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Abstract 
We believe that  language is a complex adaptive 
system that  emerges from adaptive interactions 
between language users and continues to evolve 
and adapt through repeated interactions. Our 
research looks at the mechanisms and processes 
involved in such emergence and adaptation. To 
provide a basis for our computer simulations, 
we have implemented an open-ended, extensi- 
ble testbed called Babel which allows rapid con- 
struction of experiments and flexible visualiza- 
tion of results. 

1 Introduction 
Over the past few years, a growing number of 
researchers have begun to look at some of the 
fundamental questions in linguistics in a new 
light, using new tools and methodologies to ex- 
plore a number of unresolved issues. Among 
these issues are questions about the origin and 
the evolution of natural languages - how a lan- 
guage can arise, and how it can continue to de- 
velop and change over time (see (Steels, 1997) 
for a summary). 

Some workers in the field stick relatively 
closely to what might be described as the Chom- 
skyan orthodoxy (see (Chomsky, 1981), (Chore- 
sky, 1986)) in assuming the existence of a 
geneticMly-encoded language acquisition device 
(LAD) which is primarily responsible for deter- 
mining the properties of language. For these 
researchers (see for example (Sriscoe, 1997)), 
computer simulations offer the chance to ex- 
plore the possible properties and origins of the 
LAD. 

Other researchers choose to focus not on ge- 
netic evolution of human linguistic faculties, but 
on the selectionist forces that operate on lan- 
guage itself. Kirby and Hurford (Kirby and 
Hurford, 1997), for example, have shown that 

a model of selectionist processes operating on 
the language is able to explain both linguis- 
tic universals and variational constraints. The 
role of selection effects on language can even 
be explored independently of any assumed in- 
herited language faculty; Oliphant (Oliphant, 
1996) shows that  communication may emerge 
from the nature of structured and repeated in- 
teractions between language users, while Steels 
(Steels, 1996) demonstrates how a coherent 
shared language can evolve in a population of 
agents as a result of repeated language games 
- stylised interactions involving the exchange of 
linguistic information. 

Our research views language as a complex 
adaptive system that emerges as a result of 
interactions between language users. Contin- 
ued adaptive interactions lead naturally to the 
evolution of the language and the diffusion of 
new linguistic tokens and properties through the 
community of speakers. Using computer simu- 
lations of populations of language users, we are 
investigating the processes that  shape natural 
language and exploring possible learning mech- 
anisms that can allow coherent shared commu- 
nication systems to arise in populations. 

This paper describes a tool that  we have de- 
veloped to allow rapid implementation of exper- 
imental simulations within this paradigm. Our 
description begins with an overview of the prin- 
cipal requirements we aimed to meet, followed 
by a more detailed look at the actual imple- 
mentation of the tool and the facilities that  it 
provides. 

2 R e q u i r e m e n t s  

Our approach to studying language is based 
on multi-agent simulations. Mainstream re- 
search on multi-agent systems has given rise 
to a number of environments and programming 
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languages for building simulations (consider, for 
example, SWARM (Minaret  al., 1996), GAEA 
(Nakashima et al., 1996), or AKL (Carlson et 
al., 1994)), but none of these systems have been 
designed for specifically linguistic experimen- 
tation. Moreover, we wanted to work within 
the paradigm proposed by Steels (Steels, 1996), 
where language-using agents construct a shared 
language through repeated interactions with a 
precise structure. Examples of such games in- 
clude naming games, in which agents take turns 
naming and learning the  names of objects in 
their simulated environment, imitation games 
in which one agent attempts to meaningfully 
imitate a linguistic form presented by another, 
and discrimination games, in which agents at- 
tempt to build a system that allows them to dis- 
cern distinctions between objects in the environ- 
ment. The tool needed to provide a library of re- 
usable building blocks with which we could de- 
scribe the formal structure of these games, rep- 
resent the principal elements of the simulated 
environment, and develop models of the agents' 
memories and learning processes. Moreover, it 
was important that it should be open-ended, so 
that  we would be able to use pre-defined ele- 
ments to rapidly build new simulations based 
on new game types or agent properties. 

In addition to providing building blocks for 
simulation development, the system must of- 
fer an interface for controlling the simulations. 
This interface should allow users to launch sim- 
ulations, to modify the environment by adding 
or removing agents, to change experimental pa- 
rameters and so forth. To simplify the task of 
porting the tool and to protect simulation de- 
velopers from the intricacies of user interface 
programming, we also wanted to isolate the in- 
terface code as much as possible from the code 
defining the (portable) core of the system and 
from code written by experimenters. 

Lastly, the tool was required to provide ways 
in which the data generated by simulations 
could be visualized. One of the challenges in 
this type of simulation, particularly where mul- 
tiple agents are involved, is in getting an impres- 
sion of the changes that  are taking place. We 
wanted something that could let us 'look inside' 
our simulations as they ran and try to get an 
idea of what was actually happening. It should 
also, of course, provide the means to export the 

data for subsequent analysis or presentation. 
In summary, the system needed to offer an 

extensible set of building blocks for simulation 
development, tools for controlling the simula- 
tions, and tools for visualizing the progress of 
simulations. In the next section we will look at 
the approach taken to meeting these needs. 

3 I m p l e m e n t a t i o n  

The choice of language for the implementation 
was determined by the need for a standardized 
language suitable for rapid prototyping with 
good symbolic and list-processing capabilities. 
While the portability of Java was tempting, we 
eventually decided on Common LISP ((Steele, 
1990)) with its more powerful symbol and list 
manipulation facilities. 

Babel was developed using Macintosh Com- 
mon LISP from Digitool, and has since been 
ported to Windows under Allegro Common 
LISP by colleagues at the Vrije Universiteit 
Brussel. The core of the system is portable 
Common LISP that can run on any platform, 
leaving only the interface to be ported to other 
platforms. In future, when stable implementa- 
tions of the Common LISP Interface Manager 
(CLIM) are widely available, it may be possi- 
ble to produce a single version which will run 
on any system. The task of porting is, however, 
not too onerous, since the majority of the code is 
contained in the portable core. Most important 
of all, experimenter code - definitions of agents, 
game types and environments - can typically 
run without modification on any platform. The 
high-level services provided by the toolkit mean 
that experimenters rarely need to get involved 
in platform-specific interface programming. 

3.1 Class l i b ra ry  

Building blocks for experimental development 
are provided by a rich class library of 
CLOS (Common LISP Object System) objects. 
Classes present in the library include 

• basic agent classes 

• classes for capturing information about in- 
teractions, the contexts in which they take 
place and the linguistic tokens exchanged 

• classes representing the agent's environ- 
ment ('worlds') 
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• data  structures that  can be used to imple- 
ment agent memories and learning mecha- 
nisms 

The two most important  kinds of classes 
are the agent and the world classes. The 
agent classes define the capabilities of individ- 
ual agents - the way they store information, 
the kind of utterances they can produce, and 
the mechanisms they use to learn or to build 
structure. Depending on the nature of the envi- 
ronment,  agents may also have attributes such 
as position, age, energy state, social status, or 
any other property that  might be relevant. The 
core class library provides a root class of agents, 
together with some specializations appropriate 
to given interaction types or learning models. 
Experimenters can use these classes as founda- 
tions for building agents to function in a specific 
experimental context. 

While agent classes define the capabilities and 
properties of individual speakers in the language 
community, the world classes capture the prop- 
erties of the world and, more importantly, the 
nature of interactions between the agents. In 
this way, procedural definitions of the different 
kinds of language games can be given as part  of 
the definition of a basic world class. The exper- 
imenter can use a given language game simply 
by basing their experimental world on the ap- 
propriate class. 

As an example, consider the following code 
fragment taken from the ng-world class: 

(defmethod RUN-GAME ((World ng-world)) 

(let* 
( (Speaker (choose-speaker . . . ) ) 
(Hearer (choose-hearer . . . ) ) 
(Context (choose-context ...)) 

(Utterance (compose-utterance . . .)) 
(Success 
(when Utterance 

(recognise-or-store ...)))) 
(update-world-state ... ) 
(register-interaction ...))) 

This defines the basic form of the naming 
game - the choice of speaker and hearer, the 
choice of a context (including a topic), and the 
construction of an utterance by the speaker, fol- 
lowed by recognition of the utterance by the 
hearer 1. The state of the world - including the 

1 To make the code easier to read, function arguments 
are not shown 
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Figure 1: Core classes in Babel 

agents' own memory structures - is then up- 
dated and the interaction is registered by the 
monitoring system (described later). Each of 
the methods called by this method can be indi- 
vidually overridden by subclasses, giving exper- 
imenters fine control over the procedures used 
to choose speakers or hearers, formulate utter- 
ances, store information and so forth. 

The class library is implemented in a modular  
fashion, so that  experimenters can extend the 
functionality of the base classes by loading ad- 
ditional modules. The multiple-inheritance sys- 
tem in CLOS allows properties to be attached 
to experimental objects simply by making them 
inherit from different subclasses. For instance, 
any object can be given a position by making 
it inherit from the class spatial-object de- 
fined in the Space module, as shown in Figure 
1, which shows a portion of the existing class 
library. 

As Babel evolves, useful classes and da ta  
structures defined by experimenters are ab- 
sorbed into the core library set where they can 
in turn serve as building blocks for future ex- 
periments. 

3.2 C o n t r o l  i n t e r f a c e  

In addition to the core class library, Babel must 
provide an interface that  can be used to control 

8 3 2  



Figure 2: Babel's main control window 

the simulations. As previously noted, the core 
Babel functions and the code defining the inter- 
face are carefully separated, in order to facilitate 
porting and allow experimenters to write code 
that  does not depend on - or require knowledge 
o f -  any specific operating system platform. 

The control interface in Babel is realised by 
a single window that  allows the user to launch 
simulations, to set experimental parameters, to 
configure da ta  reporting tools and even to write 
simple batch scripts to control ongoing simu- 
lations. The different functionalities are sepa- 
rated out into subpanes that  group related con- 
trols together. Figure 2 shows a stylised view of 
the interface, showing each of the main control 
panes. 

Access to interface functions is available to 
experimenter code through a well-defined API. 
For instance, experimental parameters can be 
declared using a simple description language 
that  specifies the type, range and default val- 
ues for each parameter.  Parameters declared in 
this way are automatically accessible for editing 
through the parameter editor, and can even be 
updated programmatically at runtime by batch 
scripts executed by Babel's built-in task proces- 
sor. 

3.3 V i s u a l i z a t i o n  too ls  
A major challenge has been to provide a way 
to allow experimenters to follow the progress 
of their experiments and to view and extract 
data  from the simulations. The same consid- 

erations that  governed design of the interface 
are applicable here as well: the code needed to 
display simulation data  (for instance by draw- 
ing a graph onscreen) is typically platform- 
dependent, but experimenters should not need 
to get involved in user interface programming 
simply to see their results. Moreover, they 
should not need to 'reinvent the wheel' each 
time; once a particular way of visualizing data  
has been implemented, it should be available to 
all experiments that  can make use of a similar 
representation. 

The approach taken in Babel has been to sep- 
arate out the task of da ta  collection from the 
task of data  display. We call the data  collectors 
monitors, because they monitor the simulation 
as it proceeds and sample da ta  at appropriate 
intervals or under specific circumstances. Data  
display is handled by reporters, which take in- 
formation from the monitors and present it to 
the user or export it for analysis by other pro- 
grams. 

Monitors and reporters stand in a many-to- 
many relationship to each other. The da ta  from 
a given monitor type can be shown by a range 
of different possible reporters; in the same way, 
a single reporter instance can show the out- 
put from multiple monitors simultaneously. In 
the case of a graph display, for example, dif- 
ferent experimental variables or measures may 
be drawn on the same chart, as shown in Fig- 
ure 3, where change in population is graphed 
against communicative success over time. Simi- 
larly, a map might show the positions of individ' 
ual agents and the zones of occurrence of differ- 
ent linguistic features. The control interface al- 
lows users to instantiate and combine monitors 
and reporters, while a description system allows 
the Babel framework to ensure that  users do not 
a t tempt  to combine incompatible reporters and 
monitors at runtime, issuing a warning if the 
user a t tempts  to make an inappropriate match. 

Communication between monitors and re- 
porters is defined by a high-level API, allowing 
the monitors to remain platform-independent. 
Experimenters can build their own monitors 
based on a library of core monitor classes which 
define appropriate behaviors such as taking 
samples at specified intervals; reacting to events 
in the world or watching for the occurrence of 
particular conditions. Other classes may spec- 
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Figure 3: A graph display with two installed 
monitors 

ify the sampling range of a given monitor - a 
single agent, a defined group, or the entire pop- 
ulation - and multiple-inheritance makes it pos- 
sible to flexibly combine the different types. Ef- 
forts have been made to provide powerful base 
classes to perform commonly-required tasks. In 
some cases, adding new monitoring functional- 
ity can involve as little as defining and declaring 
a single sampling function. 

4 E v a l u a t i o n  a n d  s t a t u s  

At the time of writing, the Babel toolkit is still 
under development, and has only been released 
to a very limited test group. Nevertheless, ini- 
tial reactions have been generally positive, and 
the consensus seems to be that it meets its pri- 
mary goal of simplifying and accelerating the 
task of developing simulations. A Windows port 
is in progress, and there are plans to make the 
software available to a wider community in fu- 
ture if there is sufficient interest. 

5 C o n c l u s i o n  

This paper has presented an software environ- 
ment for the development of multi-agent-based 
simulations of language emergence and evolu- 
tion. Among the innovative features of the soft- 
ware are a class library capable of represent- 
ing the stylised interactions known as language 
games which form the basis of our research, and 
a flexible mechanism for capturing and present- 
ing data generated by the simulation. 
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