritical bifurcation
passing through (b). Shortly after this bifurcation, the saddle point will be very close to the
base line, so the trapping region for U2 will be quite small. As q2 increases, the saddle point
moves upward and trapping region expands. A similar situation exists in (i), the difference
being that the base line contains two other fixed points which affect a negligible fraction of
the phase space. The situation is slightly different in (g). Again, there are two stable fixed
points, but the saddle point whose stable manifold separates their basins of attraction is on
the base line rather than on the cross line. There does not seem to be a simple trapping
region that approximates the basins of attraction in this picture.

4.4.4. Discussion of Section 4.4. To summarize, the scenario examined in this section
generically contains instances where U1 dominates, and instances where there is compet-
itive exclusion, but none where U2 dominates or where both universal grammars coexist.
Furthermore, U2 can only take over if q2 > q1 as in pictures (c) and (i), or if q1 and q2

are both close to 1 as in picture (g). In the first case, G2 is acquired more accurately than
G1, so it has an advantage and tends to increase in the population thereby putting U1 at a
disadvantage. In the second case, it appears that although G1 may be learned more reliably
than G2, the learning reliability of G2 is sufficiently high that it can maintain a large por-
tion of the population through “market share” effects, again putting U1 at a disadvantage.
Observe that in any case, U2 can only take over the population through G2. A population
of U2 people speaking G1 can be invaded by U1. This is an illustration of a process by which
a valuable acquired trait can become innate.1 This effect suggests that human universal
grammar may have once allowed many more possible grammars than it does now, and that
as portions of popular grammars became innate, UG became more restrictive.

4.5. A multi-grammar UG competing with single-grammar UGs

In this section, we will examine cases in which a UG with multiple grammars competes
with a number of UGs that have only a single grammar each. We will begin by building on
the results from Section 4.4 in two ways, extending that analysis to symmetric cases in an
arbitrary number of dimensions.

4.5.1. The case of full competition. Let us extend the case from Section 4.4 by assum-
ing that there are three universal grammars. The first, U1, allows only G1. The second, U2,
allows only G2. The third, U0, allows both G1 and G2. Since there is one single-grammar
UG for each possible grammar, this case will be called full competition. We would like to
determine whether one of these UGs can take over the population.

1Also, see Section sec:cx:sca-discussion for a discussion of accidental stability.
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This situation contains two copies of the case from Section 4.4, one in which everyone
uses U0 or U1, and a second in which everyone uses U0 or U2. From the former, there is
generically no stable equilibrium in which U0 takes over with a majority of people speaking
G1. From the latter, there is generically no stable equilibrium in which U0 takes over with
a majority of people speaking G2. If U0 is to take over, either G1 or G2 must be in the
majority, so it follows that U0 is unable to take over.

This result extends to an arbitrary number of grammars as follows. Let the grammars
be G1 to Gn, and assume there are universal grammars Ui which specify only the grammar
Gi. Assume there is an additional UG U0 which allows any of the n grammars. As a
simplification, assume that the grammars are fully symmetric and unambiguous, that is,
Ai,i = 1 and Ai,j = a for i 6= j. The parameter a is required to be strictly between 0 and
1. For reasons that will become clear in a moment, the learning matrix Q is allowed to be
fully general except that no grammar is allowed to have perfect learning under U0, that is,
Qi,i,0 < 1 for all i.

We will need the following new notation. We are interested in determining if one
universal grammar out of the UK can take over the population, and if so, which one. We
therefore define

(4.5.1) yK =

n
∑

j=1

xj,K

to be the total population with UK . The dynamics for yK can be expressed succinctly by
using the fact that Q is row stochastic:

ẏK =
n
∑

j=1

ẋj,K

=

n
∑

j=1

(

n
∑

i=1

(Fixi,KQi,j,K) − φxj,K

)

=
n
∑

i=1



Fixi,K

n
∑

j=1

Qi,j,K



− φ
n
∑

j=1

xj,K

=

n
∑

i=1

Fixi,K − φyK .

(4.5.2)

We may further simplify the notation by introducing the variables

(4.5.3) φK =

n
∑

i=1

Fixi,K ,

from which it follows that φ =
∑

K φK and

(4.5.4) ẏK =

n
∑

i=1

Fixi,K − φyK = φK − φyK .
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There is no explicit reference to Q in ẏK , although Q does influence the dynamics. It
happens that the main result of this section does not depend on Q for exactly this reason.

Because of the symmetry imposed on A, the dynamics of the yK simplify considerably.
If we further define

v = (x1,0, x2,0, . . . , xn,0),(4.5.5)

w = (x1,1, x2,2, . . . , xn,n),(4.5.6)

then

ẏ0 = −(1 − a)((v + w) · w)y0,

ẏK = (1 − a)(xK,0 + yK − (v + w) · (v + w))yK where K = 1 . . . n.
(4.5.7)

Note that the sum of the entries of v is equal to y0, and the sum of the entries of w is equal
to 1 − y0.

Proposition 4.5.1. The multi-grammar universal grammar, U0, is always unstable, that
is, if y0 < 1, then ẏ0 < 0. The single-grammar UGs are stable, meaning that for K ≥ 1, if
yK is close to 1, then yK is increasing.

Proof. We will prove both statements by starting from a population that consists entirely
of one UG, and perturbing it by converting ε of the population to another UG.

To prove the first statement, suppose that y0 = 1 − ε. All the entries of v and w are
greater than or equal to zero, so v · w ≥ 0. Since w must be non-zero, it follows that
ẏ0 = −(1− a)(v ·w + w ·w)y0 < 0. In fact, in any population state where not everyone has
U0, the number of people with U0 will decrease. Thus, U0 is unstable and cannot take over
the population.

To prove the second statement, fix K ≥ 1 and assume that yK = 1 − ε. Observe that

(v + w) · (v + w) =

n
∑

i=1

(xi,0 + xi,i)
2

= (xK,0 + 1 − ε)2 +
∑

i6=K

(xi,0 + xi,i)
2.

The summation is over n − 1 terms, each of which greater than or equal to zero, and their
sum is fixed at 1 − (1 − ε) − x0,K . Therefore, the summation is at most (ε − x0,K)2. (See
Lemma 4.5.2.) It follows that

ẏK ≥ (1 − a)(1 − ε)
(

1 − ε + xK,0 − (1 − ε + xK,0)
2 − (ε − xK,0)

2
)

= (1 − a)(1 − ε)(ε − xK,0)(1 − 2(ε − xK,0)).

As long as xK,0 < ε, we have ẏK > 0. This will continue to be true as xK,0 ≤ yK .

If xK,0 = ε, that is, xK,0 accounts for the entire perturbation, then we need the as-
sumption that under U0, no language is learned perfectly. So, a short time later, xK,0

will decrease as some children will have mistakenly learned another grammar, say Gh, so
xh,0 > 0. At this point, we will have a new perturbation with yK = ε′ and xK,0 < ε′, and
it follows that ẏK > 0. �
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The following lemma is used to make approximations in this and other proofs in this
chapter.

Lemma 4.5.2. Suppose that for i = 1 . . . m, we have numbers αi ≥ 0 such that
∑

i αi = σ.
Then

σ2

m
≤

m
∑

i=1

α2
i ≤ σ2.

Proof. Consider α = (αi)
m
i=1 as a vector in Rm. It is contained in a simplex because the

sum of its entries is fixed. The point on the simplex closest to the origin is the center,
corresponding to αi = σ/m for all i, and this point yields the lower bound. The vertices of
the simplex are the farthest points from the origin, corresponding to αj = σ and αi = 0 for
all i 6= j, and these points give the upper bound. �

Proposition 4.5.1 implies that UGs with many grammars are unable to compete directly
with UGs that specify only one grammar.

4.5.2. The case of limited competition. The two-dimensional case from Section 4.4
illustrates a situation where a multi-grammar UG can have a stable equilibrium where a
majority of the people use a grammar that does not occur as part of a single-grammar UG.
We now turn our attention to a different extension of this case in which there are two UGs,
U0 which specifies G1, . . . , Gn, and U1 which specifies only G1. As before, the A matrix
is assumed to be fully symmetric, with all diagonal entries Ai,i = 1 and all off-diagonal
entries Ai,j = a. The Q matrix disappears again, and we need only the assumption that
no grammar is learned perfectly under U0. By using the fact that y1 = x1,1 = 1 − y0, the
model can be reduced to one differential equation of interest,

ẏ0 = (1 − a)(−x1,1 − x1,0 + 2x1,1x1,0 + M2)x1,1

= (1 − a)(−1 + y0 − x1,0 + 2(1 − y0)x1,0 + M2)(1 − y0).
(4.5.8)

where

Mk =

n
∑

j=1

N
∑

K=1

xk
j,K .

There is a fixed point at y0 = 0, as can be seen by substituting this state into the differential
equation. Furthermore, ẏ0 = 0 when y0 = 1, so the model can have trapping regions and
stable fixed points in the subset of states which satisfy y0 = 1. We are interested in
determining when these various states are stable under perturbations.

Proposition 4.5.3. The fixed point y0 = 0, corresponding to a takeover by U1, is stable.

Proof. Consider a small perturbation, y0 = ε. Then we must have y1 = x1,1 = 1 − ε, and
the differential equation satisfies

ẏ0 = (1 − a)



−1 + ε − x1,0 + 2(1 − ε)x1,0 + (1 − ε)2 +
n
∑

j=1

x2
j,0



 (1 − ε)

≤ (1 − a)(−1 + ε + x1,0(1 − 2ε) + 1 − 2ε + ε2 + ε2)(1 − ε),
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where we have used Lemma 4.5.2 to bound the summation by ε2. This expression factors
into

ẏ0 ≤ −(1 − a)(ε − x1,0)(1 − 2ε).

If the perturbation is such that x1,0 < ε, then the right hand side is negative, and as
x1,0 ≤ y0, it will remain negative, so y0 will shrink to 0.

If the perturbation is such that x1,0 = ε, then we must use the fact that under U0 there
is no perfect learning. After a short time, some other part of the population with U0, say,
xh,0, will be non-zero due to learning error. This new perturbation will have y0 = ε′ and
x1,0 < ε′, and as before y0 will shrink to 0. �

The following results show that U0 can still take over, but not with G1. It states that if
x1,0 is small enough, then a population consisting only of people with U0 that is perturbed
by adding a small number of people with U1 will recover, at least in the short term.

Proposition 4.5.4. Let ε > 0 be small and suppose y0 = 1 − ε and x1,1 = ε. Define
κ = 1/n − x1,0. If κ > ε/(1 − 2ε), then ẏ0 > 0.

Proof. From the differential equation,

ẏ0 = (1 − a)



−ε + (2ε − 1)x1,0 + ε2 +

n
∑

j=1

x2
j,0



 ε

≥ (1 − a)

(

−ε + (2ε − 1)x1,0 + ε2 +
(1 − ε)2

n

)

ε,

where we have once again used Lemma 4.5.2 to bound the summation. By substituting
x1,0 = 1/n − κ, the inequality can be simplified to

ẏ0 ≥ (1 − a)

(

κ − ε(1 + 2κ) +

(

1 +
1

n

)

ε2

)

ε.

The assumption that κ > ε/(1 − 2ε) is equivalent to κ > ε(1 + 2κ), so the right hand side
is positive. �

The tricky part about interpreting this proposition is that a population state with y0 = 1
might sill be unstable in the long term: It could move within the constraint y0 = 1 to a state
where x1,0 > 1/n, at which point Proposition 4.5.4 no longer applies and a perturbation
can cause the population to be taken over by U1, as this next proposition illustrates.

Proposition 4.5.5. Let ε > 0 be small and suppose y0 = 1−ε and x1,1 = ε. If x1,0 > 1/2−ε,
then y0 is decreasing.

Proof. For this proof, we use Lemma 4.5.2 to bound the summation in ẏ0 from above,

n
∑

j=1

x2
j,0 = x2

1,0 +

n
∑

j=2

x2
j,0 ≤ x2

1,0 + (1 − ε − x1,0)
2.
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This bound yields the inequality

ẏ0 ≤ 2ε(1 − a)(x1,0 − (1 − ε))

(

x1,0 −
(

1

2
− ε

))

.

If 1− ε > x1,0 > 1/2− ε, then ẏ0 is negative, and the perturbation will draw the population
away from the region where y0 = 1, indicating instability.

If x1,0 = 1 − ε, then we resort to the argument that a short time later, the population
will change due to learning error to a different perturbation where y0 = 1 − ε′ and some
other sub-population xh,0 > 0. Now x1,0 < 1 − ε′, which implies that ẏ0 < 0 and the
population is moving away from the region where y0 = 1. �

4.5.3. Some remarks about these results. Several remarks are in order. First, the Q
matrix has mostly disappeared, so Propositions 4.5.1, 4.5.3, 4.5.4, and 4.5.5 hold regardless
of the learning mechanism under U0, except that it must not be perfect. In fact, it could
be dynamic, depending on the population state for example, as long as it remains row
stochastic.

Second, the fact that some of the propositions declare y0 = 1 to be “stable” may be
misleading. As noted before, the population could start in a state where y0 = 1 and move
within that constraint to a state in which y0 begins to decrease. The simplest behavior for
which y0 = 1 would be truly stable is for the population to converge to a stable fixed point
that satisfies Proposition 4.5.4, but it could also converge to a limit cycle or to a strange
attractor, depending on what behaviors are available to a population restricted to U0.

We can get more definite results from these propositions if we add assumptions that
ensure that all population states with y0 = 1 tend to fixed points. Any fixed points that
are stable when only U0 is allowed and that also fall under Proposition 4.5.4 are stable
with respect to all perturbations, including those involving the introduction of U1. Any
such fixed points that fall under Proposition 4.5.5 are unstable. Some may be outside the
hypotheses of both propositions, and we can say nothing more about them here.

A full bifurcation analysis of the fully symmetric case of the language dynamical equa-
tion with one universal grammar is worked out in Chapter 2 and [36]. To apply those
results here, we must add the assumption that for the learning matrix for U0, all diagonal
elements Qi,i,0 = q and all off-diagonal elements Qi,j,0 = (1 − q)/(n − 1). It follows from
Proposition 2.7.3 that if only U0 is present, then all populations tend to fixed points. The
analysis shows that there is a constant q̂1 such that if q < q̂1, then the only stable fixed
point in a population restricted to U0 is one in which every grammar is represented equally.
Thus, x1,0 = 1/n and that fixed point is potentially unstable to perturbations involving U1

because Proposition 4.5.4 does not apply. On the other hand, if q > q̂1, then there are n
stable fixed points, and each Gj is used by a large part of the population in exactly one of
them. These are called the 1-up fixed points in Chapter 2 and single grammar fixed points
in [36]. At the one where G1 has the majority, x1,0 > 1/n, so it does not fall under Proposi-
tion 4.5.4 and is potentially unstable to perturbations involving U1. If q is sufficiently large,
this fixed point moves so that x1,0 approaches 1, so at some value of q, it will exceed 1/2.
Then Proposition 4.5.5 will apply and the fixed point will definitely be unstable. At the
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other fixed points, x1,0 < 1/n, so they fall under Proposition 4.5.4 and are therefore stable.
In short, if the learning process in U0 is sufficiently reliable, that is q > q̂1, then U0 can take
over the population in a stable manner, but not through G1. If learning is unreliable, then
U1 will eventually take over.

4.6. Ambiguous grammars

In this section we will generalize the case in Section 4.4 not by adding dimensions but by
allowing the grammar specified by U1 to be different from both of those specified by U2,
and by allowing the grammars to be ambiguous. The diagonal entries of A are allowed
to be less than one. This case can exhibit a greater variety of behavior than was seen in
Section 4.4, including stable coexistence of both universal grammars, and dominance by U2.
This form of the language dynamical equation has a total of eight free parameters. Rather
than attempt a complete symbolic analysis, we will present one short proposition and some
numerical results.

4.6.1. Parameter values. We assume that U1 allows for one grammar G1, and that U2

allows for two grammars, G2 and G3. The Q matrix is allowed to be fully general,

(4.6.1) Qi,j,1 =





1 0 0
∗ ∗ ∗
∗ ∗ ∗



 , Qi,j,2 =





∗ ∗ ∗
0 q2 1 − q2

0 1 − q3 q3



 .

The entries filled with ∗ are always multiplied by some xj,K that is restricted to be zero,
so they do not matter. Also, the matrix A is allowed to be fully general; we even allow
the diagonal elements to be less than 1. The only constraint we place on A is that since it
appears in the model only through B = (A+AT )/2 we may as well assume A is symmetric.
There are eight free parameters, six from the upper half of A and q2 and q3.

4.6.2. Analysis and phase portraits. The expressions for ẋ1,1, ẋ2,2 and ẋ3,2 are un-
wieldy so they will not be written out. However, it turns out that x1,1 = 1, x2,2 = x3,2 = 0
is a fixed point for all parameter settings. The one exact result is the following:

Proposition 4.6.1. The fixed point x1,1 = 1, x2,2 = x3,2 = 0 is unstable if −2A1,1 +
A1,2q2 + A1,3q3 > 0.

Proof. We reduce the system to two dimensions by replacing x3,2 by 1 − x1,1 − x2,2. The
trace of the Jacobian matrix of the reduced system at the fixed point in question is −2A1,1+
A1,2q2 +A1,3q3. If this is positive, then at least one of the eigenvalues of the Jacobian must
have positive real part [70, p. 137]. �

Roughly what this proposition means is that if G1 is sufficiently ambiguous, and G2 and
G3 are similar to it and can be learned reliably, then U1 is unable to take over the population.
This situation seems unrealistic, however, there is at least one reasonable interpretation.
Suppose that G1 is close to the union of G2 and G3, and contains many sentences that can be
interpreted so as to have multiple meanings. Suppose further that many of these sentences
are in G2 or G3 but with a single meaning. Thus, U2 has an advantage because it restricts
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its people to some less ambiguous language at the expense of imperfect learning, and this
may be enough to destabilize a population where everyone has U1. Proposition 4.6.1 is a
mathematical expression of this situation. Note that when A1,1 is restricted to be 1, the
proposition never applies, and the stability of the U1 fixed point must be determined by
other means.

A number of phase portraits for a variety of parameter values are drawn in Figures 4.6.1–
4.6.4 based on numerical computations. In particular, these phase portraits illustrate that
with this general model, it is possible to have stable coexistence of U1 and U2, and it is
possible for U2 to dominate. Neither of these situations is possible in the limited case
analyzed in Section 4.4.

X1,1

X2,2 X3,2

Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Figure 4.6.1. Key to phase portraits show in Figures 4.6.2 to 4.6.4. Some fixed points
outside the simplex have been drawn for reference. The three corners of the triangle
represent population states where everyone uses a single language, as indicated. The apex
of the triangle represents U1 = 1 and the base represents U2 = 1.

(a) A = (0.66 0.6 0.7
0.6 0.9 0.7
0.7 0.7 0.9),

q2 = 0.95, q3 = 0.95

(b) A = (0.45 0.6 0.7
0.6 0.9 0.7
0.7 0.7 0.9),

q2 = 0.8, q3 = 0.85

Figure 4.6.2. Two instances where U2 dominates.
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(a) A = (0.4 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.8, q3 = 0.85

(b) A = (0.5 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.86, q3 = 0.85

Figure 4.6.3. Two instances of stable coexistence. In (b), U2 can also take over, but only
with G2.

(a) A = (0.3 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.87, q3 = 0.85

(b) A = (0.7 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.87, q3 = 0.85

Figure 4.6.4. Another instance of stable coexistence and an instance of exclusion.

4.7. Conclusion

The evolution of universal grammar is based on genetic modifications that affect the ar-
chitecture of the brain and the classes of grammars that it can learn. At some point in
the evolutionary history of humans, a UG emerged that allowed the acquisition of language
with unlimited expressibility. In principle, UG can change as a consequence of random
drift (neutral evolution), as a by-product of selection for other cognitive function, or under
selection for language acquisition and communication. The third aspect is what we consider
in this chapter.

We explore some low-dimensional cases of natural selection among universal grammars.
In particular, we study the competition between more specific and less specific UGs. Sup-
pose two universal grammars, U1 and U2 are available, and U2 admits two grammars, G1
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and G2, while U1 admits only G1. If learning within U2 is too inaccurate, then U1 dominates
U2: For all initial conditions that include both U1 and U2, U1 will eventually out-compete
U2. If learning within U2 is sufficiently accurate, then for some initial conditions U2 will
win while for others U1 will win; there is competitive exclusion. Note that accurate learning
stabilizes less specific UGs. We can also find coexistence of two different UGs. We provide
such an example where U1 admits G1 and U2 admits G2 and G3.

A standard question in ecology is concerned with the competition between specialists
that exploit a specific resource and generalists that utilize many different resources [46].
Similarly, here we have analyzed competition between specialist UGs that admit few gram-
mars and generalist UGs that admit many candidate grammars. This is an interesting
similarity. There is also a major difference: In ecology the more individuals exploit a re-
source the less valuable this resource becomes, but in language the more people use the
same grammar the more valuable this grammar becomes. Hence, the frequency dependency
of the fitness functions work in opposite directions in the two cases.

The question that we ultimately want to understand is the balance between selection
for more powerful language learning mechanisms that allow acquisition of larger classes of
complex grammars, and selection for more specific UGs that limit the possible grammars.
This chapter provides mathematical machinery and a first step toward this end.
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5.1. Introduction

The intent of this chapter is to further explore the model of how different universal grammars
interact and compete for carriers within a population. The analysis in Chapter 4 deals with
some two-dimensional cases and addresses some general questions of how the model behaves

71
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when one of the UGs in question admits only one grammar. In this chapter, we will address
a three-dimensional case of the model, in which there are two UGs, each of which admits
two grammars. The goal here is to put aside the issue of selection for more specific or
less specific UGs that was addressed in Chapter 4 and focus on the competition between
two equally specific UGs. As before three kinds of behavior are of interest: dominance,
competitive exclusion, and coexistence.

In Section 5.2, we review the language dynamical equation with multiple universal gram-
mars. From the general case, we restrict our attention to the case of two UGs with two
grammars each, and initially impose a simplifying assumption on the set of possible pa-
rameters. Section 5.3 contains an almost complete analysis of this case. The assumptions
about the parameters are stated in Section 5.3.1. They add a certain amount of symmetry
to the dynamical system, and it is very natural to take advantage of this symmetry through
a change of coordinates as given in Section 5.3.2. In Section 5.3.3, all fixed points are found
algebraically. Many of them lie in one of two invariant planes, and their stabilities are de-
termined in Section 5.3.4. Parameter settings for which the system undergoes a bifurcation
within an invariant plane are found as well. Sections 5.3.5 and 5.3.6 assemble these results
into complete three-dimensional phase portraits, and include illustrations of dominance,
competitive exclusion, and coexistence. The results of this section have interesting implica-
tions for the genetic evolution of UG. Section 5.3.7 discusses some of these. In particular,
the ability of an individual to communicate with the rest of the population is so important
that any mutation introducing a sufficiently incompatible innovation is likely to die out in
spite of any other advantage it might carry.

In the second half of this chapter, all restrictions on B are lifted. It turns out that
for a range of parameter settings, the two UGs are each stable against invasion by the
other. Sufficient conditions on the parameters to imply that homogeneous populations are
stable are derived in Section 5.4. In light of the discussion of Section 5.3.7, this situation
is important as it describes when a mutated UG is too different from the existing UG
to survive long. Section 5.4.1 is a simplified form of the proof in the case of two highly
symmetric UGs, and Section 5.4.2 is the complete proofs for general parameter settings. A
brief discussion of these results appears in Section 5.4.3.

Finally, in Section 5.5, we draw some conclusions and indicate directions for further
research.

5.2. The model

In this chapter, we will use the language dynamical equation with multiple universal gram-
mars, as described in (1.3.5). The variables of primary interest are the fractions of the
population with UK , denoted yK,

(5.2.1) yK =

n
∑

j=1

xj,K .
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For ease of notation, we also define variables for the fraction speaking Gj ,

(5.2.2) wj =

N
∑

K=1

xj,K .

The language dynamical equation for multiple universal grammars is

F = Bw,

φ = wT Bw,

ẋj,K =
n
∑

i=1

Fixi,KQi,j,K − φxj,K.

(5.2.3)

Section 5.3 assumes two UGs with two grammars each and a particular form for B, and
deals with these questions: Under what circumstances are there stable fixed points with
yK = 1, thus yielding exclusion or dominance? What about stable fixed points where y1

and y2 are both strictly positive, yielding coexistence?

Section 5.4 considers a completely general B matrix. This is a much harder problem,
so we focus only on those population states where everyone has the same UG: Suppose
yK = 1 − ε, that is, the population state contains a small invasion. Does it tend back to
yK = 1? If so, then the set of all states with yK = 1 forms an attracting set, and UK is stable
against invasion by the other UGs in the model. Thus the dynamics of the yK variables will
be crucial. Since Q is row stochastic, the expression for ẏK simplifies considerably, leaving
just

(5.2.4) ẏK =
∑

i

Fixi,K − φyK .

The remarkable fact about 5.2.4 is that Q has disappeared. The learning process still
influences the dynamics of yK in that it steers the xi,K . However, as will be shown in
Section 5.4, there is the possibility that the overall behavior of the yK ’s, and hence the
stabilities of U1 and U2, can sometimes be determined without reference to Q.

5.3. A three-dimensional case with some symmetry

In this section, we analyze a special case of the dynamical system in three dimensions with
enough symmetry that it only has four free parameters. We assume that there are two
UGs and four grammars, where U1 allows G1 and G2, and U2 allows G3 and G4. The four
main dependent variables are x1,1, x2,1, x3,2 and x4,2, and the other xj,K are fixed at zero.
With the constraint that the population sums to 1, there are only three degrees of freedom,
and we will impose some symmetry on the parameter settings to make a nearly complete
analysis possible. Since there are only two UGs, we may restrict our attention to y1 as
y2 = 1 − y1. This system turns out to exhibit dominance, exclusion, and coexistence, and
the remainder of this section is devoted to locating all possible fixed points, using linear
stability analysis, and determining which parameter settings show which behavior.
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5.3.1. Parameter settings. In this section, we will assume that the payoff matrix B is
based on a grammar similarity matrix A, where Ai,j is the probability that a sentence spoken
at random from Gi can be parsed by a speaker of Gj , and B = (A+AT )/2. A fully general
symmetric B matrix for four unambiguous grammars would have six free parameters, as it
has 1s down the diagonal and satisfies BT = B for a total of six degrees of freedom. We
therefore make the following simplifying assumption on the form of B:

(5.3.1) B =









1 b1 b2 b2

b1 1 b2 b2

b2 b2 1 b1

b2 b2 b1 1









The parameter b1 represents how compatible each UG is with itself. A high value indicates
that the two possible grammars are very similar and a low value indicates that they are very
different. The parameter b2 represents how compatible the two UGs are with each other.
A high value indicates that they are similar, and a low value means they are very different.

A fully general Q matrix would have the form

(5.3.2) Qi,j,1 =









q1 1 − q1 0 0
1 − q2 q2 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗









, Qi,j,2 =









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 q3 1 − q3

0 0 1 − q4 q4









,

with four free parameters. Some entries of Q are filled by ∗ because they are always
multiplied by some xj,K that is restricted to be 0, hence, their exact value does not influence
the dynamical system. As an additional simplification, we will assume

q2 = q1 and q4 = q3,

and the remainder of this section will focus on the learning parameters q1 and q3, which are
the reliabilities of the learning algorithms of U1 and U2 respectively.

5.3.2. New coordinates. To make this dynamical system easier to analyze, we will
change coordinates so that its symmetry is more readily apparent. The original variables
xj,K will be called simplex coordinates. These three new variables will be called box coordi-
nates:

r =
x2,1 − x1,1

x2,1 + x1,1
,−1 ≤ r ≤ 1,

s =
x4,2 − x3,2

x4,2 + x3,2
,−1 ≤ s ≤ 1,

z = x1,1 + x2,1 = y1, 0 ≤ z ≤ 1.

(5.3.3)

The balance between G1 and G2 is represented by r. Likewise, the balance between G3 and
G4 is represented by s. Since z = y1, it represents the fraction of the population with U1.
These three pieces of information are enough to identify all possible population states. The



5.3. A three-dimensional case with some symmetry 75

reverse change of coordinates is:

x1,1 =

(

1 − r

2

)

z,

x2,1 =

(

1 + r

2

)

z,

x3,2 =

(

1 − s

2

)

(1 − z),

x4,2 =

(

1 + s

2

)

(1 − z).

(5.3.4)

It is worth noting that the change of coordinates is singular. It expands the simplex in
xj,K coordinates into a box in (r, s, z) by blowing up the edges X1,1X2,1 and X3,2X4,2 into
squares, as illustrated in Figure 5.3.1. This singularity does cause some small problems in
the fixed point analysis that follows, but they are essentially cosmetic, and will be pointed
out as they arise.

(a)
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r

Figure 5.3.1. The singular change of coordinates. (a): The planes given by r = 0 and
s = 0 in (r, s, z) or box coordinates. (b): The corresponding sets in simplex coordinates.
Note that the top edge of the simplex, where y1 = 1, corresponds to a square in box
coordinates. Similarly for the bottom edge, where y1 = 0.

In these new coordinates, the dynamical system (5.2.3) becomes

ṙ =
1

2
r(−4b2(1 − q1)(1 − z) − (3 + b1 − 4q1)z − (1 − b1)r

2z),

ṡ =
1

2
s(−4b2(1 − q3)z − (3 + b1 − 4q3)(1 − z) − (1 − b1)s

2(1 − z)),

ż =
1

2
z(1 − z)((1 − b1)(r

2z − s2(1 − z)) − (1 + b1 − 2b2)(1 − 2z)).

(5.3.5)

From this form, it is clear that the planes given by r = 0 and s = 0 are invariant under
the dynamics, as are the sets where z = 0 or z = 1. Once the fixed points are located, the
behavior of the dynamical system will be determined by focusing on these invariant planes.

5.3.3. Locating the fixed points. This system has a lot of fixed points, and to keep
them straight, each one will be given a subscript. So for example, by looking at (5.3.5),
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several fixed points are obvious. If we assume r = 0 and s = 0, then ṙ = 0, ṡ = 0, and ż is
a cubic polynomial in z, so there are exactly these three fixed points:

(rT0, sT0, zT0) = (0, 0, 1),

(rB0, sB0, zB0) = (0, 0, 0),

(rC0, sC0, zC0) =

(

0, 0,
1

2

)

.

(5.3.6)

For reference, the T subscript means “top,” B means “bottom,” and C means “center.”
These three fixed points always exist.

The remaining fixed points exist only for certain values of the four parameters. The
complete conditions on b1, b2, and q3 for the existence of all fixed points will be derived in
Section 5.3.4. The first step is to develop expressions for all the other fixed points, and it
turns out that they all involve products of certain repeated linear expressions in q1 and q3.
For simplicity of notation, we will name these linear expressions1 as follows:

(5.3.7)

A = 1 + b1 − 2b2,

B = 4b2q3 − 1 − b1 − 2b2, qB =
1 + b1 + 2b2

4b2
,

C = 4q3(1 + b2) − 3 − b1 − 4b2, qC =
3 + b1 + 4b2

4(1 + b2)
,

D = 2q3 − b2 − 1, qD =
1 + b2

2
,

E = 4q3(1 − b2) − (1 − b1), qE =
1 − b1

4(1 − b2)
,

F = (2 + 4b2)q3 − 2 − b1 − 3b2, qF =
2 + b1 + 3b2

2 + 4b2
,

G = 4q3 − 3 − b1, qG =
3 + b1

4
,

B′ = 4b2q1 − 1 − b1 − 2b2, qB′ = qB ,

C ′ = 4q1(1 + b2) − 3 − b1 − 4b2, qC′ = qC ,

D′ = 2q1 − b2 − 1, qD′ = qD,

E′ = 4q1(1 − b2) − (1 − b1), qE′ = qE ,

G′ = 4q1 − 3 − b1, qG′ = qG.

The signs of these expressions will be important, as most of the fixed points have a coordi-
nate that is a square-root of some product of them, so it will only exist when those products
are positive. These expressions were selected to follow the convention that they are negative
if q3 or q1 is small. The value of q3 for which B = 0 will be called a turning point and is

1It simplifies the notation greatly to use single letters for these expressions, however, we are starting to run out of
letters. Rather than choose an odd collection of the remainder of the alphabet, we will use A through G for these

constants and no longer refer in this section to the matrices A and B or the vector F as used in as used in Section 5.2
as they are no longer needed, and the constant G here can be distinguished from grammar Gj by the presence of a
subscript.
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denoted qB. Turning points for the other expressions (except A) are defined similarly, and
they will be used extensively in determining which fixed points exist for which parameter
values.

If we look for additional fixed points with z = 0, then ż = 0 automatically, and ṙ =
−2b2(1 − q1) which forces r = 0. We get a cubic polynomial

ṡ =
1

2
s(−(3 + b1 − 4q3) − (1 − b1)s

2),

one root of which is s = 0 which has already been covered. The other two roots yield two
more fixed points,

(rB1, sB1, zB1) =

(

0,

√

G

1 − b1
, 0

)

,

(rB2, sB2, zB2) =

(

0,−
√

G

1 − b1
, 0

)

,

(5.3.8)

that exist when G ≥ 0.

Similarly, the assumption z = 1 yields two more fixed points that exist when G ′ ≥ 0:

(rT1, sT1, zT1) =

(

√

G′

1 − b1
, 0, 1

)

,

(rT2, sT2, zT2) =

(

−
√

G′

1 − b1
, 0, 1

)

.

(5.3.9)

Assuming r = 0, s 6= 0, z 6= 0, z 6= 1, there are two more fixed points which will be
indicated by subscripts S1 and S2. To find them, we cancel some factors from the equations
ṡ = 0 and ż = 0 to arrive at the system

0 = (1 − b1)s
2(1 − z) + 4b2(1 − q3)z + (3 + b1 − 4q3)(1 − z),

0 = −(1 − b1)s
2(1 − z) − (1 + b1 − 2b2)(1 − 2z).

The sum of these two equations is linear in z with no s, and has a unique root. Substituting
this value of z back into either of the preceding equations yields two solutions for s, so we
find a total of two new fixed points:

(rS1, sS1, zS1) =

(

0,

√

AC

(1 − b1)(−B)
,
2D

E

)

,

(rS2, sS2, zS2) =

(

0,−
√

AC

(1 − b1)(−B)
,
2D

E

)

.

(5.3.10)

It will be necessary to know the parameter values for which each fixed point exists, so it is
useful to observe that

1 − zS1 = 1 − 2D

E
= −B

E
.

The S1 and S2 fixed points only exist when zS1 > 0 and 1 − zS1 > 0.
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Similarly, by assuming s = 0, we find two more fixed points with associated subscripts
R1 and R2:

(rR1, sR1, zR1) =

(
√

AC ′

(1 − b1)(−B′)
, 0, 1 − 2D′

E′

)

,

(rS2, sS2, zS2) =

(

−
√

AC ′

(1 − b1)(−B′)
, 0, 1 − 2D′

E′

)

.

(5.3.11)

There are four more fixed points that come from assuming that r, s, and z are nonzero,
and z 6= 1. These will be given subscripts C1, C2, C3, and C4. Setting the dynamical
system in (5.3.5) to zero and canceling factors of r, s, z and 1 − z, we get a system of
equations

0 = −4b2(1 − q1)(1 − z) − (3 + b1 − 4q1)z − (1 − b1)r
2z,(5.3.12a)

0 = −4b2(1 − q3)z − (3 + b1 − 4q3)(1 − z) − (1 − b1)s
2(1 − z),(5.3.12b)

0 = (1 − b1)s
2(1 − z) − (1 − b1)r

2z + (1 + b1 − 2b2)(1 − 2z).(5.3.12c)

Taking (5.3.12b) plus (5.3.12c) minus (5.3.12a) yields a linear equation in z with no r or s
which yields the unique root

(5.3.13) zC1 = zC2 = zC3 = zC4 =
1 − 2q3 − b2(1 − 2q1)

2(1 − b2)(1 − q1 − q3)
.

Substituting this value back into the system allows us to solve for the remaining coordinates,

rC1 =

√

(4q1 − 3 − b1)zC1 − 4b2(1 − q1)(1 − zC1)

(1 − b1)zC1
,

rC4 = rC1, rC2 = rC3 = −rC1,

sC1 =

√

(4q3 − 3 − b1)(1 − zC1) − 4b2(1 − q3)zC1

(1 − b1)(1 − z)
,

sC2 = sC1, sC3 = sC4 = −sC1.

(5.3.14)

For reference, the labels of the fixed points with r = 0 are illustrated in Figure 5.3.2,
which is the cross-section of the simplex corresponding to r = 0.

5.3.4. Linear stability analysis in the invariant planes. Now that we have a list of
all possible fixed points, what remains is to find the parameter settings for which they exist
and whether they are sinks, sources, or saddles. The fact that the dynamical system has
two invariant planes, given by r = 0 and s = 0 respectively, simplifies the analysis as we
can focus on one plane at a time, then assemble the pieces into complete phase portraits.
The phase portraits for the r = 0 plane will be developed in three groups, based on the
ordering of b2, b2

2, and (1 + b1)/2. The bifurcation values of q3 are determined by looking
at the turning points of the linear expressions A through G from (5.3.7). The order in
which they occur as q3 increases is determined by several propositions relating them to the
ordering of b2, b2

2 and (1+ b1)/2. The type of bifurcation that occurs at each of these values
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T0

C0S1 S2

B1 B0 B2

Figure 5.3.2. Labeled fixed points in the r = 0 plane. These are the approximate
positions of these fixed points when they exist. The triangle is a cross-section of the
simplex as shown in Figure 5.3.1.

is determined by which fixed points are non-hyperbolic there. The analysis for the s = 0
plane is similar and will not be presented here.

5.3.4.1. Local analysis of the fixed points. Since we are working in box coordinates with r
fixed at zero, each fixed point has a 2 by 2 Jacobian matrix, which will be expressed in
terms of the unit vectors {ŝ, ẑ} which point rightward and upward, respectively.

At B0, the Jacobian matrix is diagonal, and the eigenvalues can be read off as G/2 for
the eigenvector ŝ and −A/2 for the eigenvector ẑ. For B1 and B2, the Jacobian is triangular,
and the eigenvalues are −G and −D. For q3 < qG, only B0 exists on the bottom, and it
is stable in the ŝ direction. As q3 increases through qG, there is a pitchfork bifurcation
resulting in the creation of B1 and B2. For the central fixed point C0, the Jacobian is also
diagonal, with eigenvalues C/4 for ŝ, and A/4 for ẑ. The top fixed point T0 also has a
diagonal Jacobian, with eigenvalues G/2 for ŝ and −A/2 for ẑ. The ŝ direction does not
affect the stability of T0 because the singular change of coordinates from (r, s, z) to simplex
variables collapses the ŝ direction.

The S1 and S2 fixed points do not exist for all values of the parameters. When they
do exist, they do not have triangular Jacobians. Rather than determine their eigenvalues
directly, we use the fact that the stability of a fixed point in a planar dynamical system can
be determined from the trace and determinant of its Jacobian:

Lemma 5.3.1. Let d and t be the determinant and trace of the Jacobian matrix at a fixed
point x̄ in a planar dynamical system. If d < 0, then x̄ is a saddle. If d > 0 and t < 0, then
x̄ is a sink. If d > 0 and t > 0, then x̄ is a source.

Proof. See [70] p. 137. �

The fixed points S1 and S2 happen to have the same determinant, ABCD/E2, and
the same trace, −AF/E. It is worth noting that S1 and S2 are on the bottom line when
zS1 = zS2 = 0, which happens when D = 0 and implies that they coincide with B1 and
B2. This means that as q3 increases through qD, D must change sign, and S1 and S2 must
pass through B1 and B2 in a pair of transcritical bifurcations. Likewise, S1 and S2 are on
the vertical line s = 0 when sS1 = sS2 = 0. This happens when C = 0 or A = 0. The case
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when A = 0 is degenerate and non-generic, so it will not be analyzed here. If C = 0, then
S1 and S2 coincide with C0, which implies a pitchfork bifurcation.

5.3.4.2. Propositions for turning points. To determine which fixed points exist for which
parameter values and what their stabilities are, we will use the following propositions to
determine the signs of A, B, C, D, E, F , and G. Each of these expression except A can
be thought of as a linear function of q3 with a single turning point at which the expression
changes sign. These propositions determine the order of those turning points from the
ordering of b2, b2

2, and (1 + b1)/2.

Proposition 5.3.2. sgn qB − 1 = sgnA.

Proof.

sgn qB − 1 =
1 + b1 + 2b2

4b2
− 1

= sgn 1 + b1 + 2b2 − 4b2

= sgn 1 + b1 − 2b2.

�

Proposition 5.3.3. sgn qB − qF = sgn 1 + b1 − b2
2.

Proof.

sgn qB − qF = sgn
1 + b1 + 2b2

4b2
− 2 + b1 + 3b2

2 + 4b2

= sgn(1 + b1 + 2b2)(1 + 2b2) − 2b2(2 + b1 + 3b2)

= sgn 1 + b1 − b2
2.

�

Proposition 5.3.4. sgn qF − qC = sgn 1 + b1 − 2b2
2.

Proof.

sgn qF − qC = sgn
2 + b1 + 3b2

2 + 4b2
− 3 + b1 + 4b2

4(1 + b2)

= sgn 2(1 + b2)(2 + b1 + 3b2) − (3 + b1 + 4b2)(1 + 2b2)

= sgn 1 + b1 − 2b2
2.

�

Proposition 5.3.5. sgn qC − qD = sgn 1 + b1 − 2b2
2.

Proof.

sgn qC − qD = sgn
3 + b1 + 4b2

4(1 + b2)
− 1 + b2

2

= sgn 3 + b1 + 4b2 − 2(1 + b2)
2

= sgn 1 + b1 − 2b2
2.

�



5.3. A three-dimensional case with some symmetry 81

Proposition 5.3.6. sgn qD − qE = sgn 1 + b1 − 2b2
2.

Proof.

sgn qD − qE =
1 + b2

2
− 1 − b1

4(1 − b2)

= sgn 2(1 − b2
2) − (1 − b1)

= sgn 1 + b1 − 2b2
2.

�

Proposition 5.3.7. sgn qG − qD = sgnA.

Proof.

sgn qG − qD = sgn
3 + b1

4
− 1 + b2

2
= sgn 3 + b1 − 2 − 2b2

= sgn 1 + b1 − 2b2.

�

Proposition 5.3.8. qC ≥ qG.

Proof.

sgn qC − qG = sgn
3 + b1 + 4b2

4(1 + b2)
− 3 + b1

4

= sgn 3 + b1 + 4b2 − (3 + b1)(1 + b2)

= sgn b2(1 − b1) = 0 or 1.

Note that the inequality is strict if we assume strict inequalities on b1 and b2. That is, if
0 < b1 < 1 and 0 < b2 < 1, then qC > qG. �

We would like to identify the bifurcations that happen as q3 increases from 0 to 1. From
these propositions, it is clear that the order in which the various expressions A through G
change sign depends on the relative sizes of b1 and b2. In particular, we have three cases
depending on where (1 + b)/2 lies with respect to b2 and b2

2. We will break up the analysis
into these three cases and analyze them separately.

5.3.4.3. First group of phase portraits. For now, assume that

(5.3.15) b2 >
1 + b1

2
> b2

2,

which is a case of moderate similarity between the two universal grammars. In what follows,
we will discuss what happens to all the fixed points in the r = 0 plane as q3 increases from
0 to 1. With these assumptions, A < 0, so the central fixed point C0 is always vertically
stable. Also, we have the ordering of turning points qE < qD < qC < qB < 1 and qG < qD.

This information is enough to conclude that the S1 and S2 fixed points exist when
qD < q3 < qC , meaning that sS1 and sS2 are real valued, and 0 < zS1 < 1. That range
for q3 is determined by looking at the table in Figure 5.3.3 for regions where s2

S1, zS1 and
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1 − zS1 are all positive. The signs of these expressions are determined from the signs of A
through G which depend on whether q3 is above or below the corresponding turning point.
When the S1 and S2 fixed points exist, the determinant of the Jacobian there is negative,
so they are saddles.

q3 s2
S1 = − AC

B
zS1 = 2D

E
1 − zS1 = − B

E
det = ABCD

2E1
+ + −qB
− + +qC
+ + + −

qD + − +
qE + + −
0

Figure 5.3.3. Sign table for the first set of phase portraits, assuming b2 > (1+b1)/2 > b2
2.

The value of q3 increases from 0 at the bottom to 1 at the top.

The B1 and B2 fixed points exist for q3 > qG, and since qG < qD, they always exist
when S1 and S2 exist. Furthermore, they are saddles while qG < q3 < qD, but they become
sinks as q3 passes through qD. In fact, zS1 = zS2 = 0 at q3 = qD, which means that S1 and
S2 pass through B1 and B2 in transcritical bifurcations.

At q3 = qC , the fixed points S1 and S2 collide with C0 because s2
S1 = s2

S2 = 0. Since
they wink out of existence at qC , this is a pitchfork bifurcation.

The possible phase portraits for the assumptions in (5.3.15) are depicted in Figure 5.3.4.
The pictures here are produced by working in the plane r = 0 with (s, z) coordinates that
cover a rectangular cross section in the box-shaped phase space of Figure 5.3.1 (a), then
transforming the result into simplex coordinates yielding a triangular cross section of the
simplex phase space of Figure 5.3.1 (b). The stability of each fixed point is drawn with
respect to the two eigenvalues of its Jacobian whose eigenvectors lie in that plane. In the
full simplex, each of these fixed points has a third eigenvalue whose eigenvector points out
of the restricted phase space. In Section 5.3.6 phase portraits are drawn for the full phase
space and some fixed points depicted here are drawn there with a different stability symbol
because that third eigenvalue becomes relevant.

An additional complexity comes from the fact that the change of coordinates is singular.
In box coordinates, the fixed points on the top line of the simplex are often stable in the ŝ
direction, but the entire plane z = 1 collapses into a line in simplex coordinates and the ŝ
direction disappears. This collapse appears in the plane r = 0 in that the line z = 1 collapses
down to a point (the apex of the triangle in these figures) and the ŝ direction disappears
there. So, in the following diagrams, the eigenvalue associated with the eigenvector ŝ is
ignored when determining the stability of T0. It sometimes shows up as a saddle in (s, z)
coordinates but is drawn as a source in the simplex because no orbit in the simplex converges
to it.



5.3. A three-dimensional case with some symmetry 83

1
Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

q3 = 17
18

qC Pitchfork bifurcation: S1 and S2 merge with C0.

q3 = 10
11

qD Transcritical bifurcation: S1 and S2 cross B1 and B2.

q3 = 8
9

qG Pitchfork bifurcation: B1 and B2 split from B0.

q3 = 3
4

0

Figure 5.3.4. Fist set of possible phase portraits for the plane r = 0 assuming b2 >
(1 + b1)/2 > b2

2. The value of q3 increases from 0 at the bottom to 1 at the top. There
is one phase portrait for each range of q3 between important turning points. See text for
a note about the T0 fixed points, which are saddles in (s, z) coordinates and sources in
simplex coordinates. For these pictures, b1 = 1/2 and b2 = 4/5.
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5.3.4.4. Second group of phase portraits. For this group of phase portraits, we assume

(5.3.16) b2 > b2
2 >

1 + b1

2
.

Here, the two UGs are highly similar. With these assumptions, we again have A < 0, so
the central fixed point C0 is always vertically stable. This time, 1 + b1 − 2b2

2 < 0, so the
ordering of turning points is qB < qF < qC < qD < qE and qG < qC . The sign table is
given in Figure 5.3.5, and indicates that the S1 and S2 fixed points exist exactly when
qC < q3 < qD and they are sinks. At q3 = qC , both S1 and S2 coincide with C0, so there
is a pitchfork bifurcation there. Since qG < qC , the fixed points B1 and B2 already exist
when S1 and S2 come into existence. At q3 = qD, S1 and S2 pass through B1 and B2
because zS1 = zS2 = 0, so there is a pair of transcritical bifurcations there.

q3 s2
S1 = − AC

B
zS1 = 2D

E
1 − zS1 = − B

E
det = ABCD

2E
tr = − AF

E
1

+ + −qE
+ − +qD
+ + + + −

qC − + +
qF − + +
qB + + −
0

Figure 5.3.5. Sign table for the second set of phase portraits, assuming b2 > b2
2 >

(1 + b1)/2. The value of q3 increases from 0 at the bottom to 1 at the top.
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1
Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

q3 = 46
49

qD Transcritical bifurcation: S1 and S2 cross B1 and B2.

q3 = 29
31

qC Pitchfork bifurcation: S1 and S2 split from C0.

q3 = 9
10

qG Pitchfork bifurcation: B1 and B2 split from B0.

q3 = 3
4

0

Figure 5.3.6. Second set of possible phase portraits for the plane r = 0 assuming b2 >
b2
2 > (1 + b1)/2. The value of q3 increases from 0 at the bottom to 1 at the top. There

is one phase portrait for each range of q3 between important turning points. See text for
a note about the T0 fixed points, which are saddles in (s, z) coordinates and sources in
simplex coordinates. For these pictures, b1 = 1/2 and b2 = 7/8.
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5.3.4.5. Third group of phase portraits. For this final group of phase portraits, we assume

(5.3.17)
1 + b1

2
> b2 > b2

2,

so the two UGs are dissimilar. Here, A > 0, so C0 is vertically unstable and the order of
turning points is qE < qD < qG < qC < qF < 1 < qB. The sign table for S1 and S2 is given
in Figure 5.3.7, indicates that these two fixed points only exist when q3 > qC , and they are
always saddles. In this case, there is no transcritical bifurcation where S1 and S2 cross B1
and B2. The phase portraits are displayed in Figure 5.3.8.

q3 s2
S1 = − AC

B
zS1 = 2D

E
1 − zS1 = − B

E
det = ABCD

2E1
+ + + −qC
− + +qD
− − +

qE − + −
0

Figure 5.3.7. Sign table for the third set of phase portraits, assuming (1+b1)/2 > b2 > b2
2.

The value of q3 increases from 0 at the bottom to 1 at the top.
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1
Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

q3 = 16
17

qC Pitchfork bifurcation: S1 and S2 split from C0.

q3 = 8
9

qG Pitchfork bifurcation: B1 and B2 split from B0.

q3 = 3
4

0

Figure 5.3.8. Third set of possible phase portraits for the plane r = 0 assuming (1 +
b1)/2 > b2 > b2

2. The value of q3 increases from 0 at the bottom to 1 at the top. There
is one phase portrait for each range of q3 between important turning points. For these
pictures, b1 = 1/2 and b2 = 1/3.
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5.3.5. Out-of-plane stability and the remaining four fixed points. The goal of this
analysis is to determine parameter values for which the overall dynamical system exhibits
dominance, exclusion, and coexistence. Now that we have a complete picture of what
happens in the invariant planes r = 0 and s = 0 for different parameter values, the next
step is to determine the out-of-plane stabilities of the fixed points in these invariant planes.
The analysis for the plane r = 0 will be carried out here. The s = 0 plane is similar, and
will not be explicitly analyzed.

The dynamical system has the property that the Jacobian matrix for any point where
r = 0 has the form





∂ṙ
∂r

∣

∣

r=0
0 0

0 ∗ ∗
0 ∗ ∗





where the ∗ entries may be non-zero. Any matrix of this form has an eigenvector (1, 0, 0)
purely in the r̂ direction whose associated eigenvalue is

λr =
∂ṙ

∂r

∣

∣

∣

∣

r=0

= −2b2(1 − q1) +

(

4q1 − 3 − b1

2
+ 2b2(1 − q1)

)

z.

(5.3.18)

This eigenvalue determines the out-of-plane stability of a fixed point in the plane r = 0. It
has a single sign change at z = zP where

(5.3.19) zP =
4b2(1 − q1)

4q1(1 − b2) + 4b2 − 3 − b1
.

If z = 0, then λr = −2b2(1 − q1) < 0. What this means is that there is a horizontal line on
the plane r = 0 at z = zP , and any fixed points below this line are stable in the r̂ direction
and any fixed points above this line are unstable in the r̂ direction. If the other parameters
are held fixed and q1 increases from 0 to 1, then zP sweeps through the plane from top
to bottom. The line passes through the C0 fixed point when zP = 1/2, which occurs at
q1 = qC , corresponding to a pitchfork bifurcation in the plane s = 0. When the line passes
through S1 and S2, the fixed points C1 and C2 coincide with S1, and C3 and C4 coincide
with S2. To see this, observe that if zP = zS1, then

q1 =
−3 − b2 + b2

2(4 − 8q3) + 6q3 + b1(−1 + b2 + 2q3)

2(−2 + (−1 + b1)b2 + b2
2(2 − 4q3) + 4q3)

.

With some further simplification and substitution this value for q1, it follows that zC1 = zS1

and rC1 = 0, so C1 coincides with S1. The collisions of the other fixed points follow
symmetrically. Thus, there is a symmetric pair of pitchfork bifurcations when zP = zS1.

The expressions for the four fixed points C1, C2, C3, and C4 are fairly complicated and
are not conducive to further symbolic results. So in the next section, we will pick a number
of specific values for the four parameters and assemble the phase portrait from the results
so far.
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5.3.6. Some sample phase portraits. For fixed b1, b2, q1, and q3, the locations and
stabilities of all fixed points can be determined numerically, and the results drawn in a 3-
dimensional phase portrait. As stated earlier, the calculations are easiest in box coordinates,
but the fixed points on the bottom and top edges of the simplex have a misleading eigenvalue
corresponding to the eigenvector (r̂ or ŝ, respectively) that is introduced by the singular
transformation from the simplex to box coordinates. So, in the following pictures, those
eigenvalues are ignored when selecting a stability symbol for the fixed points on the top and
bottom edges.

First, Figure 5.3.9 shows some complete phase portraits for the first set of parameter
values where the two UGs are moderately similar,

b2 >
1 + b1

2
> b2

2.

Here, q3 is held constant and q1 increases, illustrating some bifurcations in the invariant
plane s = 0. The bottom picture illustrates stable coexistence, as there is a sink in the
middle of the simplex where both universal grammars take up half the population. The
middle picture illustrates a case where in addition to stable coexistence, U1 can take over
the population in a stable manner. The two saddles on the top line in the bottom picture
become sinks in the middle picture through a pair of transcritical bifurcations, enabling the
model to exhibit this new behavior. The top picture, which occurs after the two interior
saddles, R1 and R2, collide with the sink in the middle, C0. This bifurcation destroys the
coexistence equilibrium, leaving a situation where U1 dominates.

The second group of phase portraits, with parameter values

b2 > b2
2 >

1 + b1

2
,

exhibits only an asymmetric form of stable coexistence. The pictures in Figure 5.3.10
illustrate several different cases. Instead of a sink at C0, the model has sinks at R1, R2,
S1, and S2, so both universal grammars coexist stably, but asymmetrically. Here, the two
UGs are highly similar.

For the third group of parameter values,

1 + b1

2
> b2 > b2

2,

the two UGs are dissimilar, and all of the interior fixed points on the invariant planes
are saddles or sources. The remaining four fixed points C1, C2, C3, and C4 appear to
be saddles in general. They are definitely saddles for the cases depicted in Figure 5.3.11.
All of these pictures are different kinds of exclusion, in which the population is eventually
taken over by either U1 or U2. Each sink has a basin of attraction, and the boundaries of
these basins are probably formed from the stable manifolds of the interior saddle points.
The different configurations of saddle points would then correspond to alternative ways of
forming boundaries between the basins.

5.3.7. Discussion. The case of the language dynamical equation examined in this section
exhibits dominance, competitive exclusion, and coexistence of universal grammars. Further-
more, all three kinds of behavior appear to be generic. The complete phase portraits shown
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1

q1 = 17
18

qC Pitchfork bifurcation:
R1 and R2 merge with C0.

q1 = 10
11

qD Transcritical bifurcation:
R1 and R2 cross T1 and T2.

q1 = 8
9

qG Pitchfork bifurcation: T1
and T2 split from T0.

Figure 5.3.9. Complete 3-dimensional phase portraits. For these pictures, b1 = 1/2,
b2 = 4/5, and q3 = 3/4. The value of q1 increases from bottom to top.
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qD

q3 = 29
31

qC Pitchfork bifurcation:
S1 and S2 split from C0

q3 = 8
9

qG Pitchfork bifurcation:
B1 and B2 split from B0.

q3 = 3
4

0

Figure 5.3.10. Complete 3-dimensional phase portraits. For these pictures, b1 = 1/2,
b2 = 7/8, and q1 = 29/31. The value of q3 increases from bottom to top.
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q1 = 16
17

q3 = 16
17

q1 = 16
17

q3 = 8
9

q1 = 8
9

q3 = 3
4

Figure 5.3.11. Complete 3-dimensional phase portraits. For these pictures, b1 = 1/2 and
b2 = 1/3, and q1 and q3 both vary.

so far appear to be structurally stable, meaning that all fixed points continue to exist with
the same stability type under perturbations of the parameters. In particular, the existence
of stable fixed points where the two universal grammars coexist is not an artifact of the
symmetric parameter settings. To illustrate this fact, Figure 5.3.12 shows a perturbation of
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the center phase portrait in Figure 5.3.9. The stable fixed point inside the simplex persists
despite the broken symmetry. UG is normally thought of as a universal trait, shared by all
human beings, but according to this model, it is possible for multiple UGs to exist stably
within a population.

B =









1 0.51 0.81 0.82
0.51 1 0.77 0.79
0.81 0.77 1 0.49
0.81 0.79 0.49 1









,

Qi,j,1 =









0.9 0.1 0 0
0.105 0.895 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗









, Qi,j,2 =









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0.75 0.25
0 0 0.26 0.74









.

Figure 5.3.12. Complete 3-dimensional phase portrait for an asymmetric case.

The results of this section provide some important intuition for thinking about mutations
that affect UG, and in particular, how selection and mutation might improve UG over
time. Imagine that we have a population in which everyone has the same UG, say, U1.
In the model, this corresponds to a population state on the top edge of the simplex. The
introduction of a mutant with a modified UG, say U2, corresponds to a slight perturbation
away from the edge. Whether this mutation dies out or propagates determines whether or
not it can be incorporated into the population.

Suppose first that U2 is essentially the same as U1, that is, the mutation is in some
non-critical area and universal grammar is barely affected. This situation appears in Fig-
ure 5.3.10. Homogeneous populations are unstable, and the introduction of a mutant is
likely to lead to a mixed population. From there, factors not included in this model may
guide the population to choose one UG or the other, but the important conclusion is that
modifications to UG that are highly compatible with existing grammars do not die out
immediately; in fact, they may persist indefinitely.
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Now suppose that U2 is moderately similar to U1, as depicted in Figure 5.3.9. In this
case, the outcome depends on the learning algorithm associated with U1 and the linguistic
environment. Grammar acquisition may be sufficiently accurate that the population is
stable against invasion by U2, as in the top two pictures. If it is error prone as in the
bottom picture, the population could settle into a mixed state. Thus, changes to UG
introducing minor incompatibilities may or may not die out immediately.

The final case is that of a drastic change, in which U2 is significantly different from
U1. This situation, shown in Figure 5.3.11, has the property that homogeneous populations
are always stable against invasion, so mutations introducing large incompatibilities die out
immediately.

The lesson here is that an innovative form of communication is useless unless it is com-
patible with the existing population. A mutant with a significantly better but incompatible
universal grammar would be unable to realize any benefit from it because there would be
no one to talk to, and the innovation would die out.

With these comments in mind, we may describe the continuing evolution of UG in
terms of an annealing process, with learning error analogous to temperature. Sometimes,
the learning error is relatively high and allows moderately incompatible mutations to survive
with high probability. This would allow the population to explore the fitness landscape fairly
quickly. At other times, learning might become more reliable either through improvements
to the internal algorithm for grammar acquisition or through changes to the linguistic
environment. Under these circumstances, moderately incompatible mutations are weeded
out because the benefit from communicative compatibility would in general out weigh the
benefit of further large changes, but UG could still change through incremental innovations.

5.4. Partial results for the general case

The goal of this section is to return to the original form of the language dynamical equation
with multiple universal grammars from Section 5.2 and obtain some theoretical results
without making any simplifying assumptions about the parameter matrices B and Q. In
its most general form, this model has the property that the learning algorithm does not
explicitly appear in the time derivative of the size of the sub-population with a given UK ,
shown in (5.2.4). This observation motivates a series of calculations for the case of two
universal grammars with two grammars each that yields a set of sufficient conditions for
exclusion to exist, that is, the sets of population states in which everyone has the same UG
are attracting. The point of developing this result is that the sufficient conditions consist
of six fairly simple inequalities that may be easily interpreted in a number of special cases,
thus building mathematical intuition for when competitive exclusion is inevitable.

An attracting set [26] is a closed invariant subset of the phase space surrounded by
a neighborhood in which every trajectory tends to the set in forward time. As simple
calculation using (5.2.4) shows that ẏK = 1 if yK = 0, so for each K the set of points where
yK = 1 is closed and invariant. The argument that it is attracting is based on determining
some geometric properties of a surface in the simplex. This surface divides the simplex
into three regions, one in which all populations tend toward the top edge where U1 takes
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over, one in which all populations tend toward the bottom edge where U2 takes over, and
an intermediate region. To illustrate the argument, we will first analyze a case with highly
symmetric parameter settings, then generalize the argument to the case of asymmetric
parameter settings.

5.4.1. Illustration of the null-cline argument in the case of permutation symme-

try. To illustrate the argument, consider the case where all the grammars overlap equally,
so

(5.4.1) B =









1 a a a
a 1 a a
a a 1 a
a a a 1









.

This case happens to be a specialization of the case studied in Section 5.3, so we can already
determine a great deal about it. However, it also provides an illustration of the null-cline
argument which is needed for the general case in which there are no simple expressions for
the various fixed points.

For convenience, define U(i) = K such that UK generates Gj . With that notation, the
fitness of Gj simplifies considerably into

Fj =

n
∑

i=1

Bi,jxi,U(i)

= xj,U(j) + a
∑

i6=j

xi,U(i)

= xj,U(j) + a
(

1 − xj,U(j)

)

= a + (1 − a)xj,U(j).

Likewise,

φ =

N
∑

K=1

ayK + (1 − a)

n
∑

j=1

xj,U(j)xj,K

= a + (1 − a)

n
∑

j=1

(

xj,U(j)

N
∑

K=1

xj,K

)

= a + (1 − a)

n
∑

j=1

x2
j,U(j).

There are two universal grammars, so we have two variables of interest, y1 = x1,1 +x2,1

and y2 = x3,2 + x4,2. Since y1 + y2 = 1, we need only analyze the behavior of y1. The
following proposition, describes how the limiting behavior of y1 is largely determined by the
initial population state.

Proposition 5.4.1. The simplex contains two trapping regions which are independent of
the Q matrix: Trajectories for which y1(0) > 2/3 tend to y1 = 1, and trajectories for which
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y1(0) < 1/3 tend to y1 = 0. In the region in between, the Q matrix influences whether y1

approaches 1 or 0.

Proof. As in Section 5.3.2, we change from simplex coordinates to box coordinates. Observe
that y1 = z in these new coordinates, from which it follows that

(5.4.2) ż = ẏ1 =
1

2
(1 − a)(1 − z)z(−1 − s2(1 − z) + (2 + r2)z).

To find the Q-independent trapping regions, we first look for the z null-clines. These are
the sets of points for which ż = 0. From (5.4.2) it is clear that ż = 0 if and only if z = 0,
z = 1, or z = (1 + s2)/(2 + s2 + r2). The first two cases are the upper and lower edges
of the simplex, and the third is a surface near z = 1/2. See Figure 5.4.1. Thus, ż is of
one sign above the surface and the opposite sign below. Looking at the vertical line given
by {r = 0, s = 0}, we have ż = − 1

2z(−1 + z)(−1 + 2z) which is positive for z > 1/2 and
negative for z < 1/2.

Therefore, the overall picture is that the simplex decomposes into upper and lower
trapping regions and a boundary region in the middle. If a trajectory starts above the
topmost point of the z null-cline, then ẏ1 > 0, which means y1 will increase over time until
it reaches y1 = 1. Likewise, any trajectory that starts below the bottommost point of the
surface will continue downward until y1 = 0.

To find the topmost and bottommost points, observe that the surface is saddle shaped,
so the extrema will appear on the boundaries. Define the function

h(r, s) =
1 + s2

2 + s2 + r2
,

whose graph is the surface in question. Looking on the faces of the simplex given by s = ±1,
we have h(r,±1) = 2/(3 + r2) which has a maximum at h(0,±1) = 2/3 and minima on
the edges at h(±1,±1) = 1/2. Likewise, looking on the surfaces given by r = ±1, we have
h(±1, s) = 1 − 2/(3 + s2) which has a minimum at h(±1, 0) = 1/3. Furthermore, it has
maxima on the edges at h(±1,±1) = 1/2. Therefore, if either universal grammar holds a
2/3 majority of the population, it will eventually take over regardless of the Q matrix. �

In the boundary region near the z null-cline, many orbits obey the simple rule that if
they start above the surface, they approach y1 = 1 and if they start below, they approach
y1 = 0. However, orbits may pass through the surface horizontally, thereby starting above
it but converging to y1 = 0 or starting below it but converging to y1 = 1. For example,
Figure 5.4.2 shows the values of y1 and y2 starting from a point just above the z null-cline for
which y1 → 1. However, a nearby initial condition produces the trajectories in Figure 5.4.3,
where y1 passes horizontally through the z null-cline and turns downward.

The actual surface dividing orbits that go to y1 = 1 from those that go to y1 = 0
appears to be the stable manifold of the saddle point C0 in the middle of the simplex, and
this manifold depends on Q.

The proposition implies that in this case, the learning algorithms employed by the two
universal grammars and specified by Q are largely irrelevant to determining which universal
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Figure 5.4.1. The upended simplex and z null-cline.
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a = 1/10, Qi,j,1 =









0.7 0.3 0 0
0.3 0.7 0 0
0 0 1 0
0 0 0 1









, Qi,j,2 =









1 0 0 0
0 1 0 0
0 0 0.7 0.3
0 0 0.3 0.7









Figure 5.4.2. Trajectories starting from x1,1 = 57/160 = 0.35625, x2,1 = 19/160 =
0.11875, x3,2 = x4,2 = 21/80 = 0.2625 which lies just above the z null-cline.

grammar takes over the population. As long as a certain majority of the population uses
one universal grammar, only the initial population state matters.

5.4.2. Null-cline argument in the general case. In this subsection, we extend the
null-cline argument of Section 5.4.1 to the case of fully general B and Q matrices, assuming
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Figure 5.4.3. Trajectories starting from x1,1 = 7/20 = 0.35, x2,1 = 7/60 = 0.116̄, x3,2 =
x4,2 = 4/15 = 0.26̄. Here, the trajectory passes through the z null-cline, and y1 increases,
reaches a maximum, then turns downward and tends to 0. The parameters are the same
as in Figure 5.4.2.

that there are two universal grammars, each of which admits two grammars. We first find
sufficient conditions under which the null-cline does not intersect the top and bottom edges
of the simplex. This guarantees that there are regions which lie completely above or below
it. Second, we find a condition which implies that orbits above the surface move upward,
and those below it move downward, thereby assuring that the top and bottom edges are
attracting sets.

We will allow the B matrix to be completely general, lifting even the requirement that
it be symmetric:

B =









b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44









.

This generality allows the results that follow to apply to variations of this model that might
incorporate additional information such as ambiguity into the measurement of payoff. In
what follows, more concise expressions result if the following parameters are used instead
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of the entries of B:

α0 =
1

2
(b11 + b12 + b21 + b22) α1 =

1

2
(b11 − b12 − b21 + b22)

α2 =
1

2
(b11 + b12 − b21 − b22) α3 =

1

2
(b11 − b12 + b21 − b22)

β0 =
1

2
(b13 + b14 + b23 + b24) β1 =

1

2
(b13 − b14 − b23 + b24)

β2 =
1

2
(b13 + b14 − b23 − b24) β3 =

1

2
(b13 − b14 + b23 − b24)

γ0 =
1

2
(b31 + b32 + b41 + b42) γ1 =

1

2
(b31 − b32 − b41 + b42)

γ2 =
1

2
(b31 + b32 − b41 − b42) γ3 =

1

2
(b31 − b32 + b41 − b42)

δ0 =
1

2
(b33 + b34 + b43 + b44) δ1 =

1

2
(b33 − b34 − b43 + b44)

δ2 =
1

2
(b33 + b34 − b43 − b44) δ3 =

1

2
(b33 − b34 + b43 − b44)

We will work in box coordinates again, as defined in (5.3.3). After some simplification,

(5.4.3) ż =
1

4
(−1 + z)zg(r, s, z),

where

g(r, s, z) =2
(

− β0 + δ0 + rβ2 + s(β3 − δ2 − δ3) − z(α0 − β0 − γ0 + δ0)

− rsβ1 + rz(α2 + α3 − β2 − γ3) − sz(β3 + γ2 − δ2 − δ3)

+ s2δ1 + rsz(β1 + γ1) − r2zα1 − s2zδ1

)

(5.4.4)

The form of ż in this general case is similar to the form (5.3.5) in the symmetric case, and
as before there are three z null-clines: the top (z = 1), the bottom (z = 0), and the surface
determined by g(r, s, z) = 0. This surface will be called the interior z null-cline. The goal
of this section is to determine sufficient conditions on B such that the interior z null-cline
creates trapping regions around the top and bottom edges of the simplex.

5.4.2.1. Step 1: The non-intersection constraints. The first condition is that the interior z
null-cline must not touch the top and bottom. This condition implies that there is some
space between the vertical extrema of the surface and the top and bottom edges of the
simplex. (See Figure 5.4.4.)

Proposition 5.4.2. Assume that α1 6= 0 and δ1 6= 0. Suppose further that the following
expressions are all positive:

ν1 = 4δ1(δ0 − β0 + β2) − (β1 − β3 + δ2 + δ3)
2

ν2 = 4δ1(δ0 − β0 − β2) − (β1 + β3 − δ2 − δ3)
2

ν3 = 4α1(α0 − γ0 + γ2) − (α2 + α3 + γ1 − γ3)
2

ν4 = 4α1(α0 − γ0 − γ2) − (α2 + α3 − γ1 − γ3)
2

(5.4.5)
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Figure 5.4.4. The interior z null-cline in simplex coordinates (left) and box coordinates
(right). The asymmetric B matrix used to generate these pictures is as shown.

and also that

(5.4.6) β0 − δ0 > 0 and γ0 − α0 > 0.

Then, the interior z null-cline lies strictly between the top and bottom of the simplex at a
strictly positive distance from each.

Proof. The mathematical formulation of the conclusion in box coordinates is that if −1 ≤
r ≤ 1 and −1 ≤ s ≤ 1, then g(r, s, 0) 6= 0 and g(r, s, 1) 6= 0. We proceed by proving that
g is of one sign on the bottom plane z = 0, and also of one sign on the top plane z = 1.
The technical assumptions that α1 and δ1 are nonzero eliminate some degenerate cases that
would cause division by zero in what follows.

For the bottom, we are interested in g(r, s, 0), which happens to be a quadratic form in
r and s, so the equation g(r, s, 0) = 0 must define a conic section in the plane z = 0. To
classify it, we complete the square in r and s and change variables to ρ and σ so as to put
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it in a standard form:

r =
2β2δ1 + β1(β3 − δ2 − δ3 − 2δ1ρ)

β2
1

.

s =
β2

β1
− ρ + σ.

With these new variables, the equation g(r, s, 0) = 0 becomes

−2(β0β
2
1 − β2

1δ0 − β2
2δ1 + β1β2(−β3 + δ2 + δ3))

β2
1

− 2δ1ρ
2 + 2δ1σ

2 = 0,

which is the form of a hyperbola in ρ and σ. So if we want to specify that the interior z
null-cline does not touch the bottom, it is sufficient to require that the hyperbola specified
by g(r, s, 0) = 0 lies outside the square given by −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1. (See
Figure 5.4.5.) That constraint is equivalent to requiring the expression g(r, s, 0) to be of

-4 -2 0 2 4

-4

-2

0

2

4

r

s

Figure 5.4.5. Contour plot of g(r, s, 0). Darker values are negative, lighter values are
positive. The light hyperbola is g(r, s, 0) = 0, that is, the curve where the z null-cline
intersects the plane z = 0. The square is the bottom face of the phase space. See Fig-
ure 5.4.4 for the particular B used in this illustration. This is where we have to think
outside the box.

one sign on the sides of the square. To avoid having two separate cases (g > 0 or g < 0),
we transform the constraint by dividing g(r, s, 0) by the coefficient of s2 and requiring the
resulting expression g2(r, s) to be positive on the sides of the square:

(5.4.7) g2(r, s) = s2 +
−β0 + rβ2 + δ0

δ1
− s(rβ1 − β3 + δ2 + δ3)

δ1
.
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(See Figure 5.4.6.)
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Figure 5.4.6. Plot of g2(r, s), which differs by a constant factor from g(r, s, 0), using
the same B as in Figure 5.4.4. The region shown is the phase space in box coordinates.
Observe that the surface intersects with two faces of the phase space in parabolas, and
with the other in lines.

Note that on the sides where r = ±1, the expressions g(±1, s) are quadratic functions
of s. So, to guarantee that g2(r, s) > 0 on these two sides, it suffices to require that the
minima of g2(±1, s) be positive. The minimum of a general quadratic function x2 + ax + b
is b − a2/4, so the exact constraints are

min
s

g2(1, s) = −−4(−β0 + β2 + δ0)δ1 + (β1 − β3 + δ2 + δ3)
2

4δ2
1

> 0,

min
s

g2(−1, s) = −4(β0 + β2 − δ0)δ1 + (β1 + β3 − δ2 − δ3)
2

4δ2
1

> 0.

Both denominators are square, so only the numerators matter in satisfying the inequalities.
We therefore simplify the constraints to the first two inequalities in the statement of the
proposition, namely ν1 > 0 and ν2 > 0.

Observe that if these constraints are satisfied, then g2(r, s) > 0 on all four corners of
the square. With that observation, the sides where s = ±1 are easy to check, as g2(r,±1) is
a linear function of r, and it is therefore enough to require that g2(r, s) > 0 on the corners.
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In summary, if ν1 > 0 and ν2 > 0, then g is of one sign on all four sides of the bottom
square in box coordinates, and therefore, the z null-cline does not intersect the bottom of
the simplex.

The constraint that the interior z null-cline cannot intersect with the top of the simplex
can be enforced by imposing a second set of inequalities similar to those discovered above.
Again, the equation for where the null-cline intersects z = 1 is g(r, s, 1) = 0 which defines
a hyperbola in the plane z = 1 in terms of r and s. To specify that the null-cline does not
touch the top edge of the simplex, it suffices to require that this hyperbola lie outside the
square in box coordinates given by −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1. As before, we ensure
this by requiring g(r, s, 1) to be of one sign on all four sides of the square. Equivalently,
we define g3(r, s) to be g(r, s, 1) divided by the coefficient of r2, and require g3(r, s) to be
positive on all four sides of the square. The expression for g3 is

(5.4.8) g3(r, s) = r2 +
α0 − γ0 + sγ2

α1
− r(α2 + α3 + sγ1 − γ3)

α1
.

Furthermore, g3(r,±1) are monic quadratic functions of r, so it suffices to require that their
minima be positive, which yields

min
r

g3(r, 1) = −−4α1(α0 − γ0 + γ2) + (α2 + α3 + γ1 − γ3)
2

4α2
1

> 0,

min
r

g3(r,−1) = −4α1(−α0 + γ0 + γ2) + (α2 + α3 − γ1 − γ3)
2

4α2
1

> 0.

As before, the denominators are all square, so only the numerators matter, and the con-
straints reduce to ν3 > 0 and ν4 > 0. These imply that g is of one sign on the top of the
phase space in box coordinates, and that the z null-cline does not intersect with the top of
the simplex.

The final two constraints in the statement of the proposition are there to ensure that
the interior null-cline lies inside the simplex rather than completely above or below it, and
are derived as follows. Choose z̄ such that g(0, 0, z̄) = 0, that is, the point at which the
null-cline intersects the vertical line given by r = 0 and s = 0:

(5.4.9) z̄ =
δ0 − β0

α0 − γ0 + δ0 − β0
.

A short calculation proves that the constraints δ0−β0 > 0 and α0−γ0 > 0 imply 0 < z̄ < 1,
which guarantees that the null-cline lies completely inside the simplex.

It turns out that g(r, s, z) = 0 can actually be solved in terms of z, and the resulting
solution z = h(r, s) is the quotient of two polynomials in r and s. Under the constraints
derived in this proposition, h must be bounded for −1 ≤ r ≤ 1 and −1 ≤ s ≤ 1, which
means its denominator never vanishes. Therefore, h is continuous, and since the region
of interest for r and s is a closed square, h actually takes on its extrema. It follows that
there is a strictly positive distance between the null-cline and the top and bottom of the
simplex. �
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It is worth mentioning why we constrain g2 and g3 to be positive rather than negative.
This choice is motivated by the fully symmetric case where

B =









c a a a
a c a a
a a c a
a a a c









,

in which ν1 = ν2 = ν3 = ν4 = 4(c − a)2 which is always positive. Furthermore, these four
constraints are generally consistent with diagonally dominant settings for B, which match
the intuition that in general, people should have the greatest probability of communicating
properly when they both use exactly the same grammar.

5.4.2.2. Step 2: Direction of the vector field.

Proposition 5.4.3. Assume that the interior z null-cline is strictly between the top and
bottom edges of the simplex, and that δ0 − β0 > 0 and α0 − γ0 > 0. Then there are trapping
regions above and below the null-cline.

Proof. We will work in box coordinates and show that ż > 0 above the interior z null-cline,
and ż < 0 below it. This claim implies that orbits that pass above the uppermost point on
the null-cline continue to rise, and those that pass below the lowermost point continue to
fall, thereby establishing the existence of the two trapping regions.

The null-clines are by definition the set of points where ż = 0, so in regions between
them, ż is of one sign. It therefore suffices to show that for some point above the interior
null-cline, ż > 0, and for some point below it, ż < 0. Consider the vertical line given by
r = 0 and s = 0, as illustrated in Figure 5.4.7. Along this line,

ż|r=0,s=0 =
1

2
(−1 + z)z(−β0 + z(−α0 + β0 + γ0 − δ0) + δ0).

That is, ż is a cubic function f(z) along this vertical line, as in Figure 5.4.8. We need only
require that f ′(0) < 0 to ensure that ż is negative below the null-cline and positive above
it, which is equivalent to the inequality

(5.4.10) f ′(0) =
β0 − δ0

2
< 0.

Equivalently, we may require that f ′(1) < 0, which yields the inequality

(5.4.11) f ′(1) =
γ0 − α0

2
< 0.

Both of these inequalities follow immediately from the hypotheses. �

5.4.3. Discussion. What makes these two propositions possible is the fact that Q is row-
stochastic, so that it disappears in ẏK in (5.2.4). The same would happen if Q depended on t
or x. The trapping regions described in Propositions 5.4.2 and 5.4.3 are also independent of
Q. Thus, for any collection of grammars that satisfies the hypotheses of these propositions,
as long as one of the universal grammars has a sufficiently large majority of the population,
it will take over no matter what the learning algorithm, static or dynamic. Although these
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Figure 5.4.7. The z null-cline in box coordinates with the line r = 0, s = 0 indicated by
a bar. The B matrix used for this picture is the same as in Figure 5.4.4
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Figure 5.4.8. The vertical component of the vector field along the central vertical line in Figure 5.4.7
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propositions do not rule out the possibility of stable coexistence, they do provide conditions
under which homogeneous populations are stable against invasion by the other UG.

The explicit form of these results provides a way to quickly examine any number of
parameter settings so as to develop mathematical intuition for what properties of the B
matrix lead to stable UGs. For example, consider the question of two very different UGs,
where G1 and G2 do not communicate well with G3 and G4. The payoff matrix for such a
situation might look like this:

(5.4.12) Bdiff =









c a ε ε
a c ε ε
ε ε c a
ε ε a c









.

where c is relatively large, ε is small, and a is in between. For a picture, see Figure 5.4.9.
The constraints simplify greatly in this case:

ν1 = ν2 = ν3 = ν4 = 4(c − a)(c + a − 2ε),

α0 − γ0 = δ0 − β0 = a + c − 2ε.

Clearly, if ε is small enough, then all six constraints are positive. Therefore, the two UGs
are stable against invasion by each other no matter what their learning processes are.
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Figure 5.4.9. Null-cline for the case of two very different UGs, using the payoff matrix
Bdiff with c = 1, a = 1/2, and ε = 1/8. Left: Phase space in simplex coordinates. Right:
Phase space in box coordinates.



5.4. Partial results for the general case 107

On the other hand, consider the case of two very similar UGs, where G1 ≈ G3 and
G2 ≈ G4. The payoff matrix for this example might look like this:

(5.4.13) Bsim =









c a (1 − ε)c (1 − ε)a
a c (1 − ε)a (1 − ε)c

(1 − ε)c (1 − ε)a c a
(1 − ε)a (1 − ε)c a c









.

The constraints simplify to

ν1 = ν2 = ν3 = ν4 = −(c − a)2 − 2(a2 + 2ac − 3c2)ε − (a − c)2ε2,

and

α0 − γ0 = δ0 − β0 = (a + c)ε.

If ε is small enough, then ν1, ν2, ν3 and ν4 are dominated by −(c − a)2 which is negative,
implying that the null-cline might intersect with the top and bottom of the phase space
as illustrated in Figure 5.4.10. The propositions do not apply in this case, so it is possible
that one UG might be able to invade the other, and the learning process is critical to
understanding the long-term behavior of the system.
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Figure 5.4.10. Null-cline for the case of two very similar UGs, using the payoff matrix
Bsim with c = 1, a = 1/2, and ε = 1/32. Left: Phase space in simplex coordinates. Right:
Phase space in box coordinates, with planes z = 0 and z = 1 indicated. Note that the
null-cline intersects with these planes within the phase space.

The case of similar grammars leads to a remarkable situation that might be called
accidental stability, depicted in Figure 5.4.11. This is a case of two similar UGs where
G1 ≈ G3 and G2 ≈ G4, so it is no surprise that the two UGs can invade one another.
What is surprising is the mechanism. Consider an initial population whose members all
have U1. These states are all on the top edge of the simplex and remain on that line unless
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subject to an external perturbation. Such a population will tend to one of the two fixed
points on the top edge, one of which is dominated by G1 and the other by G2. The fixed
point dominated by G1 is a stable sink, and if U2 tries to invade that population, it will
fail. However, the fixed point dominated by G2 is a saddle, and if U2 tries to invade that
population, the invasion succeeds, U2 takes over completely, and the population tends to
the sink on the bottom edge of the simplex dominated by G4. The initial state of the all-U1

population determines whether a later invasion by U2 succeeds or not, and that initial state
is essentially random. Hence, this instance of the language equation is sensitive to historical
accidents.

B =









1 0.2 0.99 0.1
0.2 1 0.1 0.99
0.99 0.1 1 0.2
0.1 0.99 0.2 1









Q =

















0.908 0.092 0 0
0.130 0.870 0 0

0 0 1 0
0 0 0 1









,









1 0 0 0
0 1 0 0
0 0 0.858 0.142
0 0 0.092 0.908

















Figure 5.4.11. Accidental stability.

5.5. Conclusion

The analysis in Section 5.3 shows that the language dynamical equation with multiple uni-
versal grammars can exhibit dominance, competitive exclusion, and coexistence in the case
of two UGs with two grammars each. Although the results are for symmetric parameter
settings, the phase portraits appear to be structurally stable, so all three behaviors should
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persist when the parameters are perturbed. Stable coexistence of multiple universal gram-
mars appears to be possible for a range of parameter values. Exclusion is the only option if
the two UGs are sufficiently different. For a range of parameter values, homogeneous popu-
lations are stable against invasion. This fact has significant consequences for the evolution of
UG: The benefits of communicating with the rest of the population limit the population to
innovations that are fairly compatible with the existing UG. Other beneficial mutations are
likely to die out before their benefits can be realized. Sufficient conditions for the exclusion
of incompatible mutations in general can also be found, as in Section 5.4.

This research could be extended in a number of directions. The question of when can an
innovative mutation survive suggests that a stochastic model of a finite population might be
enlightening. The results of Section 5.4 are independent of the learning algorithm, and give
no indication of how acquisition might change over time. Thus, it would be informative to
study cases of the model for two UGs that differ only in their learning algorithm. It would
also be interesting to add terms to the fitness function for trade-offs. For example, one
learning algorithm might be very precise but take significantly longer, thereby penalizing
its carriers as well as giving them the benefits of precise learning. Another might have
few hypotheses and therefore be fast and precise, but only at the cost of encoding more
information genetically. Also, the linguistic environment could be modeled in more detail,
including features such as noisy data and locality.
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6.1. Summary

6.1.1. Modeling language change. We started with a model of language dynamics that
combines game dynamics, derived from the simplifying assumption that survival is based
on the ability to communicate, with a learning process. The resulting language dynamical
equation can be instantiated in any number of dimensions and at any level of complexity.
To begin making progress, we examined highly symmetric parameter settings, and low
dimensional cases, both of which can mimic observed patterns of language change, but with
very different mechanisms.

In the highly symmetric case of Chapter 2, all population states tend to some stable
equilibrium, and the learning accuracy determines whether it is possible to have an equi-
librium where all grammars are present, or an equilibrium where one grammar dominates.

111
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The model can illustrate catastrophes that occur when languages are brought into contact
if the learning parameters are allowed to be non-constant on long time scales: Contact can
be simulated by suddenly reducing the learning accuracy to model the introduction of lin-
guistic noise due to the presence of a new language. The single grammar equilibrium may
become unstable, and when the noise is removed, the population may settle at a completely
different equilibrium, thereby mimicking catastrophic changes such as those observed in the
transition from Old English to Middle English.

Explorations in low dimensions in Chapter 3 reveal that the language dynamical equa-
tion can exhibit regular and chaotic oscillations. These cases of the model directly capture
the ability of languages to change spontaneously and unpredictably, while still following a
regular pattern. Chaotic behavior displays the same sensitivity to small changes observed
in some cases of language contact.

Both of these cases are more realistic than pure replicator dynamics, which can only
exhibit fixed stable equilibria for the type of communication game studied here. Thus, the
addition of a learning process to game dynamics is crucial for modeling language change.

6.1.2. Modeling change in universal grammar. From there, we extended the model
to include genetic variation within universal grammar in the hope of modeling language
change on geological timescales. Again due to the unlimited complexity of the language
dynamical equation, it was necessary to begin with some low dimensional cases.

Chapter 4 analyzed various competitions between two UGs where one of the UGs ad-
mitted only a single grammar. The first set of results assumed that all grammars were
unambiguous and individuals with the same grammar communicate perfectly. Under these
circumstances, single-grammar UGs are quite stable, apparently due to the fact that their
one grammar is learned perfectly. Consequently, they can successfully invade populations
using that grammar but with another UG with imperfect learning. However, a population
dominated by a sufficiently different grammar is immune to invasion by the single-grammar
UG. These results illustrate how a very flexible and less specific UG admitting many lan-
guages may potentially be replaced by a more specific UG admitting a subset of those
languages. If grammars are allowed to be ambiguous, so that communication between in-
dividuals with the same grammar is imperfect, then coexistence of single-grammar UGs
and multi-grammar UGs is possible. It is also possible for a more specific grammar to be
replaced by a less specific UG if the new grammars are less ambiguous. These results are
progress toward understanding how UG balances the benefits of flexibility against the needs
for precise communication and accurate learning.

We then examined cases of two UGs with two grammars each. With some symmetry
imposed on the parameters, it is possible to solve for the fixed points and (almost) deter-
mine their stabilities. One result is that if the two UGs admit sufficiently similar grammars,
then they can coexist stably, indicating that the actual human UG may include several very
similar genetic variants, all coexisting. Another result is that UGs with sufficiently different
grammars are stable against invasion by each other, that is, they exhibit competitive ex-
clusion. This result can be generalized to sufficient conditions on any set of four grammars
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that imply that the resulting UGs exclude each other. Hence, market share effects are ex-
tremely important: Evolution of UG must be incremental, and innovations must maintain
a certain level of compatibility with the existing population to be successful. There are
also cases where these conditions do not hold, and the model exhibits strange behavior
such as accidental stability: One UG may successfully invade the other only if the invaded
population is dominated by one grammar and not the other. Thus, some aspects of UG are
not consequences of natural selection in any straightforward sense. They were preserved
not because they are inherently better for communication in general, but because of some
historical accident. They were adaptive in the sense that they facilitated communication in
some particular population.

6.2. Consequences for mathematical biology

The interaction of game dynamics and learning raises interesting modeling problems not
found in pure replicator dynamics. The primary issue is that the “fitness of a particular
universal grammar” is an incomplete concept in that it depends on other information.
This is nothing new. Many games, such as hawk and dove [31, 46] are structured so that
fitness only makes sense in reference to an opponent or within the context of a population.
However, the fitness of a UG depends not only on the frequencies of competing UGs in the
population, but also on the frequencies at which grammars are acquired by individuals. UG
is one layer removed from the communication game that is the actual source of all payoffs
in this scenario.

From another perspective, much of the development of multicellular organisms is self-
organizing, driven by a mixture of learning and genetically encoded information. For ex-
ample, the neurological connection from the eye to the vision centers in the brain is not
specified in every detail in the genome. Rather, it develops based on continuity. Adjacent
rods and cones in the retina send highly correlated signals to the brain because images of
the world are largely continuous. Taking advantage of this fact, the eye–brain connection
organizes itself on the basis of which connecting neurons are carrying correlated signals.
Likewise, language develops in the brain based on patterns in the linguistic environment.
However, the language faculty creates this environment through community, so universal
grammar is a self-organizing system like the eye–brain connection, but with an additional
source of feedback.

Putting all of this together, there is no way to simplify a game among universal gram-
mars to replicator dynamics as described in Section 7.1 of [31], because the fitness of a
particular UG depends on more than the frequencies of other UGs in the population. It
also depends on the linguistic environment, which is partially determined by feedback from
the UGs in the population, but also depends on history and chance. It is therefore necessary
to study games among UGs using the language dynamical equation, as the learning process
is a crucial extension to the replicator model.

Mathematically, it is necessary to think of universal grammar as a metastrategy. We
suppose that there is an underlying game with some number of strategies available, and
this game generates the payoff. Each individual has a metastrategy, that is, a strategy for
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choosing a strategy for the underlying game. In the communication game, a grammar is a
strategy, and a UG, more specifically its learning process, is a metastrategy. To determine
whether a particular UG is stable in some sense, it is necessary to use the full power of
dynamical systems theory; concepts such as the Nash equilibrium and evolutionary stability
are not useful unless they are generalized to account for the additional information required
to define the fitness of a UG. The material in Chapters 4 and 5 is progress toward developing
methods for analyzing metastrategy games.

6.3. Consequences for linguistics

The use of an evolutionary model to discuss historical language change immediately runs
into the problem that according to many linguists, no language in current use is inherently
fitter than any other. For example, Lightfoot [45,

�
8.2] criticizes a specific argument that

head-final Latin developed into head-initial Romance languages such as French, following
an evolutionary progression, because head-initial languages are easier to learn and therefore
fitter in some sense. Lightfoot claims that changes in primary linguistic data should be the
preferred explanation for such changes, and points out that the argument in question fails
to explain how Latin came to be head-final in the first place.

Mathematically, the current model avoids this problem in two ways. First, the model
defines the fitness of a grammar as a function of the population state and the ability of an
individual to communicate within that population. Second, the payoff in the communication
game of a grammar playing against itself (a diagonal entry of B) is generally assumed to be
the same or nearly the same for each grammar. Thus, the fitness measure of a grammar is
not based solely on inherent properties of that grammar, and the one parameter that does
measure a property of just that grammar is close to invariant in most of the examples in
this dissertation, the exception being ambiguous grammars in Section 4.6 which seem to
be necessary to destabilize single-grammar UGs. Elsewhere, no grammar is assumed to be
generally fitter in any sense than any other.

Furthermore, the most interesting behaviors of this model, namely oscillations and
chaos, are driven by the learning process rather than game dynamics (Chapter 3). In
this sense, the model provides a test bed for theories such as those in [44, 45] that changes
in primary linguistic data interacting with a particular grammar acquisition algorithm are
responsible for language change. With this interpretation, the selection terms of the lan-
guage dynamical equation are implementing a neutral evolutionary game among equally fit
strategies that serves to keep changes introduced by the learning process under control.

The evolution of the language faculty presents other puzzles. The ability to communicate
at the level of human language is clearly beneficial, but no other species seems to have
anything quite like it. Consequently, linguists have struggled with questions relating to the
general architecture of the language faculty. At one time, language was thought of as a
monolithic system. Since no part of it could function without the entire rest of the system,
an evolutionary explanation seemed out of the question, as a fully functional language
faculty would have had to appear all at once. Recently, a more modular theory of language
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has become popular. Jackendoff [34] proposes a highly modular understanding of language,
in which certain parts are useful without the rest, and so may have appeared incrementally.

A related issue is how specialized the language faculty is. Hauser et al. [28] discusses
three general hypothesis concerning the language faculty in a broad sense (FLB) and in a
narrow sense (FLN). FLB contains sensory-motor and conceptual-intentional subsystems,
as well as FLN which is the abstract computational system specific to language. One hy-
pothesis is that FLB is built from the same underlying components used for communication
in other species. The second is that FLB is uniquely human. The third, most strongly
supported by the authors of [28], is that FLB is mostly based on mechanisms shared with
other species, but the subset FLN is unique to humans. The third hypothesis allows for the
possibility that features useful to language initially evolved because they have other benefits,
and were later combined under a specialized computational system only in humans.

The results of Chapters 4 and 5 indicate that the role of natural selection in the evolu-
tion of language is not clear. As noted before, there is no simple notion of what makes a
UG adaptive, or when one is fitter than another. Market share effects are also extremely
important: A linguistic innovation that allows for extremely powerful or efficient commu-
nication is useless in an environment where no one else understands it. This can lead to
counterintuitive situations where an arguably inferior language faculty is maintained even in
the presence of an arguably superior alternative. Furthermore, multiple universal grammars
may be able to coexist, and the success of one UG over another may be a consequence of a
historical accident. Thus, it is likely that some features of UG are present not because they
are adaptive in any simple sense, but because of market share effects, historical accident,
physical or mathematical constraints, or other causes.

For example, Lightfoot [45] argues that a constraint within UG on movement is mal-
adaptive and could not have been selected for. The rule forbids certain kinds of questions
where the subject of an embedded clause is queried [45, p. 244]:

(6.3.1) I thought that Ray saw Fay.

(6.3.2) Who1 did you think t1 that Ray saw t1?

(6.3.3) *Who1 did you think t1 that t1 saw Fay?

He proceeds to illustrate how a variety of languages have special rules that allow them to
by-pass this feature of UG. The rule in English is to use a null complementizer in place of
that:

(6.3.4) Who1 did you think t1 t1 saw Fay?

Lightfoot concludes that although the rules of government and binding may be adaptive
in some sense and were perhaps selected for, the particular consequence that forbids the
formation of this class of questions without additional ad hoc mechanisms is maladaptive.
It is therefore a spandrel, an unintended consequence of some other design decision, and its
presence in UG should not be explained in terms of its being adaptive.

Lightfoot [45,
�

9.2] also proposes that language evolution is subject to certain mathe-
matical and physical constraints, parallel to constraints that force smaller animals to have
faster metabolisms than larger animals. An example of such a constraint might be the
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need for systems of morphology and phonology when the lexicon exceeds a certain size [63].
So while circumstances might select a large vocabulary over a small one, a combinatorial
system is the only way to implement it, and is not selected for in the same sense because
there is no alternative. Such constraints should naturally show up in mathematical models,
as demonstrated by [63]. As an example from the language dynamical equation from Chap-
ter 2, accurate learning is required for short term stability of grammars. If there is selection
for populations where almost everyone uses the same grammar, then accurate learning is
inevitable.

6.4. Possible extensions and future work

This research could be extended in any number of directions. Here, I will briefly summarize
a few possibilities. The first is a proposal for a detailed discrete simulation of a linguistic
population. The second is about connecting the present model to data collected by historical
linguists. The remainder are more mathematical, and have to do with studying the language
dynamical equation as a dynamical system.

6.4.1. A detailed discrete simulation. A number of questions and criticisms are re-
peatedly raised concerning linguistics and the assumptions made by this model. Two of
these criticisms, regarding the source of learning errors and catastrophic language change,
could be addressed by comparing the behavior of the selection/mutation model to a more
detailed simulation:

1. Where do these learning errors come from? Most children do a remarkable job of
learning the subtleties of their native language, but incremental changes do occur. (For
example, compare American English to British English.) The language dynamical equation
attributes incremental change to tiny errors that occur during grammar acquisition. A de-
tailed simulation of individuals learning from a population might be able to illustrate and
verify the conditions that lead to such errors, such as style and the effect of age groups. Such
a simulation could also test proposed acquisition algorithms for phonetic systems, vocab-
ulary, and syntax. (For example, see the RIP/CD algorithm described in [72], zero-degree
learning from [44, 45], and parallel tree structures from [34].) It would be computationally
intensive compared to the language dynamical equation, which is a system of ordinary dif-
ferential equations. However, comparison with the simulation can help determine whether
the language dynamical equation is at an appropriate level of abstraction for understanding
particular aspects of language.

2. How can language contact cause catastrophic changes? A theory mentioned in [45]
says that the transformation of Old English into Middle English may have been caused
(or accelerated) by the presence of Scandinavian invaders speaking Old Norse. The two
languages were sufficiently similar that children were unable to reliably learn Old English
due to what might be called linguistic noise. This theory is reasonable in that it cleanly
explains how the Old English case system was lost, but paradoxically, children are very
good at learning multiple native languages. The resolution of the paradox may be the pres-
ence of a phase transition, in which sufficiently different languages are acquired bilingually,
but sufficiently similar languages merge into one. Merging happens all the time: At the
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population level, a language incorporates variation in the form of registers (formal, casual,
literary, slang) and dialects (New York City, British, Australian). Children overlook these
fine-scale differences and acquire some average form of the language as spoken by the whole
population. The phase boundary is in between, when two languages are simultaneously too
different to be considered dialects of a single language, yet similar enough that children
cannot acquire them bilingually, yielding a catastrophe. Old English and Old Norse may
have been near such a boundary. The language dynamical equation and the simulation de-
scribed above could be modified to incorporate learning from a population, directly model
a similar catastrophic change, and perhaps map out the phase boundary.

6.4.2. Connecting the language dynamical equation to data. These first stages
in the analysis of the language dynamical equation have focused on phenomena, such as
coherent and incoherent equilibria, oscillations, and chaos. This model would be more useful
to linguists if it could make testable predictions concerning theories of syntax and language
acquisition.

As an example of what could be done, consider the cue-based acquisition model proposed
by Lightfoot [44, 45]. The learning process in the language dynamical equation could be
modified as follows to model this proposal. Suppose that each grammar produces sentences
of particular kinds at certain rates, and that children are sensitive to the overall rate at
which those sentences appear in the environment. The modified learning process would set
parameters based on which kinds of sentences occur at a rate above some threshold. Analysis
of the resulting dynamical system could provide an indication of what perturbations of the
linguistic environment are sufficiently large to trigger a population-wide shift from one
grammar to another. The rate at which that change occurs could also be tracked and
compared with actual data, such as [40]. If the dynamical system agrees with the data,
then the model of acquisition is supported. If the dynamical system cannot be made to
agree with the data, then the model of acquisition may need to be revised.

In short, appropriate modifications to the language dynamical equation can convert it
to a testing framework for particular models of language acquisition.

6.4.3. Dynamical systems questions.

6.4.3.1. More about chaos. As described in Chapter 3, the language dynamical equation
exhibits period doubling and chaotic behavior. The parameter settings in question create
orbits that spiral inward, then escape in a new direction, and finally return to the spiral.
There are any number of further questions that could be asked about this example. To begin
with, it is likely that some theorems by Šilnkov concerning saddle-foci apply to the example
[26, 75]. Since the escape-and-return mechanism can be constructed in any number of
dimensions, it may be necessary to generalize some of those results (which have been proved
in three or four dimensions) before they can be applied to the example. Furthermore, the
Poincaré map shown in Section 3.3 appears to exhibit a three-dimensional generalization of
Smale’s horseshoe [14], and some effort could be put into developing the details.

It appears possible to use multiple escape-and-return mechanisms to construct arbitrar-
ily complex chaotic orbits. The general idea is to link several spirals together, such that
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orbits have at least two ways to escape out of any given spiral. The result would be chaotic
orbits that switch from one spiral to another unpredictably, but with some control over
which spirals can be reached by which others. This construction may be a useful source of
examples of chaotic behavior. A few preliminary experiments have not been successful at
creating such orbits, but more trials should be done.

6.4.3.2. Structural stability of replicator dynamics. It seems quite likely that most cases of
replicator dynamics with a diagonally dominant payoff matrix are structurally stable. If
such a theorem were to be proved, it would imply that small perturbations of the vector field
would result in essentially the same phase portrait: stable fixed points near the corners of
the simplex. For sufficiently small learning errors, the language dynamical equation could be
viewed as a perturbation of the replicator dynamics. It would follow that for nearly perfect
learning, populations near the corners always converge to a nearby stable fixed point.

6.4.3.3. Competition between learning processes. The results of Section 5.4 apply to contests
between UGs that satisfy certain constraints. If the languages they admit are sufficiently
different, then they are stable against invasion by one another. An interesting follow-up
question is to ask what happens when the two UGs admit exactly the same grammars, but
have different learning algorithms. The resulting dynamical system appears to be genuinely
difficult to analyze, as the z null-cline argument is of no use, and alternative methods must
be found.

6.5. Last words

This dissertation has illustrated that the unexpected combination of mathematics and lin-
guistics has a lot to offer to both fields. It is my hope that the field of mathematical
linguistics will continue to grow, and produce an ever richer understanding of communica-
tion, community, learning, and history.
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