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Abstract. In this paper, I study a continuous dynamical system that describes
language acquisition and communication in a group of individuals. Children in-
herit from their parents a mechanism to learn their language. This mechanism is
constrained by a universal grammar which specifies a restricted set of candidate
languages. Language acquisition is not error-free. Children may or may not suc-
ceed in acquiring exactly the language of their parents. Individuals talk to each
other, and successful communication contributes to biological (or cultural) fitness.
I provide a full bifurcation analysis of the case where the parameters are chosen
to yield a highly symmetric dynamical system. Populations approach either an in-
coherent steady state, where many different candidate languages are represented
in the population, or a coherent steady state, where the majority of the popula-
tion speaks a single language. The main result of the paper is a description of how
learning reliability affects the stability of these two kinds of equilibria. I rigorously
find all fixed points, determine their stabilities, and prove that all populations tend
to some fixed point. I also demonstrate that the fixed point representing an inco-
herent steady state becomes unstable in an Sn-symmetric transcritical bifurcation
as learning becomes more reliable.

1. Introduction

Human languages consist of two parts: a lexicon, which is a set of words and
their meanings, and a grammar, which is a set of rules for assembling and
interpreting sentences. Children acquire their native language by hearing
example sentences from their parents through which they learn both the
lexicon and the grammar [16]. The general problem of acquiring grammar
only from example sentences is known to be impossible without constraints
on the rules of the grammar [9]. A widely accepted theory is that humans
have a built-in set of constraints known as universal grammar or UG which
guides the acquisition of native languages [3,20]. UG operates even when
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the input is exceptionally impoverished, as in the cases of creolization [2]
and the spontaneous invention of sign languages [21]. Children in these sit-
uations develop a fully functional grammar despite the lack of grammatical
input and speak or sign quite differently from their parents. Some aspects
of grammar, such as the word order, seem to be represented in the brain
as a finite number of parameters with a small number of possible settings
[4], and learning these parameter settings is equivalent to choosing among a
finite number of possible classes of grammars [8]. The grammar acquisition
process is not completely understood, but many theories are based on the
idea that children set parameters based on specific cues from the sample
sentences they hear, and many changes in grammars over time may be ex-
plained by a change in the linguistic environment that triggers a change in
one of these parameters in the next generation [15].

A number of mathematical frameworks have been proposed for model-
ing the evolution of languages [13,14,17–19]. This paper is concerned with
the model described in [13], in which Komarova, Niyogi and Nowak use
evolutionary principles to model a population where each member speaks
one language and benefits from being able to communicate with the rest
of the population; this paper extends the analysis in [13] and adds several
new results. We assume that the members of the population have a common
lexicon and that certain lexical aspects of grammar, such as the forms of
pronouns and tense morphemes, are fixed, leaving each child with a choice
among a finite number of grammars. Children are assumed to learn their
native language by hearing their parents speak, but the language acquisition
process is subject to error, so they may end up with a grammar different
from that of their parents. Learning error often results from ambiguity in
the sample sentences children hear: The presence of a foreign language or
multiple dialects can create enough linguistic noise that children are unable
to determine exactly which grammatical rules to adopt [15,16]. Rather than
try to model the acquisition process in detail, this paper will treat learning
in an abstract manner and deal only with the probability of making a learn-
ing error. The dynamical system which models this population is called the
language dynamical equation. The focus of this paper is to provide a com-
plete bifurcation analysis of the language dynamical equation in a special
case where the parameters are chosen to make the dynamical system highly
symmetric.

Two classes of population states are of primary interest. A coherent pop-
ulation is one in which the majority of members speak one language, and
an incoherent population is one in which many languages are spoken by a
significant fraction of the population. The tension between learning error
and selection influences whether a given initial population reaches equilib-
rium in a coherent or incoherent state. The language dynamical equation
contains selection terms which drive the population toward coherence, and
mutation terms, corresponding to imperfect learning, which drive the pop-
ulation toward incoherence. If children are very likely to make mistakes in
acquiring their language, then all languages can be equally distributed in
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the population, and the selection terms which give people a benefit for their
ability to communicate have little effect. When children learn reliably, a
language which is already widespread tends to become even more popular.
Parents who speak it will almost surely pass it on to their children, and the
selection term will be high for that language because its speakers can com-
municate perfectly with each other, and they form a large fraction of the
population. When learning is very unreliable, the only stable equilibrium
is an incoherent state. As the parameters of the model change to reflect
increased learning reliability, stable coherent equilibria appear. The inco-
herent equilibrium eventually becomes unstable, and almost all populations
tend to a coherent equilibrium. The bifurcation analysis presented here pro-
vides a mathematical description of how this transition from incoherence to
coherence takes place.

Section 2 sets up the language dynamical equation and describes how it
generalizes the replicator equation and the quasispecies equation.

In its fully general form, the language dynamical equation is a system of
non-linear ordinary differential equations in an arbitrary number of dimen-
sions, and a complete analysis of such a system is probably not possible.
However, a considerable amount of information can be derived from a spe-
cial case of the model in which the parameters are set to make the different
grammars completely interchangeable. Section 3 describes these parameter
settings.

The resulting system of ODEs has permutation symmetry and can be
analyzed in detail. The fixed-point analysis here adds detail to the results in
[13]. Section 4 gives an outline of the bifurcation scenario and pictures from
the three-grammar case. In Section 5, we determine the locations of all fixed
points and the parameter values for which they exist. Section 6 describes
the linear stability analysis of all fixed points. Bifurcations occur when the
parameters are such that the linearization of the system is singular at a fixed
point. All such bifurcations of fixed points are found in Section 7, including
the Sn transcritical bifurcation in which the incoherent equilibrium reverses
stability.

Further analysis in Section 8 shows that the symmetric language dy-
namical equation happens to be nearly a gradient system, and a number of
results about gradient systems can be adapted and applied to it. With a
few short arguments, we will rule out closed orbits, homoclinic loops, and
directed heteroclinic cycles. Finally, we show that all populations tend to
some fixed point.

2. The language dynamical equation

Consider a large population of freely interacting individuals with identical
language faculties. We assume that they share a lexicon, and each individual
uses one of a finite number n of different grammars G1, . . . , Gn in speaking
and understanding sentences. The population as a whole is analogous to a
quasispecies, because the members have a lot in common, namely the ability
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to use language, without being identical, as they have different grammars.
It is assumed that all individuals interact with each other, and reproduce
at a rate dependent upon some fitness measure of the grammar they use.
Reproduction of language is accomplished by learning: Children learn the
grammar of their parents by hearing example sentences, with the possibility
that they might make mistakes. Learning mistakes can be thought of as
mutations, as they cause parents speaking Gi to bear offspring speaking
Gj . The population is represented by x1, . . . , xn where xj is the fraction of
people speaking Gj . We require

∑

xj = 1.
For this model, the relative fitness of an individual is based upon its

grammar and the composition of the population. Given constants Ai,j rep-
resenting the probability that a sentence spoken at random from Gi can be
parsed by a speaker of Gj , we define the fitness of Gi to be

Fi =

n
∑

k=1

(αAi,k + (1 − α)Ak,i) xk . (1)

That is, fitness depends on the ability for a speaker of Gi to be understood
by and to understand a speaker of Gk. This is a measure of the similarity
of the two grammars and is independent of the actual speakers. In Fi, the
ability to communicate with Gk is weighted proportionally to its abundance
xk. If the parameter α is large, more benefit comes from being understood,
and if it is small, more benefit comes from being able to understand. For the
rest of this analysis, we give equal weight to both terms by setting α = 1

2
which yields

Fi =

n
∑

k=1

Ai,k + Ak,i

2
xk. (2)

In formulating the dynamics, we also need the variable φ representing the
average fitness:

φ =

n
∑

k=1

Fkxk . (3)

Note that φ is a quadratic form in the xj ’s.
To model learning, we define a row-stochastic matrix Q such that Qi,j

is the probability that a teacher speaking Gi produces a student speaking
Gj . The entries of Q are analogous to mutation rates. The Q matrix is row
stochastic, meaning the sum of each row is 1, because every student must
learn some grammar.

The language dynamical equation is an ODE representing the population
dynamics:

ẋj =

n
∑

i=1

FixiQi,j − φxj

= (FjQj,j − φ) xj +
∑

i6=j

FixiQi,j .
(4)
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Each Gi reproduces at a basic rate Fi, but a fraction Qi,j of the offspring
erroneously learn Gj . The second form illustrates that the net reproductive
rate of Gj depends on how much its fitness, scaled by learning reliability,
exceeds the average fitness φ. This is the selection term. The other terms
are mutation terms and represent contributions due to learning error. Note
that this equation is cubic in the xi variables. Only A and Q are constant
in time; φ and F are functions of x.

Note that the total population
∑

xj remains fixed at 1, because its time
derivative is zero. All orbits of interest are therefore confined to an invariant
hyperplane defined by x · 1 = 1, where 1 is a vector whose entries are all 1.
Furthermore, if xj = 0, then ẋj ≥ 0 as it is a sum of terms each of which
is at least 0. In particular, if xj (t0) ≥ 0, it cannot at some later time cross
the hyperplane perpendicular to the basis vector ej because the vector field
points the wrong way. Therefore, the positive orthant, defined as the subset
of Rn where each xj ≥ 0, is a trapping region. The intersection of the
invariant hyperplane and the positive orthant is a simplex Sn. For example,
S3 is an equilateral triangle, and S4 is a regular tetrahedron.

The language dynamical equation combines ideas from both the replica-
tor equation [12] and the continuous quasispecies equation [5,6]. It builds
on the basic structure of the replicator equation, but adds mutation as in
the quasispecies equation, and the reproductive rates are dependent upon
the structure of the population.

3. Parameter settings for permutation symmetry

The fully general model (4) is too complex to analyze without some simpli-
fying assumptions. Following Komarova et al. [13], we will constrain the A
and Q matrices so that there are only two free parameters and the system
as a whole exhibits permutation symmetry, that is, all the grammars will
be interchangeable. With these constraints, we can analyze the dynamical
system thoroughly despite its non-linearity.

For the rest of the paper, we will assume the following form for A and
Q:

A =











1 a · · · a
a 1 · · · a
...

...
. . .

...
a a · · · 1











, (5)

Q =











q u · · · u
u q · · · u
...

...
. . .

...
u u · · · q











, where u =
1 − q

n − 1
. (6)

The parameters a and q now completely determine the model. All off-
diagonal entries of A are the same, so the probability that two people who
use different grammars understand each other is the same no matter which
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grammars they use. Children acquire their grammar without error with
probability q and mistakenly acquire each other grammar with probability
u.

For convenience, we define variables Mk representing the k-th moment
of the vector x:

Mk =

n
∑

j=1

xk
j . (7)

Simplifying the original form of the language dynamical equation (4) and
incorporating the restrictions on A and Q yields the following expression
for the dynamics:

ẋj = (1 − a)
(

(q − u)x2
j + uM2 − xjM2

)

− aunxj + au. (8)

Note that this vector field has the permutation group on n letters, commonly
denoted Sn, as its symmetry group, as all variables xj are interchangeable.
We will refer to (8) as the fully symmetric language dynamical equation, and
the rest of the paper is concerned with this restricted form of (4).

4. Outline of the bifurcation scenario

To illustrate the bifurcation scenario for the fully symmetric language dy-
namical equation, we display here some pictures from the three-grammar
case. They show the simplex as a triangle, where the corners represent the
extreme values of (x1, x2, x3), namely (1, 0, 0), (0, 1, 0), and (0, 0, 1). The
parameter a is fixed at 0.5, and q varies.

For low values of q, the picture is as shown in Figure 1. There is a single
fixed point which will be called the uniform fixed point in the middle of
the simplex. It is a stable sink, meaning nearby populations tend to it in
forward time. In this case, all populations tend to the uniform fixed point. It
represents an incoherent population where each language is spoken in equal
proportion. Here, the inaccuracies in learning drown out the effects of the
selection terms in the model.

As q increases, a number of symmetric saddle-node bifurcations occur,
resulting in Figure 2. In each corner of the simplex, a pair of fixed points
appears, one stable sink close to the corner, and one unstable saddle be-
tween the sink and the uniform fixed point. The stable sinks in the corners
represent coherent populations, where one language is spoken by a large
portion of the population. Populations which start close to a corner move
to a coherent state, and populations which start close to the center move to
the uniform fixed point and incoherence. All the stable sinks have a basin
of attraction, meaning a set of nearby population states which tend to them
in forward time. The saddle points have only a thin manifold of population
states which tend to them in forward time, and these stable manifolds form
the boundaries between the basins of attraction of the sinks. In this situa-
tion, learning has become accurate enough that the population can choose
a dominant language. When a large portion of the population speaks one



Bifurcation Analysis of the Language Dynamical Equation 7

language, the fitness term in the ODE for that language is high because
those people understand each other perfectly. This causes the language to
be spoken more widely in the future. However, populations still have a choice
between coherence in the corners, and incoherence in the middle.

When q exceeds a particular value, the saddle points collide with the
uniform fixed point in what is known as an Sn-symmetric transcritical bi-
furcation. The result is shown in Figure 3. In this bifurcation, the uniform
fixed point reverses its stability and becomes an unstable source. The saddle
points pass through it and re-organize themselves, as their stable manifolds
must now form boundaries between basins of attraction in the corners, but
no longer in the middle. All populations (except the few on the stable man-
ifolds of saddle points) now choose a dominant language and move toward
one of the sinks in the corners. In this case, the inaccuracies of learning are
drowned out by the selection term, and incoherence is no longer stable.

Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Fig. 1. Phase portrait with a = 0.5, q = 0.85.

In higher dimensions, the basins of attraction of the various sinks are
more complex, and there are more saddle points which come into existence
before the Sn-symmetric transcritical bifurcation. The higher dimensional
cases are hard to draw; however the three-language case drawn here should
provide enough illustration to give the reader some intuition for the analysis
that follows.

5. Locating the fixed points

We will now locate all the fixed points of the fully symmetric language
dynamical equation, and identify the parameter ranges for which they exist.
In particular, the order in which fixed points come into existence can be
completely determined. It is reasonable to guess that the fixed points of
(8) will have some symmetric form. In particular, we make the assumption
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Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Fig. 2. Phase portrait with a = 0.5, q = 0.8575.

Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Fig. 3. Phase portrait with a = 0.5, q = 0.9.

that at fixed points, m grammars will share the majority of the population
equally, and the rest will split the remainder equally.

Proposition 1. Every fixed point x̄ of (8) has m entries equal to some

number Z and n − m entries equal to (1 − mZ)/(n − m).

Proof. Suppose x̄ is a fixed point. At that point, M2 is some constant which
depends upon x̄. Then each coordinate x̄j must be a root of the polynomial

(1 − a)
(

(q − u)Z2 + uM2 − ZM2

)

− aunZ + au = 0. (9)

This polynomial, which comes from (8), is quadratic in Z, so it has at most
two real roots. Therefore, each x̄j is limited to be one of at most two values,
and we may assume m of them are of one value and n−m are of the other.
Since

∑

x̄j = 1, the fixed point must be of the required form. ut
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We define X(m) and Y (m) to be the roots of (9), with X (m) referring to
the larger. A fixed point with m entries equal to X (m) and n − m entries
equal to Y (m) will be called an m-up fixed point. There are

(

n
m

)

ways to

distribute m grammars of majority frequency X (m) and m−n grammars of
minority frequency Y (m) among the n entries of x, yielding

(

n
m

)

symmetrical
m-up fixed points.

The next step is to give explicit expressions for all of these fixed points,
and determine the values of q for which they appear. We fix a, and consider
what happens as q increases from 1/n to 1.

First, there is one fixed point corresponding to m = 0 or m = n called
the uniform solution. It is given by

xj =
1

n
, where j = 1 . . . n.

This fixed point represents a population where all grammars are spoken
with equal frequency. It exists for all a and q, as can be seen by plugging
it into (8). When solving for m-up fixed points, the uniform solution will
always show up as an extra solution where X (m) and Y (m) are both 1/n.

Other fixed points can be found by substituting the form described in
Proposition 1 into (8). That is, we solve for the possible values of each xj

by setting

xj = Z,

M2 = mZ2 + (n − m)

(

1 − mZ

n − m

)2

,

which yields a cubic equation. It turns out that Z = 1/n is always a root
of this equation, which reflects the fact that the uniform solution is of the
required form for every m. Extracting the factor of (nZ − 1) from the cubic
yields the following quadratic:

(a − 1)m(n − 1)Z2

+ (a − 1)(1 + 2m(q − 1) − nq)Z

− (a(1 − m − n) − 1)(q − 1) = 0.

(10)

The roots are found with the quadratic formula, yielding

Z
(m)
± = −1 − 2m + 2mq − nq

2m(n − 1)
±

√
d

2m(1− a)(n − 1)
, (11)

where the discriminant d is given by

d =(1 − a)
(

4m(n − 1)(1 − q)(a + am − an − 1)

+ (1 − a)(1 − 2m(1 − q) − nq)2
)

.
(12)
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The quadratic equation (10) was set up to look for values of Z such that
some fixed point has m elements equal to Z. Therefore,

X(m) = Z
(m)
+ ,

Y (m) = Z
(n−m)
− =

1 − mZ
(m)
+

n − m
.

(13)

If q is small enough, d will be negative, and there will be no m-up fixed
points. When q is such that d = 0, there will be some sort of saddle-node
bifurcation, as the m-up and (n−m)-up fixed points will be identical. The
bifurcation value of q may be found by solving the quadratic equation d = 0.
The appropriate root is

q̂m =
1

(a − 1)(n − 2m)2

(

2m(n − m)(2 + a(n − 3)) + (a − 1)n

− 2(n − 1)
√

(1 + a(m − 1))(1 + a(n − m − 1))m(n − m)
)

.

(14)

Note that q̂m = q̂n−m, which implies that the m-up and (n − m)-up fixed
points will appear at the same time as q increases. See Figure 4 for an
example graph of q̂m. As can be seen from its concave-down shape, the m-
up fixed points appear in a particular order: first the 1-up and (n − 1)-up
fixed points, then the 2-up and (n − 2)-up, and so on.

More rigorously, we can make the substitution m = n/2+h. After some
simplification, (14) becomes

q̂m =
2 + a(n − 3)

2(1 − a)
+

(n − 1)n
(

1 − a + an
2

)

4(1 − a)
g(h), (15)

where

g(h) =

√

(1 − β1h2) (1 − β2h2) − 1

h2
,

and

β1 =
a2

(

1 − a + an
2

)2 and β2 =
4

n2
.

Note that β1 = β2 only if a = 1, in which case all the languages are identical,
or if a = 1/(1 − n) < 0; neither case is of interest here, so β1 6= β2. The
important thing to notice is that q̂m is a positive constant plus a positive
constant times g(h), and β1 and β2 are positive and unequal. Thus, we only
need to establish the shape of the graph of g(h) to determine the shape of
the graph of q̂m.

Proposition 2. The function g(h) has a global maximum at h = 0 and is

concave down for −n/2 ≤ h ≤ /2.
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q̂
m

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10
m

Fig. 4. Plot of q̂m, with a = 0.2 and n = 10. The m-up fixed points do not exist
until q > q̂m.

Proof. Note that for small h, we can expand
√

1 − βh2 into the Taylor
series 1+βh2/2+βh4/8+O(h6), which quickly gives the expansion g(h) =
−(β1 + β2)/2− (β1 − β2)

2h2/8 + O(h4). From this series, we can read off

g(0) = −β1 + β2

2
< 0,

g′(0) = 0,

g′′(0) = − (β1 − β2)
2

4
< 0.

This analysis proves that g has a critical point at h = 0, which is a local
maximum by the second derivative test. In fact, this is the only critical
point of g, and therefore a global maximum, as may be seen by analyzing
its derivative directly. If g′ is to be zero, its numerator must be zero, which
implies, after some manipulation, that

β1β2h
4 = (β1 + β2)

2h4,

which has only the solution h = 0. Therefore g has a single critical point, a
global maximum at h = 0, and is concave down everywhere else. ut

This lemma implies that q̂m, which is just a scaled and translated version
of g, must always have the shape suggested by Figure 4. In particular, q̂m
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has a global maximum at m = n/2, given by

q̂max = q̂m|m= n
2

=
1 + n + a(n2 − n − 1)

n(2 − 2a + an)
, (16)

after much simplification.

6. Linear stability analysis

Now that all the fixed points of the fully symmetric language dynamical
equation have been found, their stabilities must be determined by linear
stability analysis. In this section, we will compute the Jacobian matrix of
the vector field in (8) at the various fixed points, derive expressions for its
eigenvalues, and determine their multiplicities. In Section 7, we will deter-
mine the parameter values for which each is a source, a sink, or a saddle.

We will work with the n variables x1, . . . , xn and treat them as inde-
pendent. The fact that the region of interest is a simplex embedded in
an (n − 1)-dimensional hyperplane will come into play after the n-by-n
Jacobian has been computed. An alternative would be to replace xn by
1 − (x1 + · · · + xn−1) and work in n − 1 independent variables, but that
method yields results that are somewhat harder to visualize as the simplex
is no longer easily visible.

The Jacobian matrix for (8) has entries of two types:

∂ẋi

∂xi

= (1 − a) (2xi (q − xi) − M2) − aun, (17)

and for j 6= i:

∂ẋi

∂xj

= 2(1 − a) (u − xi) xj . (18)

For simplicity of notation in this section, j is assumed to be different from i
whenever used as a subscript. Due to the symmetry of the ODE, the same
expression is obtained for any j 6= i.

Since each xi will have to be one of two values, the Jacobian matrix has
a special structure which makes its eigenvalues relatively easy to find. In
particular, define the following variables:

c1 = ∂ẋi

∂xi

∣

∣

∣

xi=X(m)
c2 = ∂ẋi

∂xi

∣

∣

∣

xi=Y (m)

c3 = ∂ẋi

∂xj

∣

∣

∣

xi=X(m),xj=X(m)
c4 = ∂ẋi

∂xj

∣

∣

∣

xi=X(m),xj=Y (m)

c5 = ∂ẋi

∂xj

∣

∣

∣

xi=Y (m) ,xj=Y (m)
c6 = ∂ẋi

∂xj

∣

∣

∣

xi=Y (m),xj=X(m)
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With the preceding definitions, the Jacobian of (8) at an m-up fixed point
with the first m entries equal to X (m) takes the form

J =





























c1 c3 · · · c3 c4 c4 · · · c4

c3 c1 · · · c3 c4 c4 · · · c4

...
...

. . .
...

...
...

. . .
...

c3 c3 · · · c1 c4 c4 · · · c4

c6 c6 · · · c6 c2 c5 · · · c5

c6 c6 · · · c6 c5 c2 · · · c5

...
...

. . .
...

...
...

. . .
...

c6 c6 · · · c6 c5 c5 · · · c2





























. (19)

The lines separate columns 1 to m and rows 1 to m from the rest. Due to
the permutation symmetry of the dynamical system, the coordinates of any
other m-up fixed point may be derived from this one by shuffling its entries;
its Jacobian may be found by conjugating J with a permutation matrix, so
it will have the same eigenvalues. Thus, to determine the stabilities of all
fixed points, it is sufficient to analyze J .

In addition to the special form of J , a further observation makes it
possible to quickly determine eigenvalues of J : We are interested in J only
at fixed points within the simplex. Since the (n−1)-dimensional hyperplane
containing the simplex is invariant, n−1 of the eigenvectors should lie within
this hyperplane, and the last eigenvector should lie outside. The special form
of J suggests that we try an eigenvector of the form

v =





















r
...
r
s
...
s





















.

The first m entries are the same and therefore invariant under permutations
of the first m variables. The last n−m are similarly invariant. The equation
Jv = λv reduces to the following two-dimensional eigenvalue problem:

c1r + (m − 1)c3r + (n − m)c4s = λr,

mc6r + c2s + (n − m − 1)c5s = λs.
(20)

The assumption that v lies in the hyperplane of the simplex gives an addi-
tional equation, v · 1 = 0, which expands into

mr + (n − m)s = 0. (21)

Using (21) to solve for s in terms of r and substituting that expression for
s in the first equation of (20) yields

λ1 = c1 + (m − 1)c3 − mc4. (22)



14 W. Garrett Mitchener

A particular eigenvector v1 corresponding to λ1 may be found from (21),
for example, by setting r = (n − m) and s = −m.

A second eigenvalue may be determined by computing the trace of the
system (20) and subtracting λ1. The result is

λ0 = c2 + (n − m − 1)c5 + mc4. (23)

However, the corresponding eigenvector v0 points outside the simplex and
is not of interest here.

The remaining n − 2 eigenvalues may be found by looking at subspaces
orthogonal to v1. In particular, the m − 1 vectors

−e1 + ek for k = 2 . . .m

are eigenvectors such that

J (−e1 + ek) = (c1 − c3) (−e1 + ek) .

The notation ek means the k-th standard basis vector of Rn. Likewise, the
n − m − 1 vectors

−em+1 + ek for k = m + 2 . . . n

are eigenvectors with

J (−em+1 + ek) = (c2 − c5) (−em+1 + ek) .

In summary, if we assume m > 0, then λ0 and λ1 = c1 +(m−1)c3−mc4

are eigenvalues of multiplicity 1, λ2 = c1−c3 is an eigenvalue of multiplicity
m − 1, and λ3 = c2 − c5 is an eigenvalue of multiplicity n − m − 1. In the
special case where m = 0, we get only two eigenvalues, λ0 of multiplicity 1,
and λ3 of multiplicity n − 1.

7. Bifurcations of fixed points

In Section 6, we determined the eigenvalues of the linearized fully symmet-
ric language dynamical equation at all fixed points. Bifurcations of fixed
points can be detected by looking for parameter settings which cause these
eigenvalues to equal zero. The parameter a is considered to be fixed, and q
to vary from 1/n to 1. In this section, we determine what parameter values
cause the eigenvalues to be zero and account for all bifurcations involving
just fixed points. From this information, we can determine the signs of all
the eigenvalues and therefore the stability of each fixed point. First, we han-
dle the m-up fixed points, which come into existence through saddle-node
bifurcations. Then, we discuss the uniform fixed point, which always exists,
but undergoes a reversal of stability.
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7.1. Bifurcations of the m-up fixed points

There are two special values of q corresponding to bifurcations: q̂max which
corresponds to a collision of many fixed points at the center of the simplex,
and q̂m which corresponds to several simultaneous saddle-node bifurcations
in which the m-up and (n−m)-up fixed points come into existence. A num-
ber of tricks will be used to solve for these bifurcation points. To illustrate
the technique, we first find the sign changes of λ2 because it is the simplest
of the three eigenvalues to work with and the calculations can be carried
out by hand. The same calculations work for λ3 and λ1, but for λ1 they be-
come unwieldy and are best carried out with the aid of a computer algebra
system.

Proposition 3. For an m-up fixed point where n > m > n/2, the eigen-

value λ2 is strictly negative for q < q̂max , zero for q = q̂max , and strictly

positive for q > q̂max . If 1 < m ≤ n/2, then the eigenvalue λ2 ≥ 0 for

q = q̂m and strictly positive for q > q̂m.

Proof. Since λ2 is of multiplicity m − 1, it does not affect the uniform or
1-up fixed points, hence the hypothesis m > 1.

We look for the special value of q such that λ2 = 0 by solving a pair of
quadratic equations: The first (24a) is (10) with Z replaced by X , which
constrains X to be either X(m) or Y (n−m). The second (24b) is an expansion
of λ2 = 0 assuming X = X(m), that is, that we are evaluating λ2 at an m-
up fixed point. When fully expanded, these two quadratic equations are as
follows:

(a − 1)m(n − 1)X2 (24a)

+ (a − 1)(1 + 2m(q − 1) − nq)X

− (a(1 − m − n) − 1)(q − 1) = 0,

(

− (1 − a)mn

n − m

)

X2 (24b)

+

(

2(1 − a)n(−1 + m − mq + nq)

(n − m)(n − 1)

)

X

+

(

− 1 − a

n − m
− an(1 − q)

n − 1

)

= 0.

It should be noted that there are solutions to this system that do not cor-
respond to sign changes of λ2 or to bifurcations in the symmetric language
equation. These extraneous solutions will be eliminated once all solutions
are found. Although one could conceivably substitute the explicit expres-
sions for X(m) and Y (m) into the equation λ2 = 0 hoping to solve it for q,
the resulting equation has several embedded square roots, and in manipu-
lating it to get rid of them, extraneous solutions are bound to appear. By
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dealing with this system instead, it is easier to prove certain things about
the solutions that will ensure that we find all of them, and that we can
determine which ones are extraneous.

The first result is that for each value of q which solves the system in
question, there are at most two values of X , and for each value of X , there
is at most one value of q. This is evident because when q is fixed, the two
quadratic equations can have at most two common roots, and when X is
fixed, both equations are linear in q.

The second result is that there are two possible values of q, which are
found as follows. Multiplying (24a) by −n and (24b) by (n− 1)(n−m) and
adding the two results together yields, after much simplification:

−(1 − a)(nq − 1)(nX − 1) = 0. (25)

At this point, we have two choices, either q = 1/n, or X = 1/n. In the
first case, we get two solutions for X because when q = 1/n both quadratic
equations turn out to have the same two roots; however, they are both
complex, and are of no further interest. In the second case, the two quadratic
equations in X become linear in q upon substituting X = 1/n, and we get
a single solution

q =
1 + n + a

(

n2 − n − 1
)

n(2 + a(n − 2))
= q̂max . (26)

This is the unique parameter value for which λ2 changes signs. To determine
the signs, we plug the extreme case q = 1, X = 1

m
into λ2, which yields

λ2|q=1,X= 1
m

=
1 − a

m
,

which is positive. Therefore, λ2 is negative for q < q̂max and positive for
q > q̂max .

It is important to notice that if m < n/2, then X (m) > 1/n, so for these
m-up fixed points, λ2 is positive for all q such that the fixed points exist, and
never changes sign. To prove this inequality, observe from Equations (11)
and (13) that

X(m) ≥ 1 − q

n − 1
+

nq − 1

2m(n − 1)
.

For any fixed q, the term (nq − 1)/(2m(n − 1) is minimized by making m
as large as possible. If we require m < n/2, then

X(m) >
1 − q

n − 1
+

nq − 1

2m(n − 1)

∣

∣

∣

∣

m= n
2

=
1

n
.

On the other hand, for m > n/2, the m-up fixed points always satisfy
X(m) = 1/n at q = q̂max . To prove this, recall that (10) is a quadratic
equation whose roots X (m) and Y (n−m) are numbers which appear m times
as entries of m-up fixed points. It can be seen by substitution that if q =
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q̂max , then 1/n is a root of this quadratic, so either X (m) or Y (n−m) has to
be 1/n. Assume that m > n/2 and Y (n−m) = 1/n. It follows that X(n−m) =
1/n which yields a contradiction because n−m < n/2 and from a preceding
argument X(n−m) > 1/n. Therefore, X(m) = 1/n and Y (n−m) is the other
root.

In the case where n is even and m = n/2, the m-up fixed points come
into existence at q = q̂m = q̂max and X(m) = 1/n, so for them, λ2 = 0 at
that point and λ2 > 0 for all larger q.

In summary, the sign change in λ2 takes place for the m-up fixed points
where m > n/2 and for no others. ut

Proposition 4. For an m-up fixed point where n − 1 > m > n/2, the

eigenvalue λ3 is strictly positive for q < q̂max , zero for q = q̂max , and

strictly negative for q > q̂max . If 0 < m ≤ n/2, then the eigenvalue λ3 ≤ 0
for q = q̂m and strictly negative for q > q̂m.

Proof. Since λ3 is of multiplicity n − 1 − m, it does not affect (n − 1)-up
fixed points, hence the assumption that n − 1 > m.

The analysis for λ3 is quite similar to that for λ2, and λ3 is zero exactly
when q = q̂max and X = 1/n. It turns out that

λ3|q=1,X= 1
m

= −1− a

m
,

so λ3 is positive for q < q̂max and negative for q > q̂max . Again, the sign
change in λ3 takes place for the m-up fixed points where m > n/2 and for
no others. ut

Proposition 5. For an m-up fixed point where n > m > n/2, the eigen-

value λ1 is strictly positive for q̂m < q < q̂max , zero for q = q̂m or q̂max ,

and strictly negative for q > q̂max . If 0 < m ≤ n/2, then the eigenvalue λ1

is zero for q = q̂m and strictly negative for q > q̂m.

Proof. The analysis for λ1 is also similar, but yields two sign changes. The
two quadratic equations are

(a − 1)m(n − 1)X2 (27a)

+ (a − 1)(1 + 2m(q − 1) − nq)X

− (a(1 − m − n) − 1)(q − 1) = 0,

(−3(1− a)mn

n − m

)

X2 (27b)

+

(

−2(1− a)(m + n − 3mn + 2mnq − n2q)

(n − m)(n − 1)

)

X

+

(

1 − n − 2m(1 − q) − a(1 − n + n2 − m(n + 2)(1 − q) − n2q)

(n − m)(n − 1)

)

= 0.
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The first one, (27a), is the same as (24a) and constrains X to be either
X(m) or Y (n−m). The second one, (27b), is an expanded form of λ1 = 0.
The linear combination of −3n times (27a) plus (n− 1)(m−n) times (27b)
yields a large linear equation in X , which allows us to eliminate X in the
first quadratic equation and find two values of q. The first turns out to
be q = q̂m, which requires X = X(m) or Y (n−m). This is the bifurcation
in which the m-up and (n − m)-up fixed points come into existence. The
second is q = q̂max , which requires X = 1/n. Once again, this second sign
change takes place for the m-up fixed points where m > n/2 and for no
others. ut

For the specific case of m = 1, the only eigenvalues are λ1 and λ3. Only
Propositions 4 and 5 are relevant, and prove that the 1-up fixed points are
sinks when they exist. These three propositions together also prove that all
other m-up fixed points are saddles of some kind.

7.2. Bifurcations of the uniform fixed point

The uniform fixed point, which is best thought of as the case where m = 0,
is a special case, as it has only two distinct eigenvalues: λ0, which is not
of interest, and λ3 = c1 − c3, which determines the stability of the fixed
point. Again, we look for the special value of q that makes λ3 = 0. The
expression c1 − c3 = 0 evaluated at xj = 1/n yields a linear equation in q
whose solution is the familiar

q =
1 + n + a

(

n2 − n − 1
)

n(2 + a(n − 2))
= q̂max . (28)

For q < q̂max , the uniform fixed point will be a stable sink, and for q any
larger, it will be an unstable source.

7.3. Remarks about the bifurcations

Note that due to the symmetry of this dynamical system, q̂max appears as
a bifurcation point for many of the fixed points. As q increases to q̂max , all
the fixed points come into existence, and for even n, the n/2-up fixed points
come into existence right when q = q̂max . At this value of q, the m-up fixed
points for m > n/2 all collide with the uniform fixed point in the center of
the simplex. As q increases further, the fixed points all separate, with none
being lost, but the uniform fixed point has completely reversed its stability.
This behavior is known as an Sn-symmetric transcritical bifurcation. (See
[1].)

8. Other properties of the vector field

The vector field given by (8) can be written as the gradient of a function
V (x) plus an additional term. A number of well-known proofs [10,11] about
gradient dynamical systems can be adapted to work on this ODE because
of its near-gradient form, and the fact that the trajectories of interest are
confined to a simplex.
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Proposition 6. Define the function V (x) as follows:

V =
1

3
(1 − a)(q − u)M3 −

1

4
(1 − a)M2

2 − 1

2
aunM2 + auM1. (29)

If x(t) is a trajectory of (8) which is confined to the simplex Sn and is not a

fixed point, then the function V (x(t)) is strictly increasing as time advances.

Proof. This function was selected so that ∂V/∂xj accounts for as many
terms of the right-hand side of (8) as possible. Thus, (8) may be re-written
as

ẋj =
∂V

∂xj

+ (1 − a)uM2,

or in vector notation:

ẋ = DV + (1 − a)uM21. (30)

Computing the time derivative of V and using (30) to substitute for DV
yields

V̇ = DV · ẋ = ‖ẋ‖2 − (1 − a)uM21 · ẋ.

Since the trajectories of interest lie in the simplex, 1 · ẋ = 0, so the second
term vanishes, leaving

V̇ = ‖ẋ‖2
. (31)

On any trajectory other than a fixed point, ẋ will be non-zero, so V̇ will be
strictly positive. Therefore, V will be strictly increasing with time. ut

This proposition implies the following:

Proposition 7. The ODE given by (8) has no solutions which are periodic

closed orbits, homoclinic loops, or directed heteroclinic cycles.

Proof. Suppose x(t) is a periodic closed orbit of period T , where T > 0.
Then x(0) = x(T ), which implies

0 = V (x(T )) − V (x(0)) =

∫ T

0

V̇ dt.

However, the integrand is strictly positive, so the right-hand expression
cannot be zero, and we have a contradiction.

A similar argument handles the cases of homoclinic loops and directed
heteroclinic cycles as follows. Suppose x̄1, x̄2, . . . , x̄m, where m ≥ 1, are
fixed points, each of which is connected to the next by an orbit, and x̄m

is connected back to x̄1. By a similar argument, V (x̄1) < V (x̄2) < · · · <
V (x̄m) < V (x̄1), so we have a contradiction. ut
Proposition 8. All orbits of (8) tend to some fixed point as t → ∞.

Proof. The function V (x) is continuous and its domain, the simplex, is com-
pact. Therefore, V (x) is bounded. For an orbit x(t) other than a fixed point,
the value of V (x(t)) is strictly increasing and bounded. It must therefore
approach a finite limit from below as t → ∞. This implies that V̇ → 0, and
by (31), ẋ → 0, which is only possible if the orbit converges to a fixed point.
ut
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9. Conclusion

The results of the preceding sections allow us to form a fairly complete
picture of the fully symmetric language dynamical equation. In particular,
we have a complete description of the pattern of bifurcations as q increases
from 1/n to 1. For low values of q, there is only one fixed point, the uniform
fixed point, and it is a stable sink. As q exceeds q̂1, the 1-up and (n− 1)-up
fixed points appear in pairs, one pair in each corner of the simplex, through
saddle-node bifurcations. The 1-up fixed points are stable sinks and remain
stable as q increases, but the (n−1)-up fixed points are saddles. Their stable
manifolds initially form the boundaries between the basins of attraction of
the uniform fixed point and those of the 1-up fixed points. As q increases
further, the other m-up fixed points appear in saddle-node bifurcations,
and are always saddles. When q finally reaches q̂max , the m-up fixed points
for m > n/2 all collide with the uniform fixed point in an Sn-symmetric
transcritical bifurcation. As q increases, the m-up fixed points separate,
having shuffled their stabilities and become saddles with different stable
and unstable manifolds than they had before the bifurcation. The uniform
fixed point continues to exist, but is now an unstable source.

By analyzing the fully symmetric language dynamical equation as a near-
gradient system, we have shown that its behavior is fairly straightforward.
There are no closed orbits, no homoclinic loops or directed heteroclinic
cycles, and all orbits tend to a fixed point as time increases.

This model provides a mathematical foundation for understanding lin-
guistic phenomena that have to do with population dynamics, evolution-
ary phenomena, and learning in heterogeneous environments. Consider for
example the transition from Old English to Middle English. One theory,
described in [16], is that part of the change was due to the influence of
Scandinavian invaders, whose language was somewhat similar to Old En-
glish. The results in this paper may be linked to this hypothesis as fol-
lows. Before the invaders, the English linguistic environment was relatively
uniform apart from dialectical differences. In this situation, the grammars
available to children were a number variations of Old English, and learning
was very reliable, that is, a was close to 1 but q was large enough that the
population had settled into a single-grammar equilibrium. (Grammars very
different from Old English can be ignored, as the probability that a child
makes enough learning errors to speak something totally different seems to
be tiny in this case.) Once the invaders arrived, the presence of Scandina-
vian speech caused enough confusion that children were unable to properly
acquire certain features of Old English, such as the case system. That is, the
added linguistic noise caused q to decrease enough to destabilize the single-
grammar equilibrium. When the invasion ceased, q increased again, and the
population settled down into a different single-grammar equilibrium.

The results of this paper can be extended in a number of directions. For
example, when the A and Q parameters of the language dynamical equation
are set to the symmetric forms here plus a small, asymmetric perturbation,
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the mass collision of fixed points which results in the Sn transcritical bifur-
cation will not occur, and the transition to coherence will happen in several
small bifurcations instead of one big one. To understand all possible pertur-
bations would require finding a universal unfolding of the Sn transcritical
bifurcation in an arbitrary number of dimensions. (See, for example, [1] for
another instance of this bifurcation and [7] for a relevant theorem.) An alter-
native would be to explore parameter settings which have a smaller symme-
try group, for example, cyclic or dihedral symmetry. This model currently
ignores spatial effects, such as clustering, which are known to be crucial in
maintaining linguistic diversity. For example, Papua New Guinea is home
to many isolated tribes separated by mountains, and hundreds of languages
are spoken there. Spatial effects could be incorporated into this model by
re-formulating it for a number of discrete cities with limited interaction, or
by moving to a system of partial differential equations.
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