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Universal grammar (UG) is a list of innate constraints that specify the set of gram-

mars that can be learned by the child during primary language acquisition. UG

of the human brain has been shaped by evolution. Evolution requires variation.
Hence, we have to postulate and study variation of UG. We investigate evolution-

ary dynamics and language acquisition in the context of multiple UGs. We provide

examples for competitive exclusion and stable coexistence of different UGs. More

specific UGs admit fewer candidate grammars, and less specific UGs admit more
candidate grammars. We will analyze conditions for more specific UGs to outcom-

pete less specific UGs and vice versa. An interesting finding is that less specific
UGs can resist invasion by more specific UGs if learning is more accurate. In

other words, accurate learning stabilizes UGs that admit large numbers of candi-
date grammars.

© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Human languages are composed of a lexicon, which is a set of words and their
meanings, and a grammar, which is a set of rules for building and interpreting
sentencesRinker, 1990. Children learn both parts inductively, based on the lin-
guistic input they receive. The task of acquiring grammar from example sentences
is known to require some constraints on the set of possible grammars. Univer-
sal grammar (UG) is a set of constraints that guide primary language acquisi-
tion (Chomsky 1965 1972 Wexler and Culicoverl98Q Lightfoot, 1991, 1999.

In general, language acquisition can be formulated as a process of choosing among
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a (finite) number of candidate grammars specified by universal grammar (UG)
(Gibson and Wexler1994.

UG is both a product of evolution and a consequence of mathematical or com-
putational constraints that apply to any communication systénagerekal998.

Since evolution requires variation, we have to study natural selection among differ-
ent UGs. Hence, this paper is an investigation into what happens when more than
one UG is present in a given population.

While a genetically encoded (innate) UG is a logical requirement for the process

of language acquisition [seldowak et al. (2002)], there is considerable debate
about the nature of the genetically encoded constraints. Interestingly, in a recent
study, a mutation in a gene was linked to a language disorder in huinaires @l.,
2001 providing a specific example of a genetic modification that affects linguistic
performance. It is therefore natural to construct population models which incor-
porate genetic variation in the form of multiple UGs, and to explore the long-term
behavior of such models.

We explore three possibilities of selective dynamics. The fi@hinancemeans
that one particular UG takes over the population from any initial state. The sec-
ond,competitive exclusigmappens when some UG takes over the population, but
the initial state influences which one. The thiohexistencemeans that two or
more UGs exist stably. We construct a dynamical system describing a population
of individuals. Each individual has an innate UG and speaks one of the grammars
generated by this UG. Individuals reproduce in proportion to their ability to com-
municate with the whole population, passing on their UG to their offspring genet-
ically, and attempting to teach their grammar to their children. The children can
make mistakes and learn a different grammar than their parents speak, but within
the constraints of their UG.

Section2 describes the mathematical details of the model, which is an extension
of the language dynamical equation frdfemarovaet al. (2001, Nowak et al.
(200D, Mitchener (2002 and Nowak et al. (2002. It assumes that there are a
number of UGs, and people acquire one of the grammars specified by their UG
based on sample sentences they hear from their parents.

Section3 analyzes a one-dimensional case with one UG that specifies two can-
didate grammars. This simple case is used as a building block for subsequent
analysis.

In Section4, we study the selection between two UGk admits grammaG,
while U, admits grammar&; andG,. This case is of interest because it illustrates
the competition between a more specific UG, that is, one with more constraints
and therefore fewer options, and a less specific UG. We never find coexistence
betweenU; andU,. For certain parameter valued; dominatesU,, meaning
that the only stable equilibrium consists entirely of individuals vidth For other
parameter values, we find competitive exclusion: HathandU, can give rise to
stable equilibria. In particulak), is stable against invasion Ry, if learning is
sufficiently accurate and if most individuals uSe.
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In Section5, we study two extensions. First, we consider what happens if a
multi-grammar UG denoted Wdy,, which allows grammar&,—-G,, competes with
n single-grammar UGs denoted by—U,, whereU; allows onlyG;. To simplify
the analysis, symmetry is imposed on the model. It turns outipét never able
to take over the population, but that any one of the single-grammar UGs can. In
a second extensiokly only competes against;. In this case, there can be a sta-
ble equilibrium that consists entirely of individuals with, provided its learning
algorithm is sufficiently reliable, and the population does not contain too many
speakers 06;.

In Section6 we allow grammars to be ambiguous, and study the case where
U, admits grammafG;, while U, admits grammar§$, and Gs. We provide an
example wheredJ, dominatedJ; and an example whefd,; andU, coexist in a
stable equilibrium.

In Section7, we draw some conclusions and discuss the next steps in this line of
research.

The fascinating question of language evolution has generated an extensive lite-
rature Lieberman 1984 Aitchinson 1987 Bickerton 199Q Pinker, 1990 Pinker
and Bloom 1990 Hauser1996 Hurfordet al.,, 1998 Ghazanfar and Hause€r999
Jackendoff 1999 Grasslyet al,, 200Q Hauseret al,, 2001, Ramuset al., 200Q
Studdert-Kennedy200Q Krakauer 200% Lachmannet al, 2001). The purpose
of this paper is to contribute to the understanding of the evolution of grammar
through mathematical modeldl¢wak and Krakauerl999 Nowak et al., 200Q
2001, 2002 Cangelosi and Paris2001; Ferrer and S@&, 2001ab; Kirby, 2001) that
incorporate ideas from linguistics, as well as evolutionary game thétofpbauer
and Sigmund1998 and different forms of learning theorg6ld, 1967 Valiant,

1984 Vapnik, 1995 Niyogi and Berwick 1996 Niyogi, 1998.

2. LANGUAGE DYNAMICS WITH MULTIPLE UNIVERSAL GRAMMARS

Suppose we have a large population, each member of which is born with one of
the N UGs U1, Uy, ..., Uy and speaks one of thegrammarsG,, Go, ..., Gy.
Each UG consists of a list of which grammars it allows, and has an associated
language acquisition algorithm. The grammars are assumed to have an overlap
given by the matrixA, where A ; is the probability that a sentence spoken at
random by a speaker @; can be parsed by a speaker®f. A grammarG; is
said to beunambiguousf A;; = 1, becauseA;; < 1 implies that two people
with the same grammar can misunderstand each other due to some sentence with
multiple meanings.

Definex; k to be the fraction of the population which sped@ksand possesses
UG Uk. We haved Zj xi.k = 1. Every population state can be represented as a
point on a simplex. The population changes over time in that individuals reproduce
at a rate determined by their ability to communicate with everyone else, passing
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their UG to their offspring via genetic inheritance, and passing their language on
through teaching and learning. As a simplifying assumption, we ignore genetic
mutation, but include the possibility that children make mistakes learning their
parents’ language. The learning process is expressed by the three-axis @atrix
whereQ; j k is the probability that a parent speakiGg produces a child speaking

G; given that both have UGk . Since every child must speak some langudge,

is row-stochastic, that iii Qi,j,k = 1foralli andK. The reproductive rat&;
depends on which grammar an individual uses and the composition of the rest of
the population, and is given by

N n
Ai,' + A.’.
Fj = Z Z Bi,jxi,K WhereBi,J- = % (1)
K=1i=1
To write the ordinary differential equation (ODE) governing the population dyna-
mics, we also need the variahtewhich represents the average reproductive rate
of the population:

N n
o= Y FiXjk. )

K=1j=1
The language dynamical equation with multiple UGs is then

n
Xj,K :ZFiXi,KQi,j,K_d)Xj,K Wherej =1...n, K=1...N. (3)
i=1
The first term says that the sub-population which has WGand speaks with
grammarG; will produce Fix; x offspring, of whichQ; ; x end up speaking
Gj. The second term is to enforce the constrgiif > Xjx = 0 so that
2. 2k Xj,k = Lforalltime. To see this, let

n N
Mic=2_ > X )

j=1K=1
so that
n N
Mi=) "> Xk
j=1K=1
N n n n
=y Fixik Y Quik | =8> Xk
K=1 \i=1 j=1 j=1
N n
- Z FIXI K — ¢Ml
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Since¢ > 0, there is a stable equilibrium 8t; = 1. Hence, the population state
is confined to the hyperplarje,; » . Xjk = 1.

Furthermore, the positive orthant, defined by the inequalkjes > 0 for all |
and K, is a trapping region. To see this, observe that for each bounding hyper-
plane given byx; x = 0, the value ofX; x is a sum of terms each of which is
Fixi k Qi,j,k = 0. Thus, the vector field points either into the bounding hyperplane
or into the interior of the positive orthant. We will therefore restrict our attention to
trajectories in the simple&§nn), which is the intersection of the hyperplane given
by >_; >« Xj.x = 1 and the positive orthant.

In some cases, such as the one in Sectiome will further restrict our attention
to a face ofSnn), which is itself a lower-dimensional simplex. This restriction
comes from assuming that sotdg disallows somés;, so thatx; k is fixed at 0.

3. Two GRAMMARS AND ONE UNIVERSAL GRAMMAR

The case to be examined here, that of a single UG which generates two unam-
biguous grammars, takes placeSy a one-dimensional phase space. We use this
case as an essential building block in later sections.

3.1. Parameter values. Since there is only one UG, we will omit th€ sub-
script fromx and Q. There are three choices of real numbers which fill in all the
parameters for this case of the language dynamical equation, which come from
considering the possibilities fok andQ as follows. The most general form of the
overlap matrixA for two unambiguous grammars is

_ 1 ai o
A (az’l ' )

However, theA matrix only enters the dynamical system through Bhmatrix, as
in (1), and sinceB is a symmetric matrix,

B _ A+AT ( 1 (a2 + aZ,l)/Z)
2 \(@2ta/2 1 ’

there is really only one degree of freedom in choostgso, we define

a2t a

b
2 )

(5)

and allow this to be the one free parameter determined by the overlap beByeen
andG,. The most general form for the learning algorithm matpixs

(f a l1-a
Q_(l—% 02 ) ©
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which has two degrees of freedom. The ranges of the parameters<ate Q 1,

0< g <1, and0< g, < 1. Although we can certainly consider the cases where
g: andg are less than /2, these are somewhat pathological because they represent
a situation where children are more likely to learn the grammar opposite to the one
their parents speak. Furthermorej #= 0 thenG; andG, have nothing in common

and wherb = 1 they are identical. Both of these settings are degenerate and will
not be analyzed here.

3.2. Fixed point analysis. In the present case, everything takes place on a unit
interval 0< x; < 1, and the dynamical system is one dimensional, as can be seen
by expanding3) and replacing, with 1 — X;:

X1 =(1-02)

+ (=3 +b(1+ a1 — ) + 202)%1 )
+ (1 —b)(B+ 0 — )X2

—2(1—-b)x3.

It is useful to change coordinates x¢ = 1 — 2r so that the dynamical system
inhabits an interval-1 < r < 1 that is symmetric about 0. The vector field now
takes on the form

F=—2((1+b)(0 — %)

+ @+ b—2(0n + g))r )
+ (1 —b)(q — g)r?

+ (1 —byrd).

By straightforward calculation, if = —1 thenf = 2(1—q;) > 0, andifr = 1

thenf = 2(—1+ @) < 0. By the intermediate value theorem, there must be at
least one fixed point in the interval. Sintes a cubic polynomial irr, there can

be either one, two, or three fixed points, depending on the choice of parameters.
Keeping in mind that the vector field points inward at both ends of the interval, the
dynamical system must follow one of the phase portraits in Eiglwo kinds of
bifurcations are possible: saddle-node and pitchfork. The remainder of this section
will be spent developing a partial answer to the question of which parameter values
cause particular bifurcations, and where the fixed points are when they take place.
Rather than solvé = 0 directly, we will make use of the following variations of
some well-known lemmas [see Chapter JAofdronovet al. (1971 or Chapter 4 of
Ahlfors (1979] and indirect methods to extract information about the bifurcations.

LEMMA 1. Let f(x) be a polynomial with a root z of multiplicity » 1. Then z
is a root of f(x) with multiplicity n— 1.
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(a) ®
(b) J

(c)
(d) ®
(e) ] @

L1

1

]

Figure 1. Possible phase portraits for the base line of the simplex. Kaéydicates a

sink, o indicates a sourcé&] indicates a nonhyperbolic fixed point. Pictures (a) and (e) are
structurally stable; (b) and (d) are saddle-node or transcritical bifurcations; and (c) is a
pitchfork bifurcation.

Proof. Write f(x) = (X — 2)"g(x) whereg(z) # 0. Then

f'(x) = n(x — 2" g(x) + (x — 2)"g'(x)
= (X — 2" (Ng(X) + (X — 2g (X)).

Observe from the first factor in the bottom line ttzas a root of f'(x) of multi-
plicity at leastn — 1. At X = z, the second factor takes the valug(z) which is
nonzero, so the multiplicity aof is exactlyn — 1. O

LEMMA 2. Let f(x) be a polynomial with a root z such that(Z) = 0. Then z is
a root of multiplicity two or more.

Proof. Let z be a root off with multiplicity n. Sincez is a root of f” of multi-
plicity n — 1 andn — 1 > 1, it follows thatn > 2. O

LeEMMA 3. Given a real-valued polynomial dynamical systess f (x), the non-
hyperbolic fixed points are exactly the roots of f of multiplicity two or more.

Proof. From Lemmal, every root off of multiplicity two or more is a nonhy-
perbolic fixed point. Conversely, #is a nonhyperbolic fixed point, thef(z) = 0
and f’(z) = 0, and Lemma& guarantees thatis a root of f of multiplicity two or
more. |

Lemma3 is the most useful, as it allows us to find the bifurcation parameters
of (8) without explicitly solving a cubic. In particular, for saddle-node and trans-
critical bifurcations there is a double root of the polynomial and for pitchfork bifur-
cations there is a triple root of the polynomial. Thus, the parameter settings which
generate the nonhyperbolic fixed points in Figparts (b), (c), and (d) may be
found by matchingg) against a general template polynomial with multiple roots,
as will be illustrated below.

As a side note, the results of this section will be used to analyze higher-
dimensional dynamical systems in which both saddle-node and transcritical
bifurcations will be possible, both of which are characterized by a double root.
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Figure 2. Bifurcation surface. Observe that in this picture,ghe@ndg, axes run only

from 0.7 to 1. On the tent-shaped surface, there are one or two fixed points with at least
one nonhyperbolic. Above the surface, the system has one hyperbolic fixed point, and
below, it has three.

Saddle-node bifurcations are distinguished from transcritical bifurcations in that
the double root comes into existence at the bifurcation rather than forming from
the collision of two pre-existing fixed points. The template polynomial method
does not distinguish between these two cases as it can only locate parameter
settings that produce nonhyperbolic fixed points. The way in which the parameters
change so as to pass through such settings determines which type of bifurcation
takes place.

PROPOSITION 4. The unique parameter setting which produces the phase por-
trait given in Fig.1(c) (the pitchfork bifurcationis

345D

d=0q 2

The nonhyperbolic fixed point is at+ 0, corresponding to x= x, = 1/2, the
center of the phase space.

Proof. The technique is to sét= 0 and seek parameters that generate a triple
root. We divide the resulting cubic equation by the coefficientofo produce
a monic polynomial, and set the resulting coefficients equal to the corresponding
coefficients of(r — p)® where p is an unknown variable, corresponding to the
nonhyperbolic fixed point. The resulting system of equations is

3 (1+b)(g—d)

N 1-b ’
. 3+b—2q1—2q2
a 1-b ’

(9a)

3p? (9b)
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—3p =01 — Q. (9¢c)

It turns out that this system can be solveddprandg; in terms ofb. To begin, we
use Qc) to eliminateq, in (98 which yields

3, 31+b)

—o.
“1+p P

This equation has three roots,

1+b
—0, — 43/
p p fl_b

The second and third roots lie outside the interval of interelstc p < 1, so the
only possible solution i = 0 from which it follows thaty; = g, = (3+ b)/4.0

The cases in which there are two fixed points and one is a double root is signi-
ficantly more complicated because there is an additional unknown variable. This
next result is a partial solution.

PropPoOSITION 5. Forthe phase portraits shown in Fidparts(b) and(d) (which
are saddle-node or transcritical bifurcationsthe sink and nonhyperbolic fixed
point lie on opposite halves of phase space.

Proof. We begin as in Propositio, but this time matching = 0 against the
cubic templatgr — p,)%(r — po) wherep; is the nonhyperbolic fixed point arjp
is the sink. The initial system of equations is

1+ b)(qy —
o2p :( )(Q1 — O2)

— M1 M2 1_ b ) (1oa)
34b— 20 — 2

i+ 2mpe = = _qé) % (10b)

—2p1 — P2 =01 — Ga. (10c)

We proceed by solving fop; in terms of p,. Substituting {09 into (109 results
in the quadratic equation

1+b
(m) 2p1+ p2) = p%pz,
whose roots are
C Cc? 1+b
=—+ [—4+C hereC = —— > 1.
p1 o p§+ where 1—b>
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From here, we demonstrate that > 0 impliesp; < 0. Clearly

C2
—2+C>1,
\' p3

which implies that thet root lies outside the phase space and is therefore extrane-
ous. Hence the nonhyperbolic fixed point must be located at-thmot. It is easy
to see that

from which it follows that

A similar argument shows that, < 0 impliesp; > 0. If p; = p, = 0, we have
the case of Propositiohwhich is a different phase portrait. O

This next proposition is a constraint that is needed in Sedtion

ProPOSITION 6. There is no setting of the parameters for which three fixed
points lie on the same side of the middle.

Proof. Suppose that we start at parameter values for which there is only one fixed
point, and change them smoothly so that there are three afterward. This means the
system must undergo either a saddle-node or pitchfork bifurcation. In the case of a
saddle-node bifurcation, Propositibrensures that the two new fixed points lie on
the other side of the middle from the original fixed point. If a pitchfork bifurcation
happens, it must occur at the middle of the phase space according to Propgsition
and the two new fixed points must lie to either side of it.

Now assume that three fixed points do exist, and the parameters change so that
one of them crosses the middle, that isy at 0, we have® = 0. Plugging this
assumption into the dynamical system 8) {mplies thatg; = .. Thus in this
circumstance,

Flgp—q, = 37 (401 —3—b— (1—b)r?),

so the other two fixed points must be at

4q;|_ —3-D
+ /)
1-b
Therefore, the only fixed point which can cross the middle of the phase plane is the
central one. O



Competitive Exclusion and Coexistence of Universal Grammars 77

The complete set of bifurcation parameters can be found implicitly by building
from Lemma3 and using the discriminant. By definition, the discriminant of a
polynomial is the product of the squares of the pair-wise differences of its roots,
so it will be 0 when a polynomial has a multiple root. The discriminant can be
expressed entirely in terms of the coefficients of the polynomial. For a general
cubicasz® + a,z% + &,z + ay, the discriminant is

aZaZ — 4apas — 4a’a; + 18apayaag — 27a3a2

a .

Forr, the discriminant is a large expression in termsjnfg,, andb obtained by
filling in this general formula. The bifurcation parameters are the valugg, o,
andb which make this expression 0, and that surface may be plotted implicitly,
as shown in Fig2. According to the picture, the surface consists of two curved
surfaces which meet in a spine whexe= g, = (3 + b)/4 (the pitchfork bifurca-
tion). The bottom corner is @ah = g, = 3/4, b = 0, and the rest of the surface
appears to lie in the regiomy, ¢, > (3 + b)/4. The important thing to notice is
that if g andq, are both close to 1, that is, under the surface, then the dynami-
cal system has three hyperbolic fixed points. Above the surface, there is a single
hyperbolic fixed point, and on the surface, there are one or two fixed points with

at least one nonhyperbolic. The cloges to 1, the largeq; andg, must be to be
under the surface.

(11)

4. Two GRAMMARS AND TwO UNIVERSAL GRAMMARS

In this section, we analyze a two-dimensional, asymmetric instance of the lan-
guage dynamical equation. It models the following scenario: suppose the popu-
lation has a UGQJ; which generates exactly one gramn@y; learning and com-
munication are both perfect. Under what circumstances could the population shift
in favor of a new UGU, which generate$s; plus an additional grammag,?

That is, within this model, when is it advantageous to have a choice between two
grammars? The analysis builds heavily on the results from Segtion

4.1. Parameter settings.The dependent variables of interest afg, x; », and
X2.2. The variablex, ; represents the part of the population which speakdut
has UGU,, and by assumption, this is 0. Thus, the dynamical system in this case
is in three variables with two degrees of freedom and can therefore be analyzed as
a planar system.

As in Section3, the A matrix only enters the dynamical system through Bhe
matrix, as in (), and sinceB is a symmetric matrix, there is really only one degree
of freedom in choosin@\. So, we define

A2t

b= =272, (12)
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and allow this to be the one free parameter determined by the overlap beByeen
andG,. The most general form for the learning algorithm mat@ixs

10 0 1—q1)
o , - , 13
Ql,J,l (* *> Ql,],Z (1_q2 o ( )

which has two degrees of freedom. The entries filled widre always multiplied

by x2.1 which is assumed to be 0, so they do not matter. Thus this model has a
total of three free parametets, q;, andgy, all of which are assumed to lie strictly
between 0 and 1.

4.2. Geometric analysis of the dynamicswith these parameter settings, and the
fact thatx; 2 = 1 — X1.1 — X2.2, the dynamical systen8) simplifies to

X11=— (1= Db)X11X22(2%2 2 — 1),

Xo2=1—01+ (=1+Qqu)Xu1
+(=3+b+m+A-b)g+bp+ (—=1+b)(—=1+d)X11)X22 (14)
+(=2(=1+b) + (=14 b)(~1+aw) + G2 — ba)x3
+2(—=1+b)x3,.

It lives on the three-vertex simples, that is, a triangle. The vertices correspond
to x; k = 1 and will be labele « in diagrams.

From here, a fairly complete understanding of the bifurcations of this system can
be derived from some simple calculations and geometric considerations. To begin,
we will find lines along whichx; ; = 0, and the vector field is therefore parallel
to the base of the simplex. These are calted null-clines From (4), it is clear
thatx, ; is O in three places: the lineg 1 = 0, which is the base of the simplex,
andx,, = 0, which is the left edge, and the lin@, = 1/2, which runs across
the simplex. In particular, the base lirg; = 0 is invariant under this vector field.
See Fig3.

Several fixed points are easily located. Observe thatif= 0 thenx; ; = 0 and
X22 = (1—01)(1— Xxg.1). So the apex is the only fixed point on the left side of the
simplex. Also, since the vector field always points upward toward it, it is stable.
Another fixed point may be located on the cross line by substituting= 1/2
into (14) yielding

X1y, .41, =0,
‘x2_2_1/2 (15)
>'(2,2|X2‘2:1/2 = 71+ b)(02 — 1 — 2(1 — qu)X1.1).

from which we find that

02 — Ot 1)

X11, X09) = | ———— =
(X1,1, X2.2) (Z(l—ql) 5
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Figure 3. The simplex, with null-clines. The bold lines indicate wherg = 0. The
arrows indicate the sign afy 1 in the regions in between, up for positive, down for
negative.

is the unique fixed point on the ling, = 1/2. It is located inside the simplex
for g > q; and outside otherwise. Observe that the vertical component of the
vector field is upward above this fixed point, and downward below it, so it must be
unstable. The horizontal component of the vector field to its right points leftward,
and to its left it points rightward, indicating that locally, orbits flow toward the fixed
point from either side. Thus, this fixed point is a saddle.

Consider the base line, which is invariant under this vector field and may there-
fore be partially analyzed in isolation. It is exactly the same as the general two-
grammar problem from Sectid) and must look like one of the phase portraits in
Fig. 1, except that those pictures show only stability or instability in the horizontal
direction. Stability of one of these fixed points in the vertical direction is deter-
mined by which side of the cross line it lies oRj ; is positive on the left side,
indicating instability, and negative on the right side, indicating stability.

We must determine where the fixed points in Fignay lie with respect to the
point (Xy.1, X2,2) = (0, 1/2), which we do by examining the behavior of the saddle
point on the cross ling, , = 1/2. The key fact is that the vector field on the cross
line points leftward above the saddle point, and rightward below it, and changes
direction only at that fixed point. Observe that the vector field at the upper right
end of the cross lin€xy 1, X22) = (1/2,1/2) is (X1.1, X2.2) = (0, —(1/4)(1 +
b)(1—0q3)), which points leftward. The direction of the vector field&f 1, X22) =
(0, 1/2) is either left or right, depending on the configuration of fixed points on
the base line. If it points to the left, then the fixed point on the cross line must
lie outside the simplex because the vector field must point left along the entire
segment of the cross line within the simplex. Similarly, if the vector field points
to the right at(0, 1/2), then the saddle point must lie inside the simplex. From
previous analysis, the saddle point lies inside the simplex if and ogpy q;, so
we have a link between the valuesgafandg, and the phase portraits in Fig.

Now we must determine how the saddle point crosses the base line into the sim-
plex. It must pass through the poitx; 1, X2 2) = (0, 1/2). Substituting this point
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into (15), we see that the parameter values which cause this must gatisfyg,.

As it crosses the base line, it must coincide exactly with one of the fixed points
there. Since the saddle point passes through the collision, the fixed points must
cross in a transcritical bifurcation. To determine which fixed point is crossed, we
substituteq, = q; = q into the dynamical system irl{) and examine the base
line. Note thatx; ; = 0 sox;; = 0. Also:

X2 = (—1+2%2)(—1+ g+ (1 —b)x2 4+ (—1+ b)x3,). (16)

O2=01=q.X1,1=0 ~

The roots of this cubic correspond to the fixed points on the base line; they are

1 1 1
> and > + > a7
We now get three cases. df > (3 + b)/4, then there are three fixed points as in
Fig. 1(e), one exactly in the middle and two to either sideq K& (3 + b)/4, then
there is one fixed point, exactly in the middle as in Fip). If g = (3 + b)/4,
then there is one degenerate fixed point exactly in the middle as irl{€)g.in
which case the pitchfork and transcritical bifurcations happen simultaneously. At
any rate, the saddle point can only enter the simplex by passing through the central
fixed point on the base line.

The parameter space breaks up into four regions as shown id.Fighe tent-
shaped surface is the same as the one inZid\bove it, there is one fixed point
on the base line. Below it, there are three fixed points on the base line. On the
faces, there are two fixed points, one nonhyperbolic, and on the edge, there is one
nonhyperbolic fixed point. The vertical plane separates the regions \gheray,
from the regions wherg, < ;. The complete bifurcation scenario is shown in
Fig. 5. The fixed points on the base line are constrained by Propos#igisso
the cases shown are the only possibilities. Phase portraits irbFige labeled
according to which part of the parameter space in ifpey represent.

4.3. Competition between the universal grammarsthe bifurcation scenario
depicted in Fig5 can be analyzed in terms of competition between the two UGs.
The structurally stable pictures are (a), (c), (g), and (i); these are the ones that occur
generically. Observe that in (a), there is only one stable fixed point, and it occurs
at the apex of the triangular phase space. All interior orbits will approach this fixed
point. Thus, in the case whetg < q; and both are fairly smallJ; dominates.

In (c), there are two stable fixed points, the one at the apex corresponding to a
takeover byU; and the one on the base line corresponding to a takeovek by
Their basins of attraction are separated by the stable manifold of the saddle point
on the cross line. Approximations to their basins of attraction can be found by
drawing a dashed horizontal line through the saddle. Orbits can only cross the left-
hand segment of the dashed line by going upward, and the upper segment of the
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Figure 4. Parameter space with bifurcation surfaces. Areas (a), (c), (g) and (i) are regions
in space, indicated by bold arrows. Areas (b), (d), (f), and (h) are the surfaces that separate
those regions, indicated by black and white arrows. Areas (d) and (f) are the front and
back surfaces of the tent. Area (b) is the part of the plane above the tent, and (h) is the part
below it. Area (e) is a line where the two curved surfaces and the vertical plane intersect,
indicated by thin arrows.

cross line by going leftward, which means these two segments bound a trapping
region containing the apex. Similarly, orbits can only cross the right-hand segment
of the dashed line by going downward, and the lower segment of the cross line by
going rightward, which means there is another trapping region containing the sink
on the base line. In this case, where < g, and both are fairly small, there is
competitive exclusion between the two UGs. The most direct transition from (a) to
(c) is a transcritical bifurcation passing through (b). Shortly after this bifurcation,
the saddle point will be very close to the base line, so the trapping regith feill

be quite small. Asp, increases, the saddle point moves upward and trapping region
expands. A similar situation exists in (i), the difference being that the base line
contains two other fixed points which affect a negligible fraction of the phase space.
The situation is slightly different in (g). Again, there are two stable fixed points,
but the saddle point whose stable manifold separates their basins of attraction is
on the base line rather than on the cross line. There does not seem to be a simple
trapping region that approximates the basins of attraction in this picture.

4.4. Discussion of Sectiod. To summarize, the scenario examined in this sec-
tion generically contains instances whéredominates, and instances where there
is competitive exclusion, but none whddg dominates or where both UGs coex-
ist. FurthermorelJ, can only take over ifl, > @ as in pictures (c) and (i), or

if g, andq, are both close to 1 as in picture (g). In the first caSeg/s acquired
more accurately tha6,, so it has an advantage and tends to increase in the pop-
ulation thereby puttindJ, at a disadvantage. In the second case, it appears that
althoughG; may be learned more reliably th&y, the learning reliability oG,

is sufficiently high that it can maintain a large portion of the population through
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Figure 5. Phase portraits for the selection dynamics betwbefapex) andU, (base

line). Uy admitsG4, andU, admitsG41 andG». EitherU; dominates as in (a), or there

is bistability betweerd, andU»,. The parameters for each picture come from the region

of the same label in Figd. Key: e indicates a sinkg indicates a saddle; indicates a
source [ indicates a nonhyperbolic fixed point. Arrows indicate (roughly) the direction

of the vector field. In pictures (c), (f), and (i), the cross line and the horizontal dashed line
through the saddle point define approximate upper and lower trapping regions for the two
sinks. The actual boundary between their basins of attraction is the stable manifold of the
saddle point, which is sketched as a dotted line. Picture (g) also contains such a boundary.

‘market share’ effects, again puttind; at a disadvantage. Observe that in any
case U, can only take over the population throu@h. A population ofU, people
speakingG; can be invaded byJ,. This is an illustration of a process by which

a valuable acquired trait can become innate. This effect suggests that human UG
may have once allowed many more possible grammars than it does now, and that
as portions of popular grammars became innate, UG became more restrictive.

5. AMULTI-GRAMMAR UG COMPETING WITH SINGLE -GRAMMAR UGS

In this section, we will examine cases in which a UG with multiple grammars
competes with a number of UGs that have only a single grammar each. We will
begin by building on the results from Sectidim two ways, extending that analysis
to symmetric cases in an arbitrary number of dimensions.
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5.1. The case of full competition. Let us extend the case from Sectidrby
assuming that there are three UGs. The fldgt,allows onlyG;. The secondyJs,
allows onlyG,. The third,Up, allows bothG; andG,. Since there is one single-
grammar UG for each possible grammar, this case will be céliédompetition.
We would like to determine whether one of these UGs can take over the population.
This situation contains two copies of the case from Seetjame in which every-
one used)y orUy, and a second in which everyone ukgr U,. From the former,
there is generically no stable equilibrium in whidp takes over with a majority of
people speaking;. From the latter, there is generically no stable equilibrium in
which Uy takes over with a majority of people speaki@g. If Uy is to take over,
eitherG; or G, must be in the majority, so it follows thak, is unable to take over.
This result extends to an arbitrary number of grammars as follows. Let the gram-
mars beG; to G, and assume there are UGswhich specify only the grammar
Gj. Assume there is an additional Udy which allows any of the grammars. As
a simplification, assume that the grammars are fully symmetric and unambiguous,
thatis,A; = 1 andA; = afori # j. The parametea is required to be strictly
between 0 and 1. For reasons that will become clear in a moment, the learning
matrix Q is allowed to be fully general except that no grammar is allowed to have
perfect learning undedy, that is,Q; ;o < 1 for alli.
We will need the following new notation. We are interested in determining if one
UG out of theUk can take over the population, and if so, which one. We therefore
define

n
Y =Y Xjk (18)
=1

to be the total population witklx. The dynamics foryx can be expressed suc-
cinctly by using the fact tha® is row stochastic:

n
Yk = ZXJ',K
=1

> (Z(Fi Xk Qi.jk) — ¢>X1,K)

j=1 \i=1

(19)

=}

n n
Fixi,KZQi,j,K _¢ij,K
1 =1 =1

=}

FiXik — oyk.

Il
i
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We may further simplify the notation by introducing the variable
n
Pk = Z FiXi k., (20)
i=1
from which it follows thatp = )", ¢« and

n
Y =Y FiXik — @Yk = dx — dYk. (21)
i=1
There is no explicit reference @ in yk, althoughQ does influence the dynamics.
It happens that the main result of this section does not depeffonexactly this
reason.
Because of the symmetry imposed Anthe dynamics of thek simplify con-
siderably. If we further define

vV = (Xl,O, X2,Oa ceey Xn,O)’ (22)
w = (Xl,l’ X2,27 sy Xn,n)a (23)
then
Yo=—(1—a)((v+w)-w)Yo,
(24)
Yk =L—a)(Xko+ Yk — v+ w) - (v+ w))yk whereK =1...n.

Note that the sum of the entries ofs equal toyy, and the sum of the entries of
is equal to 1 yo.

PROPOSITION 7. The multi-grammar UG, b is always unstable, that is, i
1, thenyy < 0. The single-grammar UGs are stable, meaning that for-Kl, if
Yk is close tol, then ¥ is increasing.

Proof. We will prove both statements by starting from a population that consists
entirely of one UG, and perturbing it by convertingf the population to another
UG.

To prove the first statement, suppose that 1 — ¢. All the entries ofv andw
are greater than or equal to 0, sew > 0. Sincew must be nonzero, it follows
thatyp = —(1—a)(v-w+w-w)Yyy < 0. In fact, in any population state where not
everyone hakly, the number of people witbg will decrease. Thug), is unstable
and cannot take over the population.

To prove the second statement, x> 1 and assume thgk = 1 — ¢. Observe
that

n
W+w) - @+w) =Y (Xo+X.)?
i=1

=(kot+1-82+ D> o+X)2
i=1.n,
14K
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The summation is ovan — 1 terms, each of which is greater than or equal to 0,
and their sum is fixed at + (1 — ¢) — Xo k. Therefore, the summation is at most
(& — Xo.k)? (see Lemma). It follows that

Vi > (L—a)(l—e)(l—e+Xcko— (L— e+ X0)? — (£ — Xk.0)?)
=AQ-a)d—¢e)(e —xXk.0(1—2(e —Xk.0))-

As long asxk o < ¢, we haveyk > 0. This will continue to be true as o < Yyk.

If Xk 0 = ¢, that is,xk o accounts for the entire perturbation, then we need the
assumption that undéfy, no language is learned perfectly. So, a short time later,
Xk .o Will decrease as some children will have mistakenly learned another grammar,
sayGp, SOXp o > 0. At this point, we will have a new perturbation wiyh = &’
andxg o < ¢, and it follows thatyx > O. O

The following lemma is used to make approximations in this and other proofs in
this section.

LEMMA 8. Suppose that for i= 1...m, we have numberg > O such that
Y iai =o.Then
2

o m
— < E (xizfo*z.
m ‘

i=1

Proof. Considere = («;)"; as a vector irR™. It is contained in a simplex
because the sum of its entries is fixed. The point on the simplex closest to the
origin is the center, correspondingdp = o/m for all i, and this point yields the
lower bound. The vertices of the simplex are the farthest points from the origin,
corresponding ta; = o ande; = O for alli # |, and these points give the upper
bound. O

Proposition7 implies that UGs with many grammars are unable to compete
directly with UGs that specify only one grammatr.

5.2. The case of limited competition.The two-dimensional case from Sectibn
illustrates a situation where a multi-grammar UG can have a stable equilibrium
where a majority of the people use a grammar that does not occur as part of a
single-grammar UG. We now turn our attention to a different extension of this

case in which there are two UGdy which specifiesG, ..., G,, andU; which
specifies onlyG;. As before, theA matrix is assumed to be fully symmetric, with
all diagonal entriesh;; = 1 and all off-diagonal entries; ; = a. The Q matrix

disappears again, and we need only the assumption that no grammar is learned
perfectly undetdy. By using the fact thay; = X131 = 1 — Yo, the model can be
reduced to one differential equation of interest,

Yo=(1—a)(—X11— X1.0 + 2X1,1X1.0 + M2)X1.1 25)
=1 —-a)(—1+Yo— X0+ 21— Yo)X1,0 + M2)(1 — o).
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(Recall the definitiorMy = >, > x']-"K.) There is a fixed point aty = 0, as can

be seen by substituting this state into the differential equation. Furtherggoee)
whenyp = 1, so the model can have trapping regions and stable fixed points in the
subset of states which satisfy = 1. We are interested in determining when these
various states are stable under perturbations.

PropPoOsSITION 9. The fixed point ¢ = 0, corresponding to a takeover by, lUs
stable.

Proof. Consider a small perturbatiogg = ¢. Then we must havg; = x;1 =
1 — ¢, and the differential equation satisfies

n
Vo=(1-a) [ —1+e—xo+20—e)xo+@A—e)?+ Y x2 | (1—¢)
j=1

<(l—-a)(—1+e+x0l—-28)+1—2+e*+e)(1—e),

where we have used Lemn&ato bound the summation by?. This expression
factors into

Yo = —(1—a)(e — X 0(1— 2e).

If the perturbation is such thai o < ¢, then the right-hand side is negative, and as
X1.0 < Yo, it will remain negative, sgp will shrink to 0.

If the perturbation is such that o = ¢, then we must use the fact that unélky
there is no perfect learning. After a short time, some other part of the population
with Ug, say,Xn.0, Will be nonzero due to learning error. This new perturbation will
haveyy = ¢" andx; o < ¢’, and as beforgp will shrink to 0. O

The following results show thaiy can still take over, but not witks;. It states
that if X1 o is small enough, then a population consisting only of people With
that is perturbed by adding a small number of people Wittwill recover, at least
in the short term.

PROPOSITION 10. Lete > 0 be small and supposeyy= 1 — ¢ and %1 = «.
Definex = 1/n — Xg0. If k > ¢/(1 — 2¢), thenyp > 0.

Proof. From the differential equation,

n
Yo=(1—a) —8+(28—1)X1’o+82+zxj2,0 &
j=1

_ 2
> (1—a)(—e+(28—1)X1,o+82+(:LTS))S,
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where we have once again used Lenitia bound the summation. By substituting
X1.0 = 1/n — k, the inequality can be simplified to

Yo=>(1— a)(/c —e(l+4+2) + (1+ %)82)8.

The assumption that > ¢/(1 — 2¢) is equivalent tac > ¢(1 + 2«), so the right-
hand side is positive. O

The tricky part about interpreting this proposition is that a population state with
Yo = 1 might still be unstable in the long term: it could move within the constraint
Yo = 1 to a state where; o > 1/n, at which point Propositiori0 no longer
applies and a perturbation can cause the population to be taken ougr &y this
next proposition illustrates.

PROPOSITION 11. Lete > 0 be small and suppose =1 —¢ and % 1 = ¢. If
X1.0 > 1/2 — ¢, then y is decreasing.

Proof. For this proof, we use Lemma to bound the summation igy from
above,

n n

2 2 2 2 2
ij,o = X0+ ij,o <Xig+ (1 —e—X%X0".
=1 =

This bound yields the inequality
Yo < 2e(1—a)(x0 — (1 — &) (X0 — (3 —¢)).

If1 —¢ > X0 > 1/2 — ¢, thenyp is negative, and the perturbation will draw the
population away from the region wheyg = 1, indicating instability.

If X1.0 =1— ¢, then we resort to the argument that a short time later, the popula-
tion will change due to learning error to a different perturbation whygre 1 — ¢’
and some other sub-populatiggne > 0. NowXx; o < &', which implies thatjy < O
and the population is moving away from the region whgye- 1. O

5.3. Some remarks about these result$Several remarks are in order. First, the
Q matrix has mostly disappeared, so Propositiong—-11 hold regardless of the
learning mechanism undely, except that it must not be perfect. In fact, it could
be dynamic, depending on the population state for example, as long as it remains
row stochastic.

Second, the fact that some of the propositions deglgre 1 to be ‘stable’ may
be misleading. As noted before, the population could start in a state wherel
and move within that constraint to a state in whighbegins to decrease. The
simplest behavior for whiclyg = 1 would be truly stable is for the population
to converge to a stable fixed point that satisfies Proposit®rbut it could also
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converge to a limit cycle or to a strange attractor, depending on what behaviors are
available to a population restrictedltl.

We can get more definite results from these propositions if we add assumptions
that ensure that all population states wyth= 1 tend to fixed points. Any fixed
points that are stable when onlyy is allowed and that also fall under Proposi-
tion 10 are stable with respect to all perturbations, including those involving the
introduction ofU;. Any such fixed points that fall under Propositibhare unsta-
ble. Some may be outside the hypotheses of both propositions, and we can say
nothing more about them here.

A full bifurcation analysis of the fully symmetric case of the language dynamical
equation with one UG is worked out Mitchener(2002. To apply those results
here, we must add the assumption that for the learning matridfpall diagonal
elementsQ; ; o = q and all off-diagonal element®; jo = (1 —-q)/(n—1). It
follows from Mitchener(2002 that if only Ug is present, then all populations tend
to fixed points. The analysis shows that there is a con§tant

. 2n-DH2+amn-3)+@-hn-2(n-1)/(1+ah—-2)n-1)
= @—1n_272 ’

(26)
such that ifg < §;, then the only stable fixed point in a population restrictedgo
is one in which every grammar is represented equally. Txus= 1/n and that
fixed point is unstable to perturbations involvidg because of Propositidiil. On
the other hand i) > ¢, then there are stable fixed points, and ea@y is used
by a large part of the population in exactly one of them. These are callett the
up fixed pointsn Mitchener(2002 andsingle grammar fixed poinis Komarova
et al (2001). At the one wheré5; has the majorityx; o > 1/n, so it does not
fall under Propositiod0 and is potentially unstable to perturbations involvitg
If g is sufficiently large, this fixed point moves so thaty approaches 1, so at
some value ofj, it will exceed /2. Then Propositiori1 will apply and the fixed
point will definitely be unstable. At the other fixed points, < 1/n, so they fall
under Propositiori0 and are therefore stable. In short, if the learning process in
Uy is sufficiently reliable, that ig > 1, thenUq can take over the population in a
stable manner, but not throu@h . If learning is unreliable, thed; will eventually
take over.

6. AMBIGUOUS GRAMMARS

In this section we will generalize the case in Sectdarot by adding dimensions
but by allowing the grammar specified hjj to be different from both of those
specified byU,, and by allowing the grammars to be ambiguous. The diagonal
entries ofA are allowed to be less than 1. This case can exhibit a greater variety
of behavior than was seen in Sectibrincluding stable coexistence of both UGs,
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and dominance by,. This form of the language dynamical equation has a total of
eight free parameters. Rather than attempt a complete symbolic analysis, we will
present one short proposition and some numerical results.

6.1. Parameter values.We assume thad, allows for one gramma®s4, and that
U, allows for two grammars@, and Gz. The Q matrix is allowed to be fully
general,

1 0 O * * %
Qii=|* * x|, Qj2=10 G 1-0q]. (27)
*oxoX 0 1-dgs O3

The entries filled with« are always multiplied by song  that is restricted to be

0, so they do not matter. Also, the matixis allowed to be fully general; we even
allow the diagonal elements to be less than 1. The only constraint we plakéson
that since it appears in the model only through= (A + AT)/2 we may as well
assumeA is symmetric. There are eight free parameters, six from the upper half of
A andg, andgs.

6.2. Analysis and phase portraits.The expressions fok; 1, X2» and Xz, are
unwieldy so they will not be written out. However, it turns out that = 1,

X2.2 = X32 = 0 is a fixed point for all parameter settings. The one symbolic result
is the following:

PRoOPOSITION 12. The fixed point X1 = 1, Xo2 = Xz2 = 0 is unstable if
—2A11+ A1202 + Ag303 > 0.

Proof. We reduce the system to two dimensions by replagggby 1 — x;31 —
X2.2. The trace of the Jacobian matrix of the reduced system at the fixed point
in question is—2A; 1 + A1202 + Ag30s. If this is positive, then at least one of
the eigenvalues of the Jacobian must have positive real parSfsegatz(1994
p. 137)]. O

Roughly what this proposition means is thaGf is sufficiently ambiguous, and
G, andG3 are similar to it and can be learned reliably, thénis unable to take
over the population. This situation seems unrealistic, however, there is at least
one reasonable interpretation. Suppose Gais close to the union oG, and
G3, and contains many sentences that can be interpreted so as to have multiple
meanings. Suppose further that many of these sentences @geoinG3 but with
a single meaning. Thud, has an advantage because it restricts its people to some
less ambiguous language at the expense of imperfect learning, and this may be
enough to destabilize a population where everyonelhasPropositionl2 is a
mathematical expression of this situation. Note that when is restricted to be
1, the proposition never applies, and the stability of thefixed point must be
determined by other means.
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Figure 6. Key to phase portraits shown in Fig®. Some fixed points outside the simplex
have been drawn for reference. The three corners of the triangle represent population states
where everyone uses a single language, as indicated. The apex of the triangle represents
U1 = 1 and the base represehis = 1.
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4, = 0.95,¢, = 0.95 4, = 08,4, =085

Figure 7. Two instances whelt® dominates.

A number of phase portraits for a variety of parameter values are drawn in
Figs6-9 based on numerical computations. In particular, these phase portraits
illustrate that with this general model, it is possible to have stable coexistence of
U; andU,, and it is possible fotJ, to dominate. Neither of these situations is
possible in the limited case analyzed in Secdon

7. CONCLUSION

The evolution of UG is based on genetic modifications that affect the architec-
ture of the brain and the classes of grammars that it can learn. At some point in the
evolutionary history of humans, a UG emerged that allowed the acquisition of lan-
guage with unlimited expressibility. In principle, UG can change as a consequence
of random drift (neutral evolution), as a by-product of selection for other cogni-
tive function, or under selection for language acquisition and communication. The
third aspect is the one we consider in this paper.

We explore some low-dimensional cases of natural selection among UGs. In
particular, we study the competition between more specific and less specific UGs.
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Figure 8. Two instances of stable coexistence. Inb)can also take over, but only with
Go.
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Figure 9. Another instance of stable coexistence and an instance of exclusion.

Suppose two UG4)J; andU, are available, antd, admits two grammars;; and

G», while U; admits onlyG;. If learning withinU, is too inaccurate, theld; domi-
natesU,: for all initial conditions that include botbl; andU,, U; will eventually
out-competeJ,. If learning withinUs is sufficiently accurate, then for some initial
conditionsU, will win while for othersU; will win; there is competitive exclusion.

Note that accurate learning stabilizes less specific UGs. We can also find coexis-
tence of two different UGs. We provide such an example whigradmitsG; and

U, admitsG, andGa.

A standard question in ecology is concerned with the competition between spe-
cialists that exploit a specific resource and generalists that utilize many different
resourcesNlay, 2001). Similarly, here we have analyzed competition between
specialist UGs that admit few grammars and generalist UGs that admit many can-
didate grammars. This is an interesting similarity. There is also a major difference:
in ecology the more individuals exploit a resource the less valuable this resource
becomes, butin language the more people use the same grammar the more valuable
this grammar becomes. Hence, the frequency dependency of the fitness functions
work in opposite directions in the two cases.
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The question that we want to understand ultimately is the balance between selec-
tion for more powerful language learning mechanisms that allow acquisition of
larger classes of complex grammars, and selection for more specific UGs that limit
the possible grammars. This paper provides mathematical machinery and a first
step toward this end.
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