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Traditional language learning theory explores an idealized inter-
action between a teacher and a learner. The teacher provides
sentences from a language, while the learner has to infer the
underlying grammar. Here, we study a new approach by consid-
ering a population of individuals that learn from each other. There
is no designated teacher. We are inspired by the observation that
children grow up to speak the language of their peers, not of their
parents. Our goal is to characterize learning strategies that gen-
erate ‘‘linguistic coherence,’’ which means that most individuals
use the same language. We model the resulting learning dynamics
as a random walk of a population on a graph. Each vertex
represents a candidate language. We find that a simple strategy
using a certain aspiration level with the principle of win–stay,
lose–shift does extremely well: stay with your current language, if
at least three others use that language; otherwise, shift to an
adjacent language on the graph. This strategy guarantees linguistic
coherence on all nearly regular graphs, in the relevant limit where
the number of candidate languages is much greater than the
population size. Moreover, for many graphs, it is sufficient to have
an aspiration level demanding only two other individuals to use
the same language.

graph � population � random walk

Consider a population of individuals dispersed over a graph
(Fig. 1). The task of these individuals is to find each other

in an arbitrary node of the graph. In one time step, each
individual can remain where it is or move to an adjacent node.
The individuals have no global information about the graph or
the configuration of the population. They cannot see each other
at a distance. They can only determine whether other individuals
are in the same node as themselves or in a different node. Which
strategy could lead to success?

This question about the random walk of a population on a
graph is motivated by the problem of language acquisition.
Learning theory is a fascinating field at the interface of math-
ematics, computer science, and formal linguistics (1–7). The
original studies (8) were motivated by Chomsky’s claim (9) that
any given learning algorithm can only succeed on a limited set
of grammars. Consider a teacher and a learner. The teacher
provides sample sentences from a language. The learner tries to
infer the underlying grammatical rules. It can be shown formally
that no learner can solve this task if he entertains an unlimited
set of hypotheses. In other words, each particular learning
strategy can only learn a limited set of languages. This impos-
sibility of tabula rasa learning has been shown in the Gold
framework (1, 8), in statistical learning theory (2), in learning
with queries (10), and in the framework of ‘‘probably almost
correct’’ (4).

As outlined above, the traditional setting of formal language
learning is an idealized teacher–student pair. In contrast, this
paper considers a population of identical agents that are trying
to find a common language. This approach is motivated by the
fact that in reality children learn many aspects of language
neither from their parents nor from other members of the
previous generation, but from each other (11). A remarkable
example of this is the development of Nicaraguan Sign Lan-
guage, where a group of students developed a full language in a

short span of time (12, 13). We would like to model this process
and find conditions for the population to develop linguistic
coherence, which means that all of the individuals end up with
the same language. Convergence to linguistic coherence in a
population has been studied before in evolutionary and non-
evolutionary settings (14–20).

Typically, in the language learning literature, one fixes a type
of ‘‘learner’’ with certain capabilities and then establishes the
class of languages this agent can learn under certain conditions.
The learner in this paper is a type of ‘‘memoryless learner.’’ The
memoryless learner has a finite set of possible grammars.
Initially, the learner chooses one of these grammars as a
hypothesis. The learner receives sentences. As long as the
sentences are sufficiently compatible, the learner will remain
with the current hypothesis. If a sentence is not compatible, the
learner will jump to another hypothesis. The algorithm is memo-
ryless, because the learner keeps no record and may return to a
hypothesis that was previously rejected.

For such a learner, we need to decide on some sort of structure
for the set of grammars: Which ‘‘jumps’’ are legal? A main
concern of linguistic or cognitive research is to identify the
learning algorithm that is used by human children and the
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Fig. 1. The basic operation of the model. The figure shows a possible
sequence of events for a hypercube language space of 16 nodes (languages)
and six aspiration learners using the k � 2 strategy. In the first frame, all
individuals are using different languages. The black dots indicate that the
node is occupied, and the number gives how many agents are occupying that
node. The next frame shows the next time step: Because there are no lan-
guages with strictly more than two individuals at that language, each indi-
vidual takes a random step along an edge of the graph. In the third frame,
enough time has passed for three individuals to arrive at the same node. They
will not move for the remainder of the simulation. The last frame shows the
last three individuals collecting at this node. It is possible that these individuals
could form a second cluster, but our analysis shows that under certain condi-
tions a second cluster is unlikely when the graph is large.
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underlying structure of candidate languages (universal gram-
mar). The approach here is simple but general: we think of the
set of possible grammars as a graph, where the nodes represent
languages and the edges represent possible ‘‘jumps’’ from one
candidate language to another. For example, if the set of
languages is given by the complete graph, where all vertices are
connected, then the learner can move from any one hypothesis
to any other. If, on the other hand, the graph of languages is
represented by a cycle, then an individual can move from its
present language only to one of the two adjacent languages. The
hypercube is a graph that lies between these two extreme cases:
It has more edges than the cycle and fewer edges than the
complete graph.

There is precedent for thinking of the set of languages as a
graph in the ‘‘trigger learning algorithm’’ (21). In this frame-
work, the set of grammatical hypotheses is generated by k binary
parameters (22). At any one time, the learner holds a particular
hypothesis given by a particular setting of these parameters. The
learner does not change the hypothesis as long as the sentences
are compatible. If a sentence arrives that is not compatible, then
the learner will change one of the k parameters. In this model,
the set of languages can be thought of being represented by the
vertices of a k-dimensional hypercube. The process of language
acquisition is described by the learner moving along the edges of
this hypercube graph.

Let us consider N individuals initially randomly distributed on
a language graph with n languages (nodes). Naturally, we assume
n �� N: There are many more possible candidate languages than
people. At each time step, each individual is allowed to update
its language. To do so, the individual can attempt to communi-
cate with other individuals. The only information that can be
inferred, however, is whether or not other individuals use the
same language as the given individual. If an individual decides
to change its current language, it can move to any adjacent
language. In one version of the model, all individuals are updated
synchronously. In another version, one individual is updated at
each time step.

The goal is to find a single strategy that ensures (with high
probability) that all individuals use the same language in the end.
This state is called linguistic coherence. Thus, we want to find a
mechanism that governs the random walk of a population on a
graph with the aim that all individuals settle in the same place
with high probability after a reasonably short time.

A natural strategy is the following: An individual stays with a
certain language if some fixed number of other individuals use
that same language. We call such agents ‘‘aspiration learners’’:
The learner aspires to use a language that is shared by a
minimum number of other people. Because communication can
be seen as an evolutionary game (14), the individual aspires to
at least a certain level of payoff. In this case, payoff is coming
from communicative success. The individual is happy when this
goal is reached and stays with the current language. The
individual shifts to another language when the goal is not
reached. Thus, the strategy is one of win–stay, lose–shift (23).

Win–stay, lose–shift is a successful strategy in many different
contexts. For example, it can outperform tit-for-tat in the
repeated Prisoner’s Dilemma (23, 24). Strategies using this
principle do well in noisy situations and even when a 2 � 2 game
is randomly assigned to the players (25). It is a fundamental and
simple rule of animal behavior in numerous situations (26, 27).
The aspiration level determines what the agent considers a win
versus a loss. The crucial question is what is the most successful
aspiration level in a given situation (28). This is also the main
question that we want to address here.

In our context, the aspiration level, k, is given by the minimum
number of people with the same language such that the indi-
vidual will stay with this language. Once this threshold is met or
exceeded, the agents form a ‘‘cluster’’ that does not move

anymore. For example, an aspiration learner with k � 1 will keep
its language if at least one other person uses this language. For
a learner with k � 2, at least two other individuals are required.
An obvious guarantee for success is if every individual uses an
aspiration level, k, given by any integer �N/2. In this case, all
individuals will continue to move until more than half of them
use the same language. Then all others will converge to the same
cluster. This strategy, however, will take a very long time to form
the first cluster. Strategies with a lower aspiration level are faster
to form the first cluster, but they admit the possibility that several
independent clusters might be formed, which prevents conver-
gence to complete coherence.

For this paper, we consider only memoryless learners whose
set of possible grammars forms a ‘‘nearly regular’’ graph. If we
define the ‘‘local degree’’ of a node to be the number of edges
touching that node, we call a graph nearly regular when the
maximum local degree is close to the minimum local degree. A
regular graph is one in which these two numbers are equal, so all
regular graphs are nearly regular. The hypercube, the complete
graph, and the cycle are examples of regular graphs. Binary trees
are examples of what we call nearly regular graphs. These ideas
are formalized in Appendix: Proofs.

We found the following surprising result: If there are many
more candidate languages than people (n �� N), then k � 3 will
almost always converge to complete coherence on any nearly
regular graph. Moreover, for many nearly regular graphs, such
as the hypercube, the complete graph, the balanced d-tree, or
the torus of at least two dimensions, even k � 2 leads to
complete coherence. Thus, even though each agent only
demands to be able to communicate with a few others, in most
cases the dynamics will lead to everyone speaking the same
language. The proof of these statements are given in Appendix:
Proofs.

Note that some structural assumption is needed on the class
of graphs under consideration. For example, if we consider two
star graphs connected by an edge, we will need a very large k to
gain coherence. Our ‘‘nearly regular’’ assumption excludes these
sorts of graphs.

We can estimate the time it takes to reach coherence. This
time is the sum of two terms. The first term approximates how
long it takes to form the first cluster. It is approximately the
inverse of n times the probability that a cluster of size k � 1 forms
at a given node, assuming that we begin with a uniform distri-
bution. The second term describes the amount of time it takes

Fig. 2. The convergence rates of different k values with a fixed N on the
complete graph. The line represents the value given by Eq. 1, and the marks
represent data from simulations. One can see that the time is approximately
proportional to nk.
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for all individuals to be absorbed into this cluster. This time
depends explicitly on the graph structure. For the complete
graph we estimate the total time to coherence as

T �
1

� N
k � 1�

nk

�1 � n�1�N�k�1

� n log�1 � 2�1��N�k�1�� . [1]

This is an excellent estimate, as shown in Fig. 2. Note that in the
case k � 2 the first term dominates, and that for large n this term
is �nk/(k�1

N ). Therefore, although we may get a higher probability
of complete coherence with a larger k, the individuals will take
a much longer time to converge when n is large.

In Fig. 3, we show simulation results. We define the level of
coherence as the probability that two randomly (with replace-
ment) chosen individuals speak the same language (16, 29). The
population size is n � 20. The expected coherence (averaged
over 2,000 or more runs) is shown as a function of time. Fig. 3a
shows the performance of the aspiration level k � 2 for complete
graphs of sizes n � 32, 128, 512, and 2,048. Similarly, Fig. 3b
shows the performance of k � 2 on hypercubes of four different
sizes. Fig. 3 c and d shows the performance of k � 2 and k � 3
on cycle graphs. For large complete graphs and hypercubes, k �
2 is sufficient for the average coherence to converge to one as
n increases. For cycles, k � 2 is not sufficient, but k � 3 is
required.

The sigmoidal shape of the curves suggests that, on average,
one has to wait a long time for the first cluster to form, but once
this cluster has appeared coherence is reached relatively quickly.
Eq. 1 describes these two time scales in the case of the complete
graph.

In summary, we have modeled language learning from peers
as the random walk of a population on a graph. The set of
learnable languages is given by a graph, where each node
represents a language (grammar) and each edge indicates a
possible change of hypothesis during the learning process. We
consider a memoryless learner with an aspiration level. The
learner is satisfied if k others use the same language. In
this case, the learner will stay with its current hypothesis. If less
than k others use this language, then the learner will jump to
a new hypothesis. We show that k � 3 guarantees success
with high probability on all nearly regular graphs. Moreover,
on many of those graphs, k � 2 is sufficient and leads to
coherence more quickly. Thus, a simple strategy of win–stay,
lose–shift is highly successful in language learning from peers.
Our approach has applications beyond language acquisition to
learning in other social or game theoretic settings (30).

Appendix: Proofs
In this section, we formalize the ideas of the paper and prove the
propositions. We note that although the analysis is performed
here for the case of synchronous updating (each agent may move
each time step), the case of asynchronous updating (each time
step a single randomly chosen agent is allowed to move) is similar
and the corresponding statements are proven with minor
modifications.

Let us assume G1, G2, . . . is a infinite sequence of graphs with
at least n nodes, such that the local degree (the number of edges
touching a given node) is bounded below by Lk and above by Uk
on graph Gk. We call the sequence of graphs ‘‘nearly regular’’ if
the ratio Uk/Lk is bounded above by a fixed �.

We assume such a sequence, and that the N agents start
distributed on each graph according to a uniform probability
distribution. We also assume that the agents all use strategy k.
If the probability of converging to complete coherence on Gn
goes to 1 as n goes to infinity, we will say that strategy k leads

Fig. 3. Results from simulations of the model with a population size of n �
20. In a and b, we clearly see that k � 2 leads to coherence with high probability
when n is large for both the complete graph and the hypercube. The curves
follow a sigmoidal shape, which comes from the two time scales involved in
the analysis. c shows that on the cycle, k � 2 does not lead to complete
coherence with high probability. d shows that one gets the coherence result
when k � 3 as predicted by the theory.
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to complete coherence in the limit for the given sequence. Note
that as long as N is fixed, this does not depend on the value of N.

We have the following result:

Proposition 1. Any k strategy with k � 3 leads to complete coherence
in the limit for any nearly regular sequence of graphs.

Moreover, for many nearly regular sequences of graphs k � 2
leads to complete coherence in the limit. Whether k � 2 or k �
3 is needed depends on the mean hitting time weighted by the
stationary distribution, which we write as

�0 � �
i, j

�i�jHij.

Here, Hij is the hitting time, i.e., the expected time it takes to
diffuse from node i to node j, and �i is the stationary distribution
for the graph diffusion. The quantity �0 is well known; it can be
computed, for example, via the eigenvalues of a graph. For more
details, see ref. 31.

Knowledge of this quantity allows us to make a stronger
statement about certain types of graphs:

Proposition 2. Assume that G1, G2, . . . is a nearly regular sequence
of graphs such that Gn has at least n nodes and such that we have
a little-o bound on �0:

�0�Gn� � o�n2� . [2]

Then the k � 2 strategy leads to complete coherence in the limit.
Note that such bounds exist for sequences of complete graphs,

hypercubes, balanced d-trees, and tori of at least two dimensions
(see http://stat-www.berkeley.edu/users/aldous/RWG/book.
html).

Now, we begin the analysis proving these statements. From the
uniform distribution of agents eventually one cluster will develop,
say of size m. It is possible that more than one cluster will develop
in a single time step, but that has strictly lower order of probability,
and we ignore this case. From the single cluster either we eventually
reach complete coherence or a second cluster will develop. We will
show that the probability of this latter event is small for large n.

We fix a graph G and use the following notation. Let 1, . . . , n
be the nodes of the graph, i.e., the languages under consider-
ation. Let di be the local degree of node i. Recall that by the
assumption of near regularity, di is bounded above by a U and
below by an L. Let node one be the location of the first cluster
and time t � 0 be the time of its formation. Let Rt be the
probability that at time t � 1 there was not yet a second cluster.
Let si,t be the probability that an agent is at node i at time t
assuming that there is not yet a second cluster.

The probability of a second cluster developing is equal to the
probability that there is no second cluster already times the
probability that a new cluster develops under this condition.
Thus, we can write the probability of a second cluster of size q
developing at time t in node i as

Rt�N � m
q � si,t

q �1 � si,t�
N�m�q.

Therefore, the probability of getting a second cluster of size q at
time t in an arbitrary node is bounded above by

Kq,t: � Rt�
i�2

n �N � m
q � si,t

q �1 � si,t�
N�m�q.

To get the desired results, one can simply compare the proba-
bility distribution si,t with the probability distribution of a pure
random walk (no absorption) with the same initial conditions.
We call this corresponding probability pi,t. We have then si,t � pi,t

for all i � 2, which can be checked by looking at the corre-
sponding matrices of the Markov chains.

The probability distributions are updated by

pi,t�1 � �
j	adj(i)

pj,t

d j
,

where adj(i) means the nodes that are adjacent to i.
We claim that pi,t never gets above di/(nL) or below di/(nU).

This is certainly true at time 0, and other times can be checked
by induction using the above equation. Then, by the definition of
�, we have

1
�n

� pi,t �
�

n
. [3]

This gives an upper bound for Kq,t:

Kq,t � �
i�2

n �N � m
q � si,t

q � �
i�2

n �N � m
q � pi,t

q � �N � m
q � �q

nq�1 .

Because we are taking the limit as n goes to infinity, we ignore
terms of higher order in n � 1. Therefore, we only consider q �
k � 1 in what follows.

The number of steps until all agents are absorbed into one
cluster or another is a random variable that is bounded above by
the amount of time it would take for the same N � m agents, all
diffusing on the graph independently, to be absorbed by node
one. We call the latter random variable T. Now, we can split up
cases according to how long absorption takes:

P(incoherence) � �
r�0

� P�T � r��
t�1

r

Kk�1,t�
� �

r�0
� P�T � r�r�N � m

k � 1 � �k�1

nk �
� E�T��N � m

k � 1 � �k�1

nk .

Now, say that S is the random variable representing time it takes
for just one of these noninteracting agents to hit node number
one. The bound

E�T� � N E�S�

can be gained by taking the derivative of the Nth power of the
cumulative distribution function of T. Furthermore, by an argu-
ment similar to others in this paper using Eq. 3, E(S) can be
bounded above:

E�S� �
�2m�1

n2 �
i, j

Hi, j.

Also, since

�i �
di� j d j

�
1

�n
,

we have

1
n2 �

i, j

Hij � �2 �
i, j

��n��2Hij � �2 �
i, j

�i�jHij � �2�0.
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The final result is

P(incoherence) � �N � m
k � 1 �N�0�2m�k�4

nk .

From this equation it is clear that upper bounds on the mean
hitting time �0 are going to imply upper bounds on the probability
of incoherence. In fact, this equation proves Proposition 2.

General bounds on �0 exist for nearly regular graphs. Kahn et
al. (32) proved that the ‘‘cover time,’’ and therefore �0, is at most
of order O(n2). Substituting this bound into the above inequality
proves Proposition 1, that k � 3 is sufficient to ensure that we get
a single cluster in the limit of large n.

Now, we address the question of why on the cycle k � 2 is not
sufficient to guarantee complete coherence in the limit. We
present a plausibility argument that indicates why this value of
k is important.

Assume that the first cluster is of size m. Modulo terms of
higher order in the sj,t, the probability of getting a second cluster is

�
t
�Rt �

j�2

n �N � m
k � 1 � sj,t

k�1�1 � sj,t�
N�m�k�1�.

For the purposes of this analysis, we only care whether this
quantity goes to zero or not as the number of languages n goes
to infinity with a fixed N. Through a series of simplifying steps,
one can show that this is equivalent to the question of whether
the sum

�
t

�
j�2

n

sj,t
k�1 [4]

goes to zero or not.
It is well known that our Markov process on the cycle becomes

one-dimensional Brownian motion in the limit (see, for example,
ref. 33). Therefore, for large n we can approximate

sj,t � F�� j � 1��n, t�,

where F(x, t) is a solution to the diffusion equation


F

t

�

2F

x2

with fixed boundary conditions F(0, t) � 0 and F(1, t) � 0. We
take initial conditions F(x, 0) � 1 corresponding with the
uniform distribution.

The analog of increasing n is increasing the size of the line, say
by a multiplicative factor q � 1. Now, we wish to find another
solution of the diffusion equation with the initial conditions
F(x, 0) � q�1, as we start with a uniform distribution on the
interval (0, q). The solution in this case is q�1F(x/q, t/q2). The fact
that time is scaled by the square of the space scaling factor is the
crucial fact of this argument.

The continuous analog of Eq. 4 specialized to the case
k � 2 is

�
0

	 �
I

�F�x, t��3 dx dt. [5]

On the larger interval, it will look like

�
0

	 �
qI

�q�1F�x�q, t�q2��3 dx dt.

After making the usual variable substitutions, this becomes

q�3 �
0

	 �
I

�F�x, t��3 qdx q2dt,

which is, of course, Eq. 5 again. Thus, increasing the size of space
does not change the probability of multiple clusters in the case
k � 2, and so we conclude that the probability does not go to zero
as the line becomes long. Note that this argument depends very
much on the value of k, for if k � 3, then increasing q decreases
the value of the integral. This decrease corresponds to the fact
that k � 3 will lead to coherence for large values of n.
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