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Universal grammar (UG) is a list of innate constraints that specify the set of gram-
mars that can be learned by the child during primary language acquisition. UG
of the human brain has been shaped by evolution. Evolution requires variation.
Hence, we have to postulate and study variation of UG. We investigate evolution-
ary dynamics and language acquisition in the context of multiple UGs. We provide
examples for competitive exclusion and stable coexistence of different UGs. More
specific UGs admit fewer candidate grammars, and less specific UGs admit more
candidate grammars. We will analyze conditions for more specific UGs to outcom-
pete less specific UGs and vice versa. An interesting finding is that less specific
UGs can resist invasion by more specific UGs if learning is more accurate. In
other words, accurate learning stabilizes UGs that admit large numbers of candi-
date grammars.

c© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Human languages are composed of a lexicon, which is a set of words and their
meanings, and a grammar, which is a set of rules for building and interpreting
sentences (Pinker, 1990). Children learn both parts inductively, based on the lin-
guistic input they receive. The task of acquiring grammar from example sentences
is known to require some constraints on the set of possible grammars. Univer-
sal grammar (UG) is a set of constraints that guide primary language acquisi-
tion (Chomsky, 1965, 1972; Wexler and Culicover, 1980; Lightfoot, 1991, 1999).
In general, language acquisition can be formulated as a process of choosing among

0092-8240/03/010067 + 27 $35.00/0 c© 2002 Society for Mathematical Biology. Published by
Elsevier Science Ltd. All rights reserved.



68 W. G. Mitchener and M. A. Nowak

a (finite) number of candidate grammars specified by universal grammar (UG)
(Gibson and Wexler, 1994).

UG is both a product of evolution and a consequence of mathematical or com-
putational constraints that apply to any communication system (Uriagereka, 1998).
Since evolution requires variation, we have to study natural selection among differ-
ent UGs. Hence, this paper is an investigation into what happens when more than
one UG is present in a given population.

While a genetically encoded (innate) UG is a logical requirement for the process
of language acquisition [seeNowak et al. (2002)], there is considerable debate
about the nature of the genetically encoded constraints. Interestingly, in a recent
study, a mutation in a gene was linked to a language disorder in humans (Lai et al.,
2001) providing a specific example of a genetic modification that affects linguistic
performance. It is therefore natural to construct population models which incor-
porate genetic variation in the form of multiple UGs, and to explore the long-term
behavior of such models.

We explore three possibilities of selective dynamics. The first,dominance, means
that one particular UG takes over the population from any initial state. The sec-
ond,competitive exclusion, happens when some UG takes over the population, but
the initial state influences which one. The third,coexistence, means that two or
more UGs exist stably. We construct a dynamical system describing a population
of individuals. Each individual has an innate UG and speaks one of the grammars
generated by this UG. Individuals reproduce in proportion to their ability to com-
municate with the whole population, passing on their UG to their offspring genet-
ically, and attempting to teach their grammar to their children. The children can
make mistakes and learn a different grammar than their parents speak, but within
the constraints of their UG.

Section2 describes the mathematical details of the model, which is an extension
of the language dynamical equation fromKomarovaet al. (2001), Nowak et al.
(2001), Mitchener(2002) and Nowak et al. (2002). It assumes that there are a
number of UGs, and people acquire one of the grammars specified by their UG
based on sample sentences they hear from their parents.

Section3 analyzes a one-dimensional case with one UG that specifies two can-
didate grammars. This simple case is used as a building block for subsequent
analysis.

In Section4, we study the selection between two UGs:U1 admits grammarG1

while U2 admits grammarsG1 andG2. This case is of interest because it illustrates
the competition between a more specific UG, that is, one with more constraints
and therefore fewer options, and a less specific UG. We never find coexistence
betweenU1 and U2. For certain parameter values,U1 dominatesU2, meaning
that the only stable equilibrium consists entirely of individuals withU1. For other
parameter values, we find competitive exclusion: bothU1 andU2 can give rise to
stable equilibria. In particular,U2 is stable against invasion byU1 if learning is
sufficiently accurate and if most individuals useG2.
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In Section5, we study two extensions. First, we consider what happens if a
multi-grammar UG denoted byU0, which allows grammarsG1–Gn, competes with
n single-grammar UGs denoted byU1–Un, whereU j allows onlyG j . To simplify
the analysis, symmetry is imposed on the model. It turns out thatU0 is never able
to take over the population, but that any one of the single-grammar UGs can. In
a second extension,U0 only competes againstU1. In this case, there can be a sta-
ble equilibrium that consists entirely of individuals withU0, provided its learning
algorithm is sufficiently reliable, and the population does not contain too many
speakers ofG1.

In Section6 we allow grammars to be ambiguous, and study the case where
U1 admits grammarG1, while U2 admits grammarsG2 andG3. We provide an
example whereU2 dominatesU1 and an example whereU1 andU2 coexist in a
stable equilibrium.

In Section7, we draw some conclusions and discuss the next steps in this line of
research.

The fascinating question of language evolution has generated an extensive lite-
rature (Lieberman, 1984; Aitchinson, 1987; Bickerton, 1990; Pinker, 1990; Pinker
and Bloom, 1990; Hauser, 1996; Hurfordet al., 1998; Ghazanfar and Hauser, 1999;
Jackendoff, 1999; Grasslyet al., 2000; Hauseret al., 2001; Ramuset al., 2000;
Studdert-Kennedy, 2000; Krakauer, 2001; Lachmannet al., 2001). The purpose
of this paper is to contribute to the understanding of the evolution of grammar
through mathematical models (Nowak and Krakauer, 1999; Nowak et al., 2000,
2001, 2002; Cangelosi and Parisi, 2001; Ferrer and Solé, 2001a,b; Kirby, 2001) that
incorporate ideas from linguistics, as well as evolutionary game theory (Hofbauer
and Sigmund, 1998) and different forms of learning theory (Gold, 1967; Valiant,
1984; Vapnik, 1995; Niyogi and Berwick, 1996; Niyogi, 1998).

2. LANGUAGE DYNAMICS WITH M ULTIPLE UNIVERSAL GRAMMARS

Suppose we have a large population, each member of which is born with one of
the N UGs U1,U2, . . . ,UN and speaks one of then grammarsG1, G2, . . . , Gn.
Each UG consists of a list of which grammars it allows, and has an associated
language acquisition algorithm. The grammars are assumed to have an overlap
given by the matrixA, where Ai, j is the probability that a sentence spoken at
random by a speaker ofGi can be parsed by a speaker ofG j . A grammarGi is
said to beunambiguousif Ai,i = 1, becauseAi,i < 1 implies that two people
with the same grammar can misunderstand each other due to some sentence with
multiple meanings.

Definex j,K to be the fraction of the population which speaksG j and possesses
UG UK . We have

∑
K

∑
j xi,K = 1. Every population state can be represented as a

point on a simplex. The population changes over time in that individuals reproduce
at a rate determined by their ability to communicate with everyone else, passing
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their UG to their offspring via genetic inheritance, and passing their language on
through teaching and learning. As a simplifying assumption, we ignore genetic
mutation, but include the possibility that children make mistakes learning their
parents’ language. The learning process is expressed by the three-axis matrixQ,
whereQi, j,K is the probability that a parent speakingGi produces a child speaking
G j given that both have UGUK . Since every child must speak some language,Q
is row-stochastic, that is,

∑
j Qi, j,K = 1 for all i andK . The reproductive rateF j

depends on which grammar an individual uses and the composition of the rest of
the population, and is given by

F j =

N∑
K=1

n∑
i =1

Bi, j xi,K whereBi, j =
Ai, j + A j,i

2
. (1)

To write the ordinary differential equation (ODE) governing the population dyna-
mics, we also need the variableφ which represents the average reproductive rate
of the population:

φ =

N∑
K=1

n∑
j =1

F j x j,K . (2)

The language dynamical equation with multiple UGs is then

ẋ j,K =

n∑
i =1

Fi xi,K Qi, j,K − φx j,K where j = 1 . . . n, K = 1 . . . N. (3)

The first term says that the sub-population which has UGUK and speaks with
grammarGi will produce Fi xi,K offspring, of which Qi, j,K end up speaking
G j . The second term is to enforce the constraint

∑
j

∑
K ẋ j,K = 0 so that∑

j

∑
K x j,K = 1 for all time. To see this, let

Mk =

n∑
j =1

N∑
K=1

xk
j,K (4)

so that

Ṁ1 =

n∑
j =1

N∑
K=1

ẋ j,K

=

N∑
K=1

 n∑
i =1

Fi xi,K

n∑
j =1

Qi, j,K

− φ

n∑
j =1

x j,K

=

N∑
K=1

n∑
i =1

Fi ẋi,K − φM1

= φ(1 − M1).
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Sinceφ ≥ 0, there is a stable equilibrium atM1 = 1. Hence, the population state
is confined to the hyperplane

∑
j

∑
K x j,K = 1.

Furthermore, the positive orthant, defined by the inequalitiesx j,K ≥ 0 for all j
and K , is a trapping region. To see this, observe that for each bounding hyper-
plane given byx j,K = 0, the value ofẋ j,K is a sum of terms each of which is
Fi xi,K Qi, j,K ≥ 0. Thus, the vector field points either into the bounding hyperplane
or into the interior of the positive orthant. We will therefore restrict our attention to
trajectories in the simplexS(Nn), which is the intersection of the hyperplane given
by
∑

j

∑
K x j,K = 1 and the positive orthant.

In some cases, such as the one in Section4, we will further restrict our attention
to a face ofS(Nn), which is itself a lower-dimensional simplex. This restriction
comes from assuming that someUK disallows someG j , so thatx j,K is fixed at 0.

3. TWO GRAMMARS AND ONE UNIVERSAL GRAMMAR

The case to be examined here, that of a single UG which generates two unam-
biguous grammars, takes place inS2, a one-dimensional phase space. We use this
case as an essential building block in later sections.

3.1. Parameter values.Since there is only one UG, we will omit theK sub-
script fromx andQ. There are three choices of real numbers which fill in all the
parameters for this case of the language dynamical equation, which come from
considering the possibilities forA andQ as follows. The most general form of the
overlap matrixA for two unambiguous grammars is

A =

(
1 a1,2

a2,1 1

)
.

However, theA matrix only enters the dynamical system through theB matrix, as
in (1), and sinceB is a symmetric matrix,

B =
A + AT

2
=

(
1 (a1,2 + a2,1)/2

(a1,2 + a2,1)/2 1

)
,

there is really only one degree of freedom in choosingA. So, we define

b =
a1,2 + a2,1

2
, (5)

and allow this to be the one free parameter determined by the overlap betweenG1

andG2. The most general form for the learning algorithm matrixQ is

Q =

(
q1 1 − q1

1 − q2 q2

)
, (6)



72 W. G. Mitchener and M. A. Nowak

which has two degrees of freedom. The ranges of the parameters are 0< b < 1,
0 < q1 < 1, and 0< q2 < 1. Although we can certainly consider the cases where
q1 andq2 are less than 1/2, these are somewhat pathological because they represent
a situation where children are more likely to learn the grammar opposite to the one
their parents speak. Furthermore, ifb = 0 thenG1 andG2 have nothing in common
and whenb = 1 they are identical. Both of these settings are degenerate and will
not be analyzed here.

3.2. Fixed point analysis. In the present case, everything takes place on a unit
interval 0≤ x1 ≤ 1, and the dynamical system is one dimensional, as can be seen
by expanding (3) and replacingx2 with 1 − x1:

ẋ1 =(1 − q2)

+ (−3 + b(1 + q1 − q2) + 2q2)x1

+ (1 − b)(3 + q1 − q2)x
2
1

− 2(1 − b)x3
1.

(7)

It is useful to change coordinates tox1 = 1 − 2r so that the dynamical system
inhabits an interval−1 ≤ r ≤ 1 that is symmetric about 0. The vector field now
takes on the form

ṙ = −
1
2((1 + b)(q1 − q2)

+ (3 + b − 2(q1 + q2))r

+ (1 − b)(q1 − q2)r
2

+ (1 − b)r 3).

(8)

By straightforward calculation, ifr = −1 thenṙ = 2(1 − q1) > 0, and ifr = 1
then ṙ = 2(−1 + q2) < 0. By the intermediate value theorem, there must be at
least one fixed point in the interval. Sinceṙ is a cubic polynomial inr , there can
be either one, two, or three fixed points, depending on the choice of parameters.
Keeping in mind that the vector field points inward at both ends of the interval, the
dynamical system must follow one of the phase portraits in Fig.1. Two kinds of
bifurcations are possible: saddle-node and pitchfork. The remainder of this section
will be spent developing a partial answer to the question of which parameter values
cause particular bifurcations, and where the fixed points are when they take place.
Rather than solvėr = 0 directly, we will make use of the following variations of
some well-known lemmas [see Chapter 1 ofAndronovet al. (1971) or Chapter 4 of
Ahlfors (1979)] and indirect methods to extract information about the bifurcations.

L EMMA 1. Let f(x) be a polynomial with a root z of multiplicity n≥ 1. Then z
is a root of f′(x) with multiplicity n− 1.
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(a)

(b)

(c)

(d)

(e)

Figure 1. Possible phase portraits for the base line of the simplex. Key:• indicates a
sink,◦ indicates a source,� indicates a nonhyperbolic fixed point. Pictures (a) and (e) are
structurally stable; (b) and (d) are saddle-node or transcritical bifurcations; and (c) is a
pitchfork bifurcation.

Proof. Write f (x) = (x − z)ng(x) whereg(z) 6= 0. Then

f ′(x) = n(x − z)n−1g(x) + (x − z)ng′(x)

= (x − z)n−1(ng(x) + (x − z)g′(x)).

Observe from the first factor in the bottom line thatz is a root of f ′(x) of multi-
plicity at leastn − 1. At x = z, the second factor takes the valueng(z) which is
nonzero, so the multiplicity ofz is exactlyn − 1. 2

L EMMA 2. Let f(x) be a polynomial with a root z such that f′(z) = 0. Then z is
a root of multiplicity two or more.

Proof. Let z be a root of f with multiplicity n. Sincez is a root of f ′ of multi-
plicity n − 1 andn − 1 ≥ 1, it follows thatn ≥ 2. 2

L EMMA 3. Given a real-valued polynomial dynamical systemẋ = f (x), the non-
hyperbolic fixed points are exactly the roots of f of multiplicity two or more.

Proof. From Lemma1, every root of f of multiplicity two or more is a nonhy-
perbolic fixed point. Conversely, ifz is a nonhyperbolic fixed point, thenf (z) = 0
and f ′(z) = 0, and Lemma2 guarantees thatz is a root of f of multiplicity two or
more. 2

Lemma3 is the most useful, as it allows us to find the bifurcation parameters
of (8) without explicitly solving a cubic. In particular, for saddle-node and trans-
critical bifurcations there is a double root of the polynomial and for pitchfork bifur-
cations there is a triple root of the polynomial. Thus, the parameter settings which
generate the nonhyperbolic fixed points in Fig.1 parts (b), (c), and (d) may be
found by matching (8) against a general template polynomial with multiple roots,
as will be illustrated below.

As a side note, the results of this section will be used to analyze higher-
dimensional dynamical systems in which both saddle-node and transcritical
bifurcations will be possible, both of which are characterized by a double root.
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Figure 2. Bifurcation surface. Observe that in this picture, theq1 andq2 axes run only
from 0.7 to 1. On the tent-shaped surface, there are one or two fixed points with at least
one nonhyperbolic. Above the surface, the system has one hyperbolic fixed point, and
below, it has three.

Saddle-node bifurcations are distinguished from transcritical bifurcations in that
the double root comes into existence at the bifurcation rather than forming from
the collision of two pre-existing fixed points. The template polynomial method
does not distinguish between these two cases as it can only locate parameter
settings that produce nonhyperbolic fixed points. The way in which the parameters
change so as to pass through such settings determines which type of bifurcation
takes place.

PROPOSITION 4. The unique parameter setting which produces the phase por-
trait given in Fig.1(c) (the pitchfork bifurcation) is

q1 = q2 =
3 + b

4
.

The nonhyperbolic fixed point is at r= 0, corresponding to x1 = x2 = 1/2, the
center of the phase space.

Proof. The technique is to setṙ = 0 and seek parameters that generate a triple
root. We divide the resulting cubic equation by the coefficient ofr 3 to produce
a monic polynomial, and set the resulting coefficients equal to the corresponding
coefficients of(r − p)3 where p is an unknown variable, corresponding to the
nonhyperbolic fixed point. The resulting system of equations is

−p3
=

(1 + b)(q1 − q2)

1 − b
, (9a)

3p2
=

3 + b − 2q1 − 2q2

1 − b
, (9b)
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−3p = q1 − q2. (9c)

It turns out that this system can be solved forq1 andq2 in terms ofb. To begin, we
use (9c) to eliminateq2 in (9a) which yields

p3
+

3(1 + b)

−1 + b
p = 0.

This equation has three roots,

p = 0, p = ±
√

3

√
1 + b

1 − b
.

The second and third roots lie outside the interval of interest−1 ≤ p ≤ 1, so the
only possible solution isp = 0 from which it follows thatq1 = q2 = (3 + b)/4.2

The cases in which there are two fixed points and one is a double root is signi-
ficantly more complicated because there is an additional unknown variable. This
next result is a partial solution.

PROPOSITION 5. For the phase portraits shown in Fig.1 parts(b) and(d) (which
are saddle-node or transcritical bifurcations), the sink and nonhyperbolic fixed
point lie on opposite halves of phase space.

Proof. We begin as in Proposition4, but this time matchinġr = 0 against the
cubic template(r − p1)

2(r − p2) wherep1 is the nonhyperbolic fixed point andp2

is the sink. The initial system of equations is

−p2
1 p2 =

(1 + b)(q1 − q2)

1 − b
, (10a)

p2
1 + 2p1 p2 =

3 + b − 2q1 − 2q2

(1 − b)
, (10b)

−2p1 − p2 = q1 − q2. (10c)

We proceed by solving forp1 in terms ofp2. Substituting (10c) into (10a) results
in the quadratic equation(

1 + b

1 − b

)
(2p1 + p2) = p2

1 p2,

whose roots are

p1 =
C

p2
±

√
C2

p2
2

+ C whereC =
1 + b

1 − b
> 1.
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From here, we demonstrate thatp2 > 0 implies p1 < 0. Clearly√
C2

p2
2

+ C > 1,

which implies that the+ root lies outside the phase space and is therefore extrane-
ous. Hence the nonhyperbolic fixed point must be located at the− root. It is easy
to see that √

C2

p2
2

+ C >
C

p2
,

from which it follows that

p1 =
C

p2
−

√
C2

p2
2

+ C < 0.

A similar argument shows thatp2 < 0 implies p1 > 0. If p1 = p2 = 0, we have
the case of Proposition4 which is a different phase portrait. 2

This next proposition is a constraint that is needed in Section4.

PROPOSITION 6. There is no setting of the parameters for which three fixed
points lie on the same side of the middle.

Proof. Suppose that we start at parameter values for which there is only one fixed
point, and change them smoothly so that there are three afterward. This means the
system must undergo either a saddle-node or pitchfork bifurcation. In the case of a
saddle-node bifurcation, Proposition5 ensures that the two new fixed points lie on
the other side of the middle from the original fixed point. If a pitchfork bifurcation
happens, it must occur at the middle of the phase space according to Proposition4,
and the two new fixed points must lie to either side of it.

Now assume that three fixed points do exist, and the parameters change so that
one of them crosses the middle, that is, atr = 0, we haveṙ = 0. Plugging this
assumption into the dynamical system in (8) implies thatq1 = q2. Thus in this
circumstance,

ṙ |q2=q1
=

1
2r (4q1 − 3 − b − (1 − b)r 2),

so the other two fixed points must be at

±

√
4q1 − 3 − b

1 − b
.

Therefore, the only fixed point which can cross the middle of the phase plane is the
central one. 2
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The complete set of bifurcation parameters can be found implicitly by building
from Lemma3 and using the discriminant. By definition, the discriminant of a
polynomial is the product of the squares of the pair-wise differences of its roots,
so it will be 0 when a polynomial has a multiple root. The discriminant can be
expressed entirely in terms of the coefficients of the polynomial. For a general
cubica3z3

+ a2z2
+ a1z + a0, the discriminant is

a2
1a2

2 − 4a0a3
2 − 4a3

1a3 + 18a0a1a2a3 − 27a2
0a2

3

a4
3

. (11)

For ṙ , the discriminant is a large expression in terms ofq1, q2, andb obtained by
filling in this general formula. The bifurcation parameters are the values ofq1, q2,
andb which make this expression 0, and that surface may be plotted implicitly,
as shown in Fig.2. According to the picture, the surface consists of two curved
surfaces which meet in a spine whereq1 = q2 = (3 + b)/4 (the pitchfork bifurca-
tion). The bottom corner is atq1 = q2 = 3/4, b = 0, and the rest of the surface
appears to lie in the regionq1, q2 > (3 + b)/4. The important thing to notice is
that if q1 andq2 are both close to 1, that is, under the surface, then the dynami-
cal system has three hyperbolic fixed points. Above the surface, there is a single
hyperbolic fixed point, and on the surface, there are one or two fixed points with
at least one nonhyperbolic. The closerb is to 1, the largerq1 andq2 must be to be
under the surface.

4. TWO GRAMMARS AND TWO UNIVERSAL GRAMMARS

In this section, we analyze a two-dimensional, asymmetric instance of the lan-
guage dynamical equation. It models the following scenario: suppose the popu-
lation has a UGU1 which generates exactly one grammarG1; learning and com-
munication are both perfect. Under what circumstances could the population shift
in favor of a new UGU2 which generatesG1 plus an additional grammarG2?
That is, within this model, when is it advantageous to have a choice between two
grammars? The analysis builds heavily on the results from Section3.

4.1. Parameter settings.The dependent variables of interest arex1,1, x1,2, and
x2,2. The variablex2,1 represents the part of the population which speaksG2 but
has UGU1, and by assumption, this is 0. Thus, the dynamical system in this case
is in three variables with two degrees of freedom and can therefore be analyzed as
a planar system.

As in Section3, the A matrix only enters the dynamical system through theB
matrix, as in (1), and sinceB is a symmetric matrix, there is really only one degree
of freedom in choosingA. So, we define

b =
a1,2 + a2,1

2
, (12)
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and allow this to be the one free parameter determined by the overlap betweenG1

andG2. The most general form for the learning algorithm matrixQ is

Qi, j,1 =

(
1 0
∗ ∗

)
, Qi, j,2 =

(
q1 1 − q1

1 − q2 q2

)
, (13)

which has two degrees of freedom. The entries filled with∗ are always multiplied
by x2,1 which is assumed to be 0, so they do not matter. Thus this model has a
total of three free parameters:b, q1, andq2, all of which are assumed to lie strictly
between 0 and 1.

4.2. Geometric analysis of the dynamics.With these parameter settings, and the
fact thatx1,2 = 1 − x1,1 − x2,2, the dynamical system (3) simplifies to

ẋ1,1 = − (1 − b)x1,1x2,2(2x2,2 − 1),

ẋ2,2 =1 − q1 + (−1 + q1)x1,1

+ (−3 + b + q1 + (1 − b)q1 + bq2 + (−1 + b)(−1 + q1)x1,1)x2,2

+ (−2(−1 + b) + (−1 + b)(−1 + q1) + q2 − bq2)x
2
2,2

+ 2(−1 + b)x3
2,2.

(14)

It lives on the three-vertex simplexS3, that is, a triangle. The vertices correspond
to x j,K = 1 and will be labeledX j,K in diagrams.

From here, a fairly complete understanding of the bifurcations of this system can
be derived from some simple calculations and geometric considerations. To begin,
we will find lines along whichẋ1,1 = 0, and the vector field is therefore parallel
to the base of the simplex. These are calledx1,1 null-clines. From (14), it is clear
that ẋ1,1 is 0 in three places: the linesx1,1 = 0, which is the base of the simplex,
andx2,2 = 0, which is the left edge, and the linex2,2 = 1/2, which runs across
the simplex. In particular, the base linex1,1 = 0 is invariant under this vector field.
See Fig.3.

Several fixed points are easily located. Observe that ifx2,2 = 0 thenẋ1,1 = 0 and
ẋ2,2 = (1− q1)(1− x1,1). So the apex is the only fixed point on the left side of the
simplex. Also, since the vector field always points upward toward it, it is stable.
Another fixed point may be located on the cross line by substitutingx2,2 = 1/2
into (14) yielding

ẋ1,1

∣∣
x2,2=1/2 = 0,

ẋ2,2

∣∣
x2,2=1/2 =

1
4(1 + b)(q2 − q1 − 2(1 − q1)x1,1),

(15)

from which we find that

(x1,1, x2,2) =

(
q2 − q1

2(1 − q1)
,

1

2

)
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X1,1

X1,2 X2,2

x2,2 = 0

x1,1 = 0

x2,2 = 1
2

Figure 3. The simplex, with null-clines. The bold lines indicate whereẋ1,1 = 0. The
arrows indicate the sign oḟx1,1 in the regions in between, up for positive, down for
negative.

is the unique fixed point on the linex2,2 = 1/2. It is located inside the simplex
for q2 ≥ q1 and outside otherwise. Observe that the vertical component of the
vector field is upward above this fixed point, and downward below it, so it must be
unstable. The horizontal component of the vector field to its right points leftward,
and to its left it points rightward, indicating that locally, orbits flow toward the fixed
point from either side. Thus, this fixed point is a saddle.

Consider the base line, which is invariant under this vector field and may there-
fore be partially analyzed in isolation. It is exactly the same as the general two-
grammar problem from Section3, and must look like one of the phase portraits in
Fig. 1, except that those pictures show only stability or instability in the horizontal
direction. Stability of one of these fixed points in the vertical direction is deter-
mined by which side of the cross line it lies on:ẋ1,1 is positive on the left side,
indicating instability, and negative on the right side, indicating stability.

We must determine where the fixed points in Fig.1 may lie with respect to the
point (x1,1, x2,2) = (0, 1/2), which we do by examining the behavior of the saddle
point on the cross linex2,2 = 1/2. The key fact is that the vector field on the cross
line points leftward above the saddle point, and rightward below it, and changes
direction only at that fixed point. Observe that the vector field at the upper right
end of the cross line(x1,1, x2,2) = (1/2, 1/2) is (ẋ1,1, ẋ2,2) = (0, −(1/4)(1 +

b)(1−q2)), which points leftward. The direction of the vector field at(x1,1, x2,2) =

(0, 1/2) is either left or right, depending on the configuration of fixed points on
the base line. If it points to the left, then the fixed point on the cross line must
lie outside the simplex because the vector field must point left along the entire
segment of the cross line within the simplex. Similarly, if the vector field points
to the right at(0, 1/2), then the saddle point must lie inside the simplex. From
previous analysis, the saddle point lies inside the simplex if and only ifq2 ≥ q1, so
we have a link between the values ofq1 andq2 and the phase portraits in Fig.1.

Now we must determine how the saddle point crosses the base line into the sim-
plex. It must pass through the point(x1,1, x2,2) = (0, 1/2). Substituting this point
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into (15), we see that the parameter values which cause this must satisfyq1 = q2.
As it crosses the base line, it must coincide exactly with one of the fixed points
there. Since the saddle point passes through the collision, the fixed points must
cross in a transcritical bifurcation. To determine which fixed point is crossed, we
substituteq2 = q1 = q into the dynamical system in (14) and examine the base
line. Note thatx1,1 = 0 soẋ1,1 = 0. Also:

ẋ2,2

∣∣
q2=q1=q,x1,1=0 = (−1 + 2x2,2)(−1 + q + (1 − b)x2,2 + (−1 + b)x2

2,2). (16)

The roots of this cubic correspond to the fixed points on the base line; they are

1

2
and

1

2
±

1

2

√
4q − 3 − b

1 − b
. (17)

We now get three cases. Ifq > (3 + b)/4, then there are three fixed points as in
Fig. 1(e), one exactly in the middle and two to either side. Ifq < (3 + b)/4, then
there is one fixed point, exactly in the middle as in Fig.1(a). If q = (3 + b)/4,
then there is one degenerate fixed point exactly in the middle as in Fig.1(c), in
which case the pitchfork and transcritical bifurcations happen simultaneously. At
any rate, the saddle point can only enter the simplex by passing through the central
fixed point on the base line.

The parameter space breaks up into four regions as shown in Fig.4. The tent-
shaped surface is the same as the one in Fig.2. Above it, there is one fixed point
on the base line. Below it, there are three fixed points on the base line. On the
faces, there are two fixed points, one nonhyperbolic, and on the edge, there is one
nonhyperbolic fixed point. The vertical plane separates the regions whereq1 < q2

from the regions whereq2 < q1. The complete bifurcation scenario is shown in
Fig. 5. The fixed points on the base line are constrained by Propositions4–6, so
the cases shown are the only possibilities. Phase portraits in Fig.5 are labeled
according to which part of the parameter space in Fig.4 they represent.

4.3. Competition between the universal grammars.The bifurcation scenario
depicted in Fig.5 can be analyzed in terms of competition between the two UGs.
The structurally stable pictures are (a), (c), (g), and (i); these are the ones that occur
generically. Observe that in (a), there is only one stable fixed point, and it occurs
at the apex of the triangular phase space. All interior orbits will approach this fixed
point. Thus, in the case whereq2 < q1 and both are fairly small,U1 dominates.
In (c), there are two stable fixed points, the one at the apex corresponding to a
takeover byU1 and the one on the base line corresponding to a takeover byU2.
Their basins of attraction are separated by the stable manifold of the saddle point
on the cross line. Approximations to their basins of attraction can be found by
drawing a dashed horizontal line through the saddle. Orbits can only cross the left-
hand segment of the dashed line by going upward, and the upper segment of the
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Figure 4. Parameter space with bifurcation surfaces. Areas (a), (c), (g) and (i) are regions
in space, indicated by bold arrows. Areas (b), (d), (f), and (h) are the surfaces that separate
those regions, indicated by black and white arrows. Areas (d) and (f) are the front and
back surfaces of the tent. Area (b) is the part of the plane above the tent, and (h) is the part
below it. Area (e) is a line where the two curved surfaces and the vertical plane intersect,
indicated by thin arrows.

cross line by going leftward, which means these two segments bound a trapping
region containing the apex. Similarly, orbits can only cross the right-hand segment
of the dashed line by going downward, and the lower segment of the cross line by
going rightward, which means there is another trapping region containing the sink
on the base line. In this case, whereq1 < q2 and both are fairly small, there is
competitive exclusion between the two UGs. The most direct transition from (a) to
(c) is a transcritical bifurcation passing through (b). Shortly after this bifurcation,
the saddle point will be very close to the base line, so the trapping region forU2 will
be quite small. Asq2 increases, the saddle point moves upward and trapping region
expands. A similar situation exists in (i), the difference being that the base line
contains two other fixed points which affect a negligible fraction of the phase space.
The situation is slightly different in (g). Again, there are two stable fixed points,
but the saddle point whose stable manifold separates their basins of attraction is
on the base line rather than on the cross line. There does not seem to be a simple
trapping region that approximates the basins of attraction in this picture.

4.4. Discussion of Section4. To summarize, the scenario examined in this sec-
tion generically contains instances whereU1 dominates, and instances where there
is competitive exclusion, but none whereU2 dominates or where both UGs coex-
ist. Furthermore,U2 can only take over ifq2 > q1 as in pictures (c) and (i), or
if q1 andq2 are both close to 1 as in picture (g). In the first case,G2 is acquired
more accurately thanG1, so it has an advantage and tends to increase in the pop-
ulation thereby puttingU1 at a disadvantage. In the second case, it appears that
althoughG1 may be learned more reliably thanG2, the learning reliability ofG2

is sufficiently high that it can maintain a large portion of the population through
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Phase portraits for the selection dynamics betweenU1 (apex) andU2 (base
line). U1 admitsG1, andU2 admitsG1 andG2. EitherU1 dominates as in (a), or there
is bistability betweenU1 andU2. The parameters for each picture come from the region
of the same label in Fig.4. Key: • indicates a sink,⊕ indicates a saddle,◦ indicates a
source,� indicates a nonhyperbolic fixed point. Arrows indicate (roughly) the direction
of the vector field. In pictures (c), (f), and (i), the cross line and the horizontal dashed line
through the saddle point define approximate upper and lower trapping regions for the two
sinks. The actual boundary between their basins of attraction is the stable manifold of the
saddle point, which is sketched as a dotted line. Picture (g) also contains such a boundary.

‘market share’ effects, again puttingU1 at a disadvantage. Observe that in any
case,U2 can only take over the population throughG2. A population ofU2 people
speakingG1 can be invaded byU1. This is an illustration of a process by which
a valuable acquired trait can become innate. This effect suggests that human UG
may have once allowed many more possible grammars than it does now, and that
as portions of popular grammars became innate, UG became more restrictive.

5. A M ULTI -GRAMMAR UG COMPETING WITH SINGLE -GRAMMAR UGS

In this section, we will examine cases in which a UG with multiple grammars
competes with a number of UGs that have only a single grammar each. We will
begin by building on the results from Section4 in two ways, extending that analysis
to symmetric cases in an arbitrary number of dimensions.
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5.1. The case of full competition. Let us extend the case from Section4 by
assuming that there are three UGs. The first,U1, allows onlyG1. The second,U2,
allows onlyG2. The third,U0, allows bothG1 andG2. Since there is one single-
grammar UG for each possible grammar, this case will be calledfull competition.
We would like to determine whether one of these UGs can take over the population.

This situation contains two copies of the case from Section4, one in which every-
one usesU0 orU1, and a second in which everyone usesU0 orU2. From the former,
there is generically no stable equilibrium in whichU0 takes over with a majority of
people speakingG1. From the latter, there is generically no stable equilibrium in
which U0 takes over with a majority of people speakingG2. If U0 is to take over,
eitherG1 or G2 must be in the majority, so it follows thatU0 is unable to take over.

This result extends to an arbitrary number of grammars as follows. Let the gram-
mars beG1 to Gn, and assume there are UGsUi which specify only the grammar
Gi . Assume there is an additional UGU0 which allows any of then grammars. As
a simplification, assume that the grammars are fully symmetric and unambiguous,
that is,Ai,i = 1 andAi, j = a for i 6= j . The parametera is required to be strictly
between 0 and 1. For reasons that will become clear in a moment, the learning
matrix Q is allowed to be fully general except that no grammar is allowed to have
perfect learning underU0, that is,Qi,i,0 < 1 for all i .

We will need the following new notation. We are interested in determining if one
UG out of theUK can take over the population, and if so, which one. We therefore
define

yK =

n∑
j =1

x j,K (18)

to be the total population withUK . The dynamics foryK can be expressed suc-
cinctly by using the fact thatQ is row stochastic:

ẏK =

n∑
j =1

ẋ j,K

=

n∑
j =1

(
n∑

i =1

(Fi xi,K Qi, j,K ) − φx j,K

)

=

n∑
i =1

Fi xi,K

n∑
j =1

Qi, j,K

− φ

n∑
j =1

x j,K

=

n∑
i =1

Fi xi,K − φyK .

(19)
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We may further simplify the notation by introducing the variable

φK =

n∑
i =1

Fi xi,K , (20)

from which it follows thatφ =
∑

K φK and

ẏK =

n∑
i =1

Fi xi,K − φyK = φK − φyK . (21)

There is no explicit reference toQ in ẏK , althoughQ does influence the dynamics.
It happens that the main result of this section does not depend onQ for exactly this
reason.

Because of the symmetry imposed onA, the dynamics of theyK simplify con-
siderably. If we further define

v = (x1,0, x2,0, . . . , xn,0), (22)

w = (x1,1, x2,2, . . . , xn,n), (23)

then

ẏ0 = −(1 − a)((v + w) · w)y0,

ẏK = (1 − a)(xK ,0 + yK − (v + w) · (v + w))yK whereK = 1 . . . n.
(24)

Note that the sum of the entries ofv is equal toy0, and the sum of the entries ofw

is equal to 1− y0.

PROPOSITION 7. The multi-grammar UG, U0, is always unstable, that is, if y0 <

1, thenẏ0 < 0. The single-grammar UGs are stable, meaning that for K≥ 1, if
yK is close to1, then yK is increasing.

Proof. We will prove both statements by starting from a population that consists
entirely of one UG, and perturbing it by convertingε of the population to another
UG.

To prove the first statement, suppose thaty0 = 1 − ε. All the entries ofv andw

are greater than or equal to 0, sov · w ≥ 0. Sincew must be nonzero, it follows
that ẏ0 = −(1−a)(v ·w +w ·w)y0 < 0. In fact, in any population state where not
everyone hasU0, the number of people withU0 will decrease. Thus,U0 is unstable
and cannot take over the population.

To prove the second statement, fixK ≥ 1 and assume thatyK = 1 − ε. Observe
that

(v + w) · (v + w) =

n∑
i =1

(xi,0 + xi,i )
2

= (xK ,0 + 1 − ε)2
+

∑
i=1...n,

i 6=K

(xi,0 + xi,i )
2.
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The summation is overn − 1 terms, each of which is greater than or equal to 0,
and their sum is fixed at 1− (1 − ε) − x0,K . Therefore, the summation is at most
(ε − x0,K )2 (see Lemma8). It follows that

ẏK ≥ (1 − a)(1 − ε)(1 − ε + xK ,0 − (1 − ε + xK ,0)
2
− (ε − xK ,0)

2)

= (1 − a)(1 − ε)(ε − xK ,0)(1 − 2(ε − xK ,0)).

As long asxK ,0 < ε, we haveẏK > 0. This will continue to be true asxK ,0 ≤ yK .
If xK ,0 = ε, that is,xK ,0 accounts for the entire perturbation, then we need the

assumption that underU0, no language is learned perfectly. So, a short time later,
xK ,0 will decrease as some children will have mistakenly learned another grammar,
sayGh, soxh,0 > 0. At this point, we will have a new perturbation withyK = ε′

andxK ,0 < ε′, and it follows thatẏK > 0. 2

The following lemma is used to make approximations in this and other proofs in
this section.

L EMMA 8. Suppose that for i= 1 . . . m, we have numbersαi ≥ 0 such that∑
i αi = σ . Then

σ 2

m
≤

m∑
i =1

α2
i ≤ σ 2.

Proof. Considerα = (αi )
m
i =1 as a vector inRm. It is contained in a simplex

because the sum of its entries is fixed. The point on the simplex closest to the
origin is the center, corresponding toαi = σ/m for all i , and this point yields the
lower bound. The vertices of the simplex are the farthest points from the origin,
corresponding toα j = σ andαi = 0 for all i 6= j , and these points give the upper
bound. 2

Proposition7 implies that UGs with many grammars are unable to compete
directly with UGs that specify only one grammar.

5.2. The case of limited competition.The two-dimensional case from Section4
illustrates a situation where a multi-grammar UG can have a stable equilibrium
where a majority of the people use a grammar that does not occur as part of a
single-grammar UG. We now turn our attention to a different extension of this
case in which there are two UGs,U0 which specifiesG1, . . . , Gn, andU1 which
specifies onlyG1. As before, theA matrix is assumed to be fully symmetric, with
all diagonal entriesAi,i = 1 and all off-diagonal entriesAi, j = a. The Q matrix
disappears again, and we need only the assumption that no grammar is learned
perfectly underU0. By using the fact thaty1 = x1,1 = 1 − y0, the model can be
reduced to one differential equation of interest,

ẏ0 = (1 − a)(−x1,1 − x1,0 + 2x1,1x1,0 + M2)x1,1

= (1 − a)(−1 + y0 − x1,0 + 2(1 − y0)x1,0 + M2)(1 − y0).
(25)
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(Recall the definitionMk =
∑

j

∑
K xk

j,K .) There is a fixed point aty0 = 0, as can
be seen by substituting this state into the differential equation. Furthermore,ẏ0 = 0
wheny0 = 1, so the model can have trapping regions and stable fixed points in the
subset of states which satisfyy0 = 1. We are interested in determining when these
various states are stable under perturbations.

PROPOSITION 9. The fixed point y0 = 0, corresponding to a takeover by U1, is
stable.

Proof. Consider a small perturbation,y0 = ε. Then we must havey1 = x1,1 =

1 − ε, and the differential equation satisfies

ẏ0 = (1 − a)

−1 + ε − x1,0 + 2(1 − ε)x1,0 + (1 − ε)2
+

n∑
j =1

x2
j,0

 (1 − ε)

≤ (1 − a)(−1 + ε + x1,0(1 − 2ε) + 1 − 2ε + ε2
+ ε2)(1 − ε),

where we have used Lemma8 to bound the summation byε2. This expression
factors into

ẏ0 ≤ −(1 − a)(ε − x1,0)(1 − 2ε).

If the perturbation is such thatx1,0 < ε, then the right-hand side is negative, and as
x1,0 ≤ y0, it will remain negative, soy0 will shrink to 0.

If the perturbation is such thatx1,0 = ε, then we must use the fact that underU0

there is no perfect learning. After a short time, some other part of the population
with U0, say,xh,0, will be nonzero due to learning error. This new perturbation will
havey0 = ε′ andx1,0 < ε′, and as beforey0 will shrink to 0. 2

The following results show thatU0 can still take over, but not withG1. It states
that if x1,0 is small enough, then a population consisting only of people withU0

that is perturbed by adding a small number of people withU1 will recover, at least
in the short term.

PROPOSITION 10. Let ε > 0 be small and suppose y0 = 1 − ε and x1,1 = ε.
Defineκ = 1/n − x1,0. If κ > ε/(1 − 2ε), thenẏ0 > 0.

Proof. From the differential equation,

ẏ0 = (1 − a)

−ε + (2ε − 1)x1,0 + ε2
+

n∑
j =1

x2
j,0

 ε

≥ (1 − a)

(
− ε + (2ε − 1)x1,0 + ε2

+
(1 − ε)2

n

)
ε,
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where we have once again used Lemma8 to bound the summation. By substituting
x1,0 = 1/n − κ, the inequality can be simplified to

ẏ0 ≥ (1 − a)

(
κ − ε(1 + 2κ) +

(
1 +

1

n

)
ε2

)
ε.

The assumption thatκ > ε/(1 − 2ε) is equivalent toκ > ε(1 + 2κ), so the right-
hand side is positive. 2

The tricky part about interpreting this proposition is that a population state with
y0 = 1 might still be unstable in the long term: it could move within the constraint
y0 = 1 to a state wherex1,0 > 1/n, at which point Proposition10 no longer
applies and a perturbation can cause the population to be taken over byU1, as this
next proposition illustrates.

PROPOSITION 11. Let ε > 0 be small and suppose y0 = 1 − ε and x1,1 = ε. If
x1,0 > 1/2 − ε, then y0 is decreasing.

Proof. For this proof, we use Lemma8 to bound the summation iṅy0 from
above,

n∑
j =1

x2
j,0 = x2

1,0 +

n∑
j =2

x2
j,0 ≤ x2

1,0 + (1 − ε − x1,0)
2.

This bound yields the inequality

ẏ0 ≤ 2ε(1 − a)(x1,0 − (1 − ε))
(
x1,0 −

(
1
2 − ε

))
.

If 1 − ε > x1,0 > 1/2 − ε, then ẏ0 is negative, and the perturbation will draw the
population away from the region wherey0 = 1, indicating instability.

If x1,0 = 1− ε, then we resort to the argument that a short time later, the popula-
tion will change due to learning error to a different perturbation wherey0 = 1− ε′

and some other sub-populationxh,0 > 0. Nowx1,0 < ε′, which implies thaṫy0 < 0
and the population is moving away from the region wherey0 = 1. 2

5.3. Some remarks about these results.Several remarks are in order. First, the
Q matrix has mostly disappeared, so Propositions7, 9–11 hold regardless of the
learning mechanism underU0, except that it must not be perfect. In fact, it could
be dynamic, depending on the population state for example, as long as it remains
row stochastic.

Second, the fact that some of the propositions declarey0 = 1 to be ‘stable’ may
be misleading. As noted before, the population could start in a state wherey0 = 1
and move within that constraint to a state in whichy0 begins to decrease. The
simplest behavior for whichy0 = 1 would be truly stable is for the population
to converge to a stable fixed point that satisfies Proposition10, but it could also



88 W. G. Mitchener and M. A. Nowak

converge to a limit cycle or to a strange attractor, depending on what behaviors are
available to a population restricted toU0.

We can get more definite results from these propositions if we add assumptions
that ensure that all population states withy0 = 1 tend to fixed points. Any fixed
points that are stable when onlyU0 is allowed and that also fall under Proposi-
tion 10 are stable with respect to all perturbations, including those involving the
introduction ofU1. Any such fixed points that fall under Proposition11 are unsta-
ble. Some may be outside the hypotheses of both propositions, and we can say
nothing more about them here.

A full bifurcation analysis of the fully symmetric case of the language dynamical
equation with one UG is worked out inMitchener(2002). To apply those results
here, we must add the assumption that for the learning matrix forU0, all diagonal
elementsQi,i,0 = q and all off-diagonal elementsQi, j,0 = (1 − q)/(n − 1). It
follows from Mitchener(2002) that if onlyU0 is present, then all populations tend
to fixed points. The analysis shows that there is a constantq̂1,

q̂1 =
2(n − 1)(2 + a(n − 3)) + (a − 1)n − 2(n − 1)

√
(1 + a(n − 2))(n − 1)

(a − 1)(n − 2)2
,

(26)
such that ifq < q̂1, then the only stable fixed point in a population restricted toU0

is one in which every grammar is represented equally. Thus,x1,0 = 1/n and that
fixed point is unstable to perturbations involvingU1 because of Proposition11. On
the other hand ifq > q̂1, then there aren stable fixed points, and eachG j is used
by a large part of the population in exactly one of them. These are called the1-
up fixed pointsin Mitchener(2002) andsingle grammar fixed pointsin Komarova
et al. (2001). At the one whereG1 has the majority,x1,0 > 1/n, so it does not
fall under Proposition10and is potentially unstable to perturbations involvingU1.
If q is sufficiently large, this fixed point moves so thatx1,0 approaches 1, so at
some value ofq, it will exceed 1/2. Then Proposition11 will apply and the fixed
point will definitely be unstable. At the other fixed points,x1,0 < 1/n, so they fall
under Proposition10 and are therefore stable. In short, if the learning process in
U0 is sufficiently reliable, that isq > q̂1, thenU0 can take over the population in a
stable manner, but not throughG1. If learning is unreliable, thenU1 will eventually
take over.

6. AMBIGUOUS GRAMMARS

In this section we will generalize the case in Section4 not by adding dimensions
but by allowing the grammar specified byU1 to be different from both of those
specified byU2, and by allowing the grammars to be ambiguous. The diagonal
entries ofA are allowed to be less than 1. This case can exhibit a greater variety
of behavior than was seen in Section4, including stable coexistence of both UGs,
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and dominance byU2. This form of the language dynamical equation has a total of
eight free parameters. Rather than attempt a complete symbolic analysis, we will
present one short proposition and some numerical results.

6.1. Parameter values.We assume thatU1 allows for one grammarG1, and that
U2 allows for two grammars,G2 and G3. The Q matrix is allowed to be fully
general,

Qi, j,1 =

1 0 0
∗ ∗ ∗

∗ ∗ ∗

 , Qi, j,2 =

∗ ∗ ∗

0 q2 1 − q2

0 1− q3 q3

 . (27)

The entries filled with∗ are always multiplied by somex j,K that is restricted to be
0, so they do not matter. Also, the matrixA is allowed to be fully general; we even
allow the diagonal elements to be less than 1. The only constraint we place onA is
that since it appears in the model only throughB = (A + AT )/2 we may as well
assumeA is symmetric. There are eight free parameters, six from the upper half of
A andq2 andq3.

6.2. Analysis and phase portraits.The expressions foṙx1,1, ẋ2,2 and ẋ3,2 are
unwieldy so they will not be written out. However, it turns out thatx1,1 = 1,
x2,2 = x3,2 = 0 is a fixed point for all parameter settings. The one symbolic result
is the following:

PROPOSITION 12. The fixed point x1,1 = 1, x2,2 = x3,2 = 0 is unstable if
−2A1,1 + A1,2q2 + A1,3q3 > 0.

Proof. We reduce the system to two dimensions by replacingx3,2 by 1− x1,1 −

x2,2. The trace of the Jacobian matrix of the reduced system at the fixed point
in question is−2A1,1 + A1,2q2 + A1,3q3. If this is positive, then at least one of
the eigenvalues of the Jacobian must have positive real part [seeStrogatz(1994,
p. 137)]. 2

Roughly what this proposition means is that ifG1 is sufficiently ambiguous, and
G2 andG3 are similar to it and can be learned reliably, thenU1 is unable to take
over the population. This situation seems unrealistic, however, there is at least
one reasonable interpretation. Suppose thatG1 is close to the union ofG2 and
G3, and contains many sentences that can be interpreted so as to have multiple
meanings. Suppose further that many of these sentences are inG2 or G3 but with
a single meaning. ThusU2 has an advantage because it restricts its people to some
less ambiguous language at the expense of imperfect learning, and this may be
enough to destabilize a population where everyone hasU1. Proposition12 is a
mathematical expression of this situation. Note that whenA1,1 is restricted to be
1, the proposition never applies, and the stability of theU1 fixed point must be
determined by other means.
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X1,1

X2,2 X3,2

Sink

Saddle

Source

Non-hyperbolic

Stable manifold

Unstable manifold

Figure 6. Key to phase portraits shown in Figs7–9. Some fixed points outside the simplex
have been drawn for reference. The three corners of the triangle represent population states
where everyone uses a single language, as indicated. The apex of the triangle represents
U1 = 1 and the base representsU2 = 1.

(a) A = (0.66 0.6 0.7
0.6 0.9 0.7
0.7 0.7 0.9),

q2 = 0.95, q3 = 0.95

(b) A = (0.45 0.6 0.7
0.6 0.9 0.7
0.7 0.7 0.9),

q2 = 0.8, q3 = 0.85

Figure 7. Two instances whereU2 dominates.

A number of phase portraits for a variety of parameter values are drawn in
Figs6–9 based on numerical computations. In particular, these phase portraits
illustrate that with this general model, it is possible to have stable coexistence of
U1 andU2, and it is possible forU2 to dominate. Neither of these situations is
possible in the limited case analyzed in Section4.

7. CONCLUSION

The evolution of UG is based on genetic modifications that affect the architec-
ture of the brain and the classes of grammars that it can learn. At some point in the
evolutionary history of humans, a UG emerged that allowed the acquisition of lan-
guage with unlimited expressibility. In principle, UG can change as a consequence
of random drift (neutral evolution), as a by-product of selection for other cogni-
tive function, or under selection for language acquisition and communication. The
third aspect is the one we consider in this paper.

We explore some low-dimensional cases of natural selection among UGs. In
particular, we study the competition between more specific and less specific UGs.
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(a) A = (0.4 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.8, q3 = 0.85

(b) A = (0.5 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.86, q3 = 0.85

Figure 8. Two instances of stable coexistence. In (b),U2 can also take over, but only with
G2.

(a) A = (0.3 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.87, q3 = 0.85

(b) A = (0.7 0.6 0.7
0.6 0.9 0.2
0.7 0.2 0.9),

q2 = 0.87, q3 = 0.85

Figure 9. Another instance of stable coexistence and an instance of exclusion.

Suppose two UGs,U1 andU2 are available, andU2 admits two grammars,G1 and
G2, whileU1 admits onlyG1. If learning withinU2 is too inaccurate, thenU1 domi-
natesU2: for all initial conditions that include bothU1 andU2, U1 will eventually
out-competeU2. If learning withinU2 is sufficiently accurate, then for some initial
conditionsU2 will win while for othersU1 will win; there is competitive exclusion.
Note that accurate learning stabilizes less specific UGs. We can also find coexis-
tence of two different UGs. We provide such an example whereU1 admitsG1 and
U2 admitsG2 andG3.

A standard question in ecology is concerned with the competition between spe-
cialists that exploit a specific resource and generalists that utilize many different
resources (May, 2001). Similarly, here we have analyzed competition between
specialist UGs that admit few grammars and generalist UGs that admit many can-
didate grammars. This is an interesting similarity. There is also a major difference:
in ecology the more individuals exploit a resource the less valuable this resource
becomes, but in language the more people use the same grammar the more valuable
this grammar becomes. Hence, the frequency dependency of the fitness functions
work in opposite directions in the two cases.
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The question that we want to understand ultimately is the balance between selec-
tion for more powerful language learning mechanisms that allow acquisition of
larger classes of complex grammars, and selection for more specific UGs that limit
the possible grammars. This paper provides mathematical machinery and a first
step toward this end.
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Ferrer i Cancho, R. and R. V. Solé (2001a). The small world of human language.Proc. R.

Soc. Lond. B268, 2261–2266.
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