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Abstract

Communication plays a vital role in the organization and operation of biological, computational,
economic. and social systems. Agents ofien base their behavior on the signals they receive from
others and also recognize the importance of the signals they send. Here we develop a framework
for analyzing the emergence of communication in an adaptive system. The framework enabies the
study of a system composed of agents who evolve the abiliry to strategically send and receive com-
munication. While the modeling framework is quite general, we focus here on a specific application,
namely the analysis of cooperation in a single-shot Prisoner’s Dilemma. We find that, contrary to
initial expectations. communication allows the emergence of cooperation in such a system. More-
over. we find a systematic relationship between the processing and language complexity inherent in
the communication system and the observed behavior. The approach developed here shoulé open
up a variety of phenomena to the systematic exploration of endogenous, strategic communication.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Communication plays a central role in the organization and operation of biological,
computational, economic, and social sysiems. Agents often base their behavior on the
signals they receive from others and also recognize the importance of the signals they send.
The scope of behavior mediated by communication is enormous. In biological systems,
such activities as mating (with signals ranging from the species-unique flashes of fireflies to
the ritualized repartee of singles bars) and coordinated hunting rely on signals being passed
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between agents. In computational systems, formal protocols are carefully developed 1o allow
packets of information to flow across decentralized networks. In econornics, behaviors as
diverse as used-car buying and price collusion require careful communication (in the latter
case, the impromptu use of the lower-ordered digits in auction bids has been observed
recently as a means to facilitate collusion). To gain insight into the development and impact
of communication on agents, we formulate an adaptive computation model (Holland and
Miller, 1991) of endogenous agent communication, While the modeling framework is quite
general, we focus here on a specific application, namely the analysis of cooperation in a
single-shot Prisoner’s dilemma.

The focus of our model is on Systems in which communication emerges endogenously

of each symbol must be induced by each individual agent, rather than specified in advance.
Secondly, we do not allow agents to form any centralized enforcement mechanisms (for
exarmple, institutions like court systems that develop and interpret contract wording, formal
Ostracistm procedures, etc. }~the only consequence of communication is the (decentralized)
reaction it induces from the other agents. Thirdly, we do not allow agents to have any more
information about their partners than that implicit in the communication itself. To insure that

among agents. Thus, agents cannot easily identify a particular partner, other than through the
{potentially easily mimicked) communication that is received. Finally, we want to explore
a system in which the potential exists for relatively complex communications. To achieve
this last requirement, we aliow agents to use simple computer programs (finite automata)
to process, send, and react to communication,.

The above framework is very general and applies to many different phenomena. Here,
to provide an interesting context for our work, we focus on cooperation in 2 single-shot
Prisoner's Dilemma. Along with its ubiquitous applications and analysis (see, for example,
Axelrod (1984) and Axelrod and Dion, 1988), the Prisoner's Dilemma has an additional
advantage: as is well known, the dominant strategy in the single-shot game is to defect.
Given that communication is “cheap 1alk” (as it contains no enforceable commitments),

communication.

The emergence of communication has been explored by Wemer and Dyer (1992) and,
more recently, Steels (1996). This previous work has focused on mostly biological issues and
uses very different computational and analytic techniques. Our work is also related to models
of “tagging” that have been used to explore behavior in the iterated Prisoners dilemma.
Under tagging, agents are able to “recognize” one another via an observable marker and,
based on this observation, decide whether Or not to interact. Holland (1993) suggested that
tags might allow new patterns of social interaction to develop. Stanley et al. (1994) allowed
pariners to recognize one another and to base refusals to play in a Prisoner's Dilemma on
past experience. In Riolo (1996), agents were more likely to interact with other agents that
looked alike (based on a predefined metric). Lindgren and Nordah| (1994} explored a more



LH. Miller et al. /J. of Economic Bekavior & Org. 47 (2002} 179195 181

extended tag matching regime that allowed agents to modify their underlying matching rule.
Like tagging. our model of communication allowsagents to attempt to identify their partners.
However, our model provides a much more sophisticated context for this identification that
goes wel} beyond passive observation. Here, agents base their behavior on sophisticated and
interactive communication schemes that are endogenously derived. Qur agents can place
new meanings on existing signals, invent new patterns of signals, and strategize about the
signals to send in reaction to the ones recejved.

The adaptive model we create should serve a5 a productive environment from which to
explore other issues and applications of agent communication. The behavior of the agents in
our model is controlied by coevolving automata, and such machines embrace a broad class
of behaviors rich in possibilities. Moreover, the underlying structure of the system is such
that we can impose simple notions of communication processing and language complexity
and link such ideas to their behavioral consequences. While we largely focus on the use of
numerical experiments to derive and test hypotheses, the careful observation of the model
should promote the development of other analytic tools. Along with a direct demonstration
of how we can study models of adaptive comrmunication, we also gain some insight into the
emergence of cooperation via communication. To foreshadow the results, we find that with
sufficient communication “complexity” epochs of cooperation can emerge in the model. A
close examination of the dynamics of the system reveals that such cooperation is the result
of a well-defined adaptive walk through the space of strategies that both exalts and exploits
COMmmunication,

2. The computational model
2.1. The basic game

In the basic game, two agents are paired and must play a single-shot Prisoner’s Dilemma.
Prior to choosing a move {either 1o cooperate or defect), agents are allowed to comimuni-
cate. Communication takes place via the exchange of communication tokens {predefined
on {@,1...., T}, where Tis exogenously given). The @ token has a special interpretation,
namely, that the agent issuing the token has decided on a final move in the game.! At
each step of the communication, each player simultaneously sends a single communica-
tion token to the other player. Communication continues until either both players issue
the @ token, indicating that both have picked a final move in the game, or the num-
ber ot; steps in the communication (pairs of exchanged tokens) exceeds a preset chat
limit. -

An example may help clarify the above ideas. Two agents meet and simultanecusly
issue a 1 and 2 (where the A and B distinguish the two agents, respectively). Agent A,
when it hears 25, may decide to cooperate in the game, and thus, it will start to issne ]

! Onee such a token is communicated, the issuing agent is committed to the chosen (but undisclosad) move, and
will continue to send the # token unti] the communication ends.

*in the experiments reported here the chat Limit was non-binding. That is, it was set kigh enough so that agents
that actually reached the chat limit were goaranteed not to converge on a final move in the game.
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tokens until either B decides on a final move or they reach the chat limit, When B hears
the initial 14, it might decide to send a Iy (which A receives at the same time B hears the
@ sent by A). A will not react to the 1, since it has already picked a move, but B will
react to the @ token it receives, by, say, deciding to defect in the game. Once this decision
is made, both players simultaneously send & tokens, and the single-shot game is played
with A cooperating and B defecting. Note that the only information an agent has about its
partner is the sequence of communication tokens emitted by that partner in response to the
agent’s own communication tokens--no other identifying information is available to the
agents.

Atthe end of the communication the two players receive payoffs. In our game, the payoffs
follow typical values: murual cooperation pays 3.0 each, mutual defection pays 1.0 each,
a sucker (a cooperator facing a defector) receives 0.0 and the corresponding defector in
this latter interaction receives a temptation of 5.0. It is also possible that at the end of
comumunication one or both of the players have not chosen a move. We give any player who
has not chosen a move by the chat limit a no act payoff of —5.0. Moreover, a player who
has picked a move, but faces an opponent who has not, receives a no deal payoff of 2.0.
These larter payoff amounts were made to encourage agents to make final moves, while not
trying to unduly penalize an agent who faces an indecisive opponent. 3

We analyze a system composed of 2 population of P agents. During each generation of the
system. every agent is paired with every other agent for one, single-shot Prisoner’s Dilemma.
Agents accumulate their payoffs from each game, and at the end of each generation their
strategies undergo selection and modification via a simple adaptive algorithm the details of
which are discussed later,

2.2, Agent structure

The behavior of each agent is controlled by a simple computer program represented as a
finite automaton. Miller (1988, 1996) used this approach to study cooperation in a repeated
Prisoner’s Dilemma game, and showed, among other things, how such a representation can
allow the exploration of a very interesting class of adaptive systems. Each automaton is
composed of a fixed number of internal states on {1, ..., §}, where the maximum number
of states, S, is given exogenously. Each state contains an action, either the sending of a
communication token on {1, ..., T}, or an allowable move in the fina! game (here cooperate
or defect) linked with the sending of the  communication token. Note that the @ token does
not comumunicate which move an agent has chosen, but only the fact that a move has been
selected,

At the start of the game an agent enters state I of its automaton. Upon entering a state,
the agent initiates whatever action is defined for that state. The communication tokens are
always simultaneously passed to the agents. Associated with each state of the machine is
a transition table that determines the next state that the autornaton will enter contingent
on the communication token (an element of {8, I, ..., T}) received. If the agent has not
chosen a final move, it enters a “new” state based on the transition table for its current state

30f course, one open question is whether an agent might benefit by developing a strategy that makes opponents
indecisive,
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Fig. 1. Avtomata structure and play {(see text for full details).

(since transitions are possible to any of the automaton’s states, it may re-enier its current
state). If the action in the current state is a final move in the game, then the automaton will
not undergo any further transitions-—thus, once an agent has picked a final move, its only
behavior is to wait for the opponent (and send @ tokens).

Fig. 1 illustrates two simple two-state automata. In this game, the automata are allowed
{0 communicate using the tokens {8, 1,2}. The actions for each state are given by the labels
inside of the state nodes. The transitions are shown by the Jabeled arrows, where the labels
indicate the communication token received from the opponent. Initially, both machines
begin in state 1. In this state, machine A will issue a I and B will send a 2. When A receives
the 2 from B, it has a transition into state 2, at which point it decides to cooperate and to
send @ tokens for the remainder of the game. Agent B, upon hearing a I, remains in state
1, and sends another 2. Since A has already decided on a final move, the reception of a 2
from B has no impact on A. Agent B, however, when it receives the @ sent by A, moves
1o state 2. In this state, B will defect in the game and begins to send a @. At the next step,
both players issue @ tokens, the communication phase ends, and a single-shot game is held
in which player A cooperates and B defects.

Given the automaton representation, a strategy in this game is defined by giving every state
an action (either send a communication token (from {1,..., T}, cooperate and send 4, or
defectand send @), and a transition table for each state that maps any possible communication
token received from the opponent ({@, 1, ..., T} toa“new" state (1,....5h. Initially, each
agentis given a random strategy. To choose an action, with 0.5 probability we randomly pick
4 communication token from (1, ..., T} (with equal probability on each token), otherwise a
final move is assigned (either cooperate or defect, with equal probability). Each element of
the transition table js randomly selected with uniform probability across all possible states
({1...., 5}

2.3. Evolving automata
A population of P agents is initially created using the random generation mechanism

discussed above. At the beginning of each generation of the algorithm, every agent plays a
single game against every other agent in the population, At the beginning of each of these
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games the automaton is reset to state 1 to begin play. An agent’s final payoff is the average
score received by its automaton across all of its games. Based on this average score, a new
population of P agents is created by selecting better performing agents from the current
population and randomly modifying some of these strategies,

The selection mechanism is a simple tournament selection. Two agents are randomly
selected (with replacement) from the population, and the one with the better average score is
placed into the new population. Note that this selection mechanism favors better performing
strategies from the current generation, but it does not necessarily guarantee that the best
strategy will be selected or that the worst will be culled.

Once a strategy is selected for reproduction, there is a 0.5 probability that it will be
modified by mutation before being placed in to the new population. If a strategy under-
goes mutation, then one of its states is randomly selected, and with a 0.5 probability the
action of that state is randomly altered to an alternative action (using the same action
selection mechanism described above for generating random machines), otherwise a ran-
domiy chosen transition of the state is altered (with uniform probability across the alter-
patives).

The above selection and modification procedures are carried out P times, resulting in
a new popuiation the same size as the original one. Once this new population is formed,
payoffs are reset to zero and a new generation of the algorithm is begun—agents are again
paired with each other, play the game, receive payoff, and then undergo selection and
modification,

3. Results

Given the above system, we can explore the dynamics of the model. At the outset, a
reasonable hypothesis is that there will be no observable cooperation in this system. Recall
that agents in the game are playing (essentially) a single-shot Prisoner's Dilemnma, and
the dominant strategy in such a game is to defect. In our system, agents do play each
other across generations, but given the difficulty of identifying particular individuals (the
onty identifying characteristic is the communication stream), a priori it would seem that
such communication would be insufficient to allow cooperation to emerge in the game;
Talk is cheap here and hard to back up with future promises. Thus, we would predict the
following:

» Hypothesis: No systematic tendency toward cooperation should be observed in the system.

While the confirmation of such a hypothesis would not be too surprising, we find the
following:

» Observation: Repeated outbreaks of mutually cooperative behavior occur in the system.

The apparent contradiction of the initial hypothesis by the observation suggests an interest-
ing area for investigation.

The analysis proceeds in the following manner. Our initial focus concerns a model with
a population of fifty agents (P == 50}, who evolve four-state automata (5 = 4), and can use
two communication tokens (T = 2). The results of the model from these parameters appear
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Fig. 2. Propertion of mutualty cooperative plays by generation for a syster composed of 50 agents (P = 50
four-state aulomata (§ = 4). and 1wo comsunication tokens (7 = 2) (bottom ticks represent start of cooperative
ouvtbreaks).

representative of our overall findings. 4 The initial focus of the analysis is on characterizing
the cooperation we observe in the systerm. We then turn to a more systematic analysis of how
the key parameters (machine size and number of available tokens) infiuence cooperation.
Finally, we provide an explanation for how cooperation emerges in this system, through an
analysis of the strategic dynamics.

3.1. Panerns of cooperation

. Asafirst step in the analysis, we characterize the cooperation observed in the system. We
use as a simple measure of cooperation: the proportion of all single-shot games during a given
generation in which both players cooperate. 3 Fig. 2 plots the rate of mutual cooperation by
generation for a typical run of the model (the underlying data generated by this experiment

* We have done extensive robustness testing of most of the models assumption’s, including separately coding the
modet by two different developers in two different lanpuages, using different selection, crossover, and mutation
mechanisms. strategic implementations (for exampie, allowing “bluffing”}, and population sizes. We have also
altered payoff parameters and apent matching procedures (including restuicting interactions to predefined sociat
networks and avoiding self imeraction). Analyses of these aiternatives indicate that while we do find some fminor
quantitative differences among the models, the main conclusions remain rather robust. As in all adaptive models.
movements towasd the extremes. for example, large mutation rates, will eventually disrupt the system, nonetheless,
the Jarge cquivalence class of parameter values under reasonable assumptions is reassuring.

3 OF course, other measuras of cooparation exist {far example, the number of cooperative acts observed during
piay). but these alternatives are closely correlated with our measure of mutual cooperation.
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Fig. 3. Cumulative distribution of generations between cooperative epochs for a system composed of 50 agents
{P = 50}, four-statz automata (S = 4), and rwo communication 1okens {7 = 2}, across 50,000 generations.

are the basis for many of the subsequent graphs). As can be seen from the figure, while in
general the rate of mutual cooperation is very low, there are occasional periods in which
“high™ levels of cooperation emerge in the system.® Though not directly observable from
the figure, during the periods in which mutal coeperation is low, mutual defection strongly
dominates play.

A close examination of the phase portrait of mutual cooperation (a plot of the cooperation
rate at time 1 versus f ++ 1) indicates that low-levels of cooperation are typically followed by
low levels of cooperation, but on occasion, cooperative outbreaks occur in which cooperation
rates rise quickly to a peak and then rapidly fall off. Thus, we observe relatively short epochs
of sustained cooperation. In the experiment shown in Fig. 2, 1.6% of the time the system
has above threshold rates of cooperation. Over the 5000 generations of the experiment, we
observe an average of 3.5 cooperative epochs per 1000 generations, each of which averages
4.5 generations in length. 7

The picture that emerges from the above is a system dorinated by mutual defection, with
occasional, short-lived epochs of mutual cooperation. While systematic, the cooperative
epochs are not periodic, Fig. 3 plots the cumulative distribution of the interval between

® For convenience, we define a high level of cooperation to be one in which at ieast 10% of the games have
mutually cooperative plays. This threshold becomes important in defining periods of sostained (above threshold)
cooperation. We have found that our results generally scale in the obvious way with different threshaold levels, In
many of the foliowing figures, tick marks at the boriom of the graph are used to demarcate the start of cooperative
epochs.

7 For the analysis, we ignore the first 100 generations of the experiment 50 as to avoid biases caused by initial
stochastic effects.
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cooperative epochs for an experiment of 50,000 generations using similar parameters to
those above. The median inter-epoch length was around 155 generations, with a range from
210 1537 generations, and the power spectrum is uncorrelated. Finally, we have found that
the system exhibits little path dependence across experiments, that is, the major results
are similar if we run one experiment for 20,000 generations or aggregate data across five
experiments each run for 4000 generations. This observation suggests that the state of the
system is somehow being recycled during the course of the experiment.

3.2. Panterns of communication

Fig. 4 plots the average length of communication (number of token exchanges per game)
observed in the experiment shown in Fig. 2 (the tick marks at the bottom of the graph
indicate the start of each cooperative epoch). While there is a lot of variance surrounding
the average chat Jength, at the start of each cooperative epoch it tends to peak. Note also
that the Jower-bound of the average chat lengih increases at the start of each epoch, and
then siowly decays (this is indicated by the “holes” at the bottom of the graph). Thus, we
find that the system tends to have low levels of communication most of the time, but when
cooperation breaks out, communication increases dramatically and then slowly decays back
to its low background level. This decay is slow enough that non-cooperation returns as the
norm even while communication remains high.

Another way 1o characterize communication in the system is by observing the nurnber of
unique conversations during any given generation. We consider two conversations, the same

-Illll!iillilll}llllllfﬁ!-
§p —

- "

Avarage Chat Length

HUL LI L

4] 1000 2000
Generation

Fig. 4. Average length of communication by generatios for the experiment shown in Fig. 2 (botiom ticks represent
start of cooperative outbreaks).
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Fig. 5. Number of upique conversations by generation for the experiment shown in Fig. 2 (bonom ticks represent
stan of cooperative outbreaks).

if the set of communication tokens exchanged and the final moves are identical across the
two games (irrespective of the players). Thus, if all players simply defected without trying to
communicate, we would have only one unique conversation. In general, we observe very low
levels of unigue conversations during most generations. However, whenever cooperation
does break out, the system experiences a rapid rise in the number of unique conversations
exchanged (see Fig. 5). The number of unique conversation often remains high for a number
of generations after the cooperation has subsided.

To summarize the above observations, we find that the system tends to be dominated
by low levels of cooperation and communication. Nonetheless, we also observe occasional
outbreaks of mutual cooperation that are sustained over a number of generations. During
these cooperative epochs, both the length and number of unique conversations increases
dramatically. While the cooperation quickly dissolves, the observed increases in both chat
Jength and number of unique conversations decay at a much slower rate.

3.2.1. Communicative complexity and cooperation

One advantage of the framework we propose here is that we can link some simple mea-
sures of the complexity of the communication to key behavioral outcomes. 8 We use two
notions of complexity. The first, as measured by the maximum number of states, S, available
to each machine, determines the degree to which a machine can process and react to the
incoming communications—we call this processing complexity. The second, as measured

& The word “compiexity” has a variety of both formal and informal notions. We use the word here 1o help provide
some additional context for our measures. Arguably, other terms like “capacity” might be appropriate substitutes.
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by the number of communication tokens, T, available in the language, provides a notion of
the richness of the basic language—we call this language complexity.

A key area of interest is how processing and language complexity influence system-wide
behavior. Here, the behavioral event of interest is the emergence of cooperation. Using the
model developed above, we ran numerical experiments that varied the number of states (§=
3.4,6,8,10,12)% and tokens (T = 1,2, 3,4) in the system. For each of these conditions, we
ran 20 experiments of 5000 generations each. At the end of each experiment, we collected
the average number of cooperative epochs per 1000 generations, C; the average length per
epoch, L; and the total number of periods per 1000 generations with above threshold mutual
cooperation, P. Epochs were defined as sustained periods of above threshold (0.10) mutual
cooperaijon, and no data were collected over the first 100 generations of the systetn 10 avaid
biases caused by the initial conditions.

To provide a descriptive summary of the resuits of the numerical experiments, we use an
ordinary least squares regression on the 480 observations and estimate:

C = ~8.22+2.455 + 2.307 + 0.2357 ~ 0.135? - 0.46T2, 25 =091,
L =248+ 0.545 ~ 0.207 + 0.0257 —~ 0.025% — 0.0472, 25 = 0.80,

P=-3564+10.175 +6.107 +2.155T ~ 0.485% — 2.047°,  R%, =0.93.
With the exception of the coefficients for 7 and 72 in the second equation, all coefficients
were significantly different from zero at the 0.005 level or better.

The regressions reveal a systematic relationship berween cooperation and the underlying
levels of processing and Janguage complexity. The two measures of complexity are able to
account for a farge amount of the variance observed in the data. Fig. 6 shows the predicted
number of cooperative epochs as a function of the number of states and tokens {using the
parameter estimates from the C equation above). Using the estimated equations evaluated
at the average values of S and T, we find that increasing machine size by one state results
in C increasing by about 1, L increasing by 0.3, and P increasing by 8.4. Increasing the
number of tokens by one results in a predicted increase of Cby 1.7, L by 0.15, and Pby 12.
Thus, as either processing or language complexity increases, we expect to see more, and
longer. epochs of mutual cooperation. We also find that these two types of complexity have
a positive interaction effect with one another.

3.3. How does cooperation emerge?

As discussed above, since communication has no directly enforceable CONSequences
and identification of individuals is difficult, we would expect only defection. Yet, we find
cooperation emerging in a very systematic way.

? Note that. we did not run systems with less than two states because cooperation did not emerge in such worlds.
With only two states, machines are incapable of both communicating and then either cooperating or defecting
based on the behavior of the opponent (since each of these acts requirss a separate state in the machine). Thus, there
is no way for a rwo-siate machine 1o both communicate (even a single token) and effectively react to opponznts,
and we find that the system quickly evolves to being filled with agents that only defect.
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Our explanation for the emergence of cooperation in the model relies on a close exami-
nation of the strategic dynamics that occur in the system. To develop such an explanation
we have carefully examined the strategies that arise just prior to, during, and just after a
cooperative epoch. These observations across many such events, linked with some tests of
their implications, give us some confidence in the soundness of the hypothesis presented
below,

The first issue to be confronted is whether or not the observed cooperation is an artifact of
the random nature from which strategies are derived. That is, since we randomly alter strate-
gies as the system evolves, cooperation could just be a spurious result of this creation process.
Of course, there is an important difference between systemns that rely on random events (such
as natural selection) and those that are randomly determined. If our observations are indeed
being driven only by random noise, then a simple test is to observe the system without
any selection mechanism operating. Without selection, the only changes in the strategies
come about via mutation, and thus the mode! behaves as if we were taking an undirected
random walk throngh the space of strategies. Observation of the cooperation rates under
such conditions reveal a very different picture from that observed in Fig. 2. Clear epochs are
not observable and cooperation rates oscillate wildly throughout the generations. Thus, our
observed patterns of cooperation cannot be adequately explained by pure random effects.

Our explanation for the emergence and destruction of cooperation in this system is based
on how the adaptive process sequentially creates and destroys key strategy types. While
it may be the case that other mechanisms could be invoived, we feel that we have strong
evidence for the following, five-stage cycle.

3.3.1. Siage 1: domination by “'no communication and defect (NCD)"
In this stage, strategies evolve so that when they meet an opponent they do not even try to
communicate, but instead simply defect. In a world dominated by defection, such a strategy
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Fig. 7. Proportion of “no communication and defect™ strategies for the experiment shown in Fig. 2 (bottom ticks
represent start of coopearative outbreaks).

is very stable. Fig. 7 shows the proportion of strategies that implement NCD. As is apparent
in the figure, this is a very common strategy throughout most generations, with occasional
break downs most often associated with the start of cooperative epochs.

An interesting issue is why we do not see sirategies that first try to communicate and then
defect (which would lead to the same payoff). We hypothesize that such strategies do not
persist for two reasons. The first is that if agents get trapped into perpetual communication
they will ge1 a much lower payoff in the game, and so there is an incentive for agents to
avoid such a situation by not communicating. A second, and perhaps more important, reason
is that machines that do a lot of communicating are much more vulnerable to mutations
that can alter their behavior in a maladaptive way (since the additional states they use to
communicate can be mutated o either inadvertently cooperate or perpetually communicate),
Any such mutations will dramatically reduce the survivability of the machine, and eliminate
them from the popuiation. In general, we suspect that there is a large basin of attraction
surrounding the NCD behavior that easily traps the adaptive system.

3.3.2. Stage 2: emergence of "communicate and reciprocate communication (CRC)”
During this stage. a few strategies emerge that have the following behavior: begin by
communicating, and if the opponent communicates, cooperate, if they say nothing, defect.
Both CRC and NCD machines can coexist, since both end up in mutual defection, and thus,
achieve identical payoffs.
While the emergence of CRC behavior seems improbable, in fact, it can often get invoked
by a single mutation. The reason for this is that during stage 1, there is very little selective
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Fig. 8. Propontion of “communicate and reciprocate communication” strategies for the experiment shown in Fig, 2
(battomn ticks represent start of cooperative outbreaks).

pressure on the NCD strategies except at the first state of the machine. That is, as long as
the first state of the machine has the defect action the machine will exhibit NCD behavior,
Thus, mutations can freely accumulate in other parts of the machine without direct conse-
quence. If, however, the action of the first state is mutated, these other parts of the machine
can be invoked. % Typically, these new machines are very maladaptive, but occasionally
CRCs are created. Once the CRC machines arise, the stage is set for the emergence of
cooperation,

3.3.3. Stage 3: emergence of cooperation

Once more than one CRC machine arises (which, given their identical payoff to the
NCD machines, will happen by chance via selection during stage 2), the CRC machines
can achieve above average payoffs. When two CRC machines meet one another, they both
communicate, cooperate, and receive the high mutual cooperation payoff. However, the
CRC rmachines can also protect themselves against the NCD machines, since the lack of
communication from the NCD machine leads to mutual defection. Since the NCD machines
average the mutual defection payoff while the CRC ones get both these payoffs and the
mutual cooperative ones, selective pressure allows the CRC machines to rapidly dominate
the population, and in so doing, cooperation emerges. Fig. 8 plots the proportion of CRC
strategies in the population for each generation. As is apparent from the figure, almost

'® Human cultures ofien carry along a variety of rarely invoked artifacts, such as obscure rules of etiguane or
words in the dictionary, On occasion mutations aliow these artifacts to be promulgated.
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all of the cooperative outbreaks are associated with a rapid increase in CRC. A strategy
was considered CRC if it immediately cooperated on communication, and thus, strategies
that develop more elaborate handshakes (for example, the exchange of two communication
tokens before cooperation) are not included in the graph.

3.3.4. Siage 4: emergence of mimics who “communicate and defect (CD)”

Atthe beginning of this stage, the popuiation is dominated by machines that communicate
with one another and cooperate. Of course, this leaves the population vulnerable to the
emergence of strategies that mimic the communication, and then, instead of cooperating,
defect. Thus, mimics are able to get their opponents to cooperate while they defect—leading
to very high payoffs for the mimic and low payoffs for the opponents. Once mimics arise,
selective pressure will quickly destroy the cooperation and leave in its wake a population
of defecting mimics.

Note that in our model the emergence of effective mimics is facilitated by the adaptive
system. New agents arise in this system from the reproduction and possible mutation of
currently existing, successful agents (in this case, the CRCs). Thus, even if the CRCs have
created an elaborate communication handshake that requires multiple responses to a variety
of signals before cooperation will ensue, all that is needed for a mimic to arise is that during
reproduction the final action that causes cooperation in the CRC is mutated 10 a defection.
Thus, successfully cooperating parents plant the seeds of their own destruction when they
reproduce, aliowing the creation of deadly mimics who do not have to expend a lot of effort
“learning the secret handshake”.

3.3.5. Stage 5: “communicate and defect (CD)"

During the final stage, the mimics have become dominant and the world now consists
of agents who communicate and defect. As previously mentioned in the discussion of
stage 1, there are pressures that will tend 10 select agents who minimize the amount of
communication they do before defecting. Though these dynamics may be relatively slow,
the systemn will eventually return to stage I, and the cycle begins anew.

Previously we found that machines with more states (or languages with more tokens) tend
to have more. and longer, outbreaks of cooperation. Analysis indicates that such systems
often develop more complex communications before cooperation is established (for exam-
ple. two or three tokens are exchanged before cooperation is achieved), and we suspect that
the observed differences in epoch structure occur because with more states (tokens} such
paths are both easier to create and harder to mimic. Mimicry is more difficult to achieve
under these conditions because mutations are more likely to disrupt other key elements
of the automaton, and thereby destroy the ability in the offspring to perfectly mimic the
parents. We have also observed cases where more complex machines are able to subvert
potentially deadly mimics by, for example, responding to communication in a way that
locks the mimic into self-destructive behavior. Additional states and tokens also permit
the simultaneous existence of multiple communicative pathways that lead to cooperation.
Such a diverse population is able to better withstand the attacks of mimics on individual
pathways.

Analysis of our experiments indicates that the five-stage cooperative cycle described
above seems to account for the emergence of cooperation (and, in those cases to date,
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where it was apparently violated, closer analysis indicates that a sensible variation was
responsible). Clearly what we are observing is a very interesting ecosystem of strategies
that coevolve with one another. While our theory captures a major pathway for the emergence
of cooperation and is consistent with some simple analytic arguments (see, for example,
Robson, 1990), we suspect that given the rich ecological and coevolutionary dynamics
involved in the system, other pathways might be possible.

4. Conclusions

Communication is a key mediator of many different types of agent interactions. Here
we developed a framework from which to analyze the emergence of communication in
an adaptive system. The framework provides the ability to study a system composed
of agents who evolve the ability to strategically send and receive communication. We
illustrated this framework by analyzing the relationship between communication and
cooperation in a single-shot Prisoner's Dilemma. We found that, contrary to initial ex-
pectations, communication allows the emergence of cooperation in such a system. More-
over. the processing and language complexity intherent in the communication system can
be systematically tied to the observed behavior. The modeling framework also enabled
us to explore and verify a key hypothesis about the likely mechanism that allows
cooperation to emerge.

The basic framework developed here has many possible extensions. A number of ex-
ogenous factors can infiuence communication, for example, tokens couid be passed
sequentially {versus simultaneously), noise could alter the fidelity of the communication
channel. or comumunication costs could be explicitly introduced so as to limit the number
of tokens that are passed. Obviously, such factors can be analyzed within the above model.
As previously mentioned, the automata representation creates a class of models rich in
possibilities (essentially, any system that communicates and reacts to discrete inputs and
Oulputs to determine a final discrete action). Thus, a variety of models across many different
fields should now be amenabie to analysis. For example, in the social sciences, models of
organizational communication, economic bargaining, and political action could be investi-
gated. The general approach developed here should open up a variety of phenomena to the
systematic exploration of endogenous communication.

Further reading

Holland. J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan
Press. Ann Arbor.
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