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Abstract 
Evolutionary robotics is a biologically inspired approach to 
robotics that is advantageous to studying the evolution of 
language. A new model for the evolution of language is 
presented. This model is used to investigate the 
interrelationships between communication abilities, namely 
linguistic production and comprehension, and other 
behavioral skills. For example, the model supports the 
hypothesis that the ability to form categories from direct 
interaction with an environment constitutes the ground for 
subsequent evolution of communication and language. A 
variety of experiments, based on the role of social and 
evolutionary variables in the emergence of communication, 
are described. 

1. Introduction 
The communication between autonomous agents, be they 
robots or simulated virtual agents, has recently attracted the 
interest of researchers from different fields. In engineering, 
the design and evaluation of communication systems is 
interesting due to its practical applications for agent-agent 
interaction and also for human-agent and human-robot 
communication (e.g. Lauria et al., 2002). For cognitive 
scientists, the development of computational models for the 
evolution of language permits the investigation of the role of 
sensorimotor, cognitive, neural and social factors in the 
emergence and establishment of communication and 
language (Cangelosi &  Parisi, 2002).  

Studies on the emergence of communication are often 
based on synthetic methodologies such as adaptive behavior 
and artificial life (Steels, 1997; Kirby, in press). A group of 
autonomous agents interact via language games to exchange 
information about the external environment. Their 
coordinated communication system is not externally 
imposed by the researcher, but emerges from the interaction 
between agents. In such models, the levels of detail of the 
representation of the agents and of their environment can 
vary significantly. This constitutes a continuum between 
abstract point models, at one end, and situated, embodied 
robots at the other. At one extreme, only the essential 
communicative properties of the agents and the environment 
are simulated. For example, the environment can consist of 

a list of abstract “meanings”, and the agent consists of a 
function, or rule set, that maps these meanings to signals 
(e.g. Kirby, 2001; Oliphant, 1999). This approach is useful 
when one wants to study the dynamics of the auto-
organization of lexicons and syntax and its dependence on 
single, pre-identified factors. An intermediate approach to 
language evolution is based on grounded simulation models 
(Harnad, 1990). The agents’  environment is modeled with a 
high degree of detail upon which emergent meanings can be 
directly grounded. Each simulated agent has a set of 
sensorimotor, cognitive and social abilities that allow it to 
build, through interaction, a functional representation of the 
environment and use it to communicate (e.g. Cangelosi, 
2001; Cangelosi &  Harnad, 2000; Hazlehurst & Hutchins, 
1998). This type of models supports the investigation of the 
interaction amongst various abilities of the agents for the 
emergence of language and the grounding of 
communication symbols in the environment and the agent’s 
behavior. 

At the other end of the continuum, the communicative 
behavior of embodied and situated robots results from the 
dynamical interaction between its physical body, the 
nervous and cognitive system and the external physical and 
social environment (Beer, 1995). For example, robots can 
interact and communicate among themselves (e.g. Steels & 
Vogt, 1997; Quinn, 2001), with virtual Internet agents 
(Steels, 1999) and with humans (Steels & Kaplan, 2000). 
Such an approach permits the study of the interaction 
between the different levels of a behavioral system, that is 
from sensorimotor coordination to high-level cognition and 
social interaction. 

Amongst the robotic approaches to studying adaptive 
behavior, evolutionary robotics (Nolfi &  Floreano, 2002) 
offers a series of advantages. Through evolutionary 
experiments, artificial organisms autonomously develop 
their behavior in close interaction with their environment. 
The main advantages of this approach are: (a) it involves 
systems that are embodied and situated (Brooks, 1991; 
Pfeifer and Scheier, 1999), and (b) it is an ideal framework 
for synthesizing robots whose behavior emerge from a large 
number of interactions among their constituent parts. This 
can be explained by considering that, in evolutionary 
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experiments, robots are synthesized through a self-
organization process based on random variation and 
selective reproduction where the selection process is based 
on the behaviors that emerge from the interactions among 
the robot's constituent elements and between these elements 
and the environment. This allows the evolutionary process 
to freely exploit interactions without the need to understand 
in advance the relation between interactions and emerging 
properties as it is necessarily required in other approaches 
that rely more on explicit design. 

For these reasons the evolutionary robotics approach has 
been successfully applied to the synthesis of robots able to 
exploit sensorimotor coordination (Nolfi, 2002); on-line 
adaptation (Nolfi and Floreano, 1999); body and brain co-
evolution (Lipson and Pollack, 2000); competing and 
cooperative collective behaviors; (Nolfi and Floreano, 1998, 
Martinoli, 1999; Baldassarre, Nolfi, and Parisi, 2002).  

These advantageous aspects of evolutionary robotics are 
of particular importance for modeling the evolution of 
language and communication. Sensorimotor coordination, 
social interaction, evolutionary dynamics and the use of 
neural systems can all have a potential impact in the 
emergence of coordinated communication. In this paper, 
new experiments are presented that study the emergence of 
communication in evolutionary robotics models. They are 
based on recent work by Nolfi and Marocco (2002) for the 
emergence of sensorimotor categorization. Nolfi and 
Marocco evolved the control system of artificial agents that 
are asked to categorize objects with different shapes on the 
basis of tactile information. Each agents uses proprioceptive 
information to actively explore objects using a three-
segment arm. In addition, the agent uses the activation of 
one output node of its neural network controller as input. 
Agents are selected only for their performance in 
discriminating (categorizing) the objects using this unit, not 
for their ability to explore them. This results in the 
emergence of an active tactile exploration strategy that 
differentiate between objects of different shapes. Nolfi and 
Marocco’s model is an example of explicit self-
categorization.  

In this new model, the robotic agents share the explicit 
categorization of objects. That is, the activation of the 
output nodes is the signal (“name”) sent to another agent to 
instruct it on what to do with the object. Agents will be 
selected on their ability to manipulate objects correctly, not 
on their (linguistic) ability to name them correctly. A variety 
of experiments will test the role of different social and 
evolutionary variables. These will be used to analyze the 
role of sensorimotor, social and cognitive factors in the 
emergence of communication. The direct relations between 
behavioral and communication abilities, such us language 
production and comprehension, will also be discussed.  

2. Method 
The behavior of each agent consists of exploration within 
the environment, on the basis of tactile information, and the 

communication, about the type of objects that are in it. The 
environment consists of an open three-dimensional space in 
which one of two different objects is present in each epoch 
(Figure 1). The two objects used in this simulation are a 
sphere and a cube.  

 

Figure 1 – The arm and a spherical object. 

 

Figure 2 – A schematic representation of the arm. 

Agents are provided with a 3-segments arm with 6 
degrees of freedom (DOF) and extremely course touch 
sensors (see Figure 2). Each segment consists in a basic 
structure of two cylindrical bodies and two joints. This is 
replicated for three times. The basic structure consists of a 
shorter body of radius 2.5 and length 3 and a longer body of 
the same radius and length 10 for the first two segments. 
The length of the third segment is 5. This shorter segment 
represents a fingerless hand. The two bodies of each 
segment are connected by means of a joint (i.e. the Joint E 
in the Figure) that allows only one DOF on axis Y, while the 
shorter body is connected at the floor, or at the longer body, 
by means of a joint (i.e. the Joint R) that provides one DOF 
on axis X. In practice, the Joint E allows to elevate and 
lower the connected segments and the Joint R allows to 
rotate them in both direction. Notice that Joint E is free to 
moves only in a range between 0 and π/2, just like a human 
arm that can bend the elbow solely in a direction. The range 
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of Joint R is [–π/2, +π/2]. Gravity is { 0, –1, 0} . Each 
actuator is provided with a corresponding motor that can 
apply a maximum force of 50. Therefore, to reach every 
position in the environment the control system has to 
appropriately control several joints and to deal with the 
constraints due to gravity.  

The sensory system consists of a simple contact sensor 
placed on each longer body that detects when this body 
collides with another, and two proprioceptive sensors that 
provide the current position of each joint.  

The controller of each individual consists of an artificial 
neural networks with 11 sensory neurons connected to 3 
hidden neurons. These connect with 8 output neurons. The 
first 9 sensory neurons encode the angular position 
(normalized between 0.0 and 1.0) of the 6 DOF of the joints 
and the state of the three contact sensors located in the three 
corresponding segments of the arm. The other 2 sensory 
neurons receive their input from the other agents. The first 6 
motor neurons control the actuators of the corresponding 
joints. The output of the neurons is normalized between [0, 
+π/2] and [–π/2, +π/2] in the case of elevation or rotational 
joints respectively and is used to encode the desired position 
of the corresponding joint. The motor is activated so to 
apply a force (up to 50) proportional to the difference 
between the current and the desired position of the joint. 
The last 2 output neurons encode the signal to be 
communicated to the other agents. This works as a small 
winner-takes-all cluster, where the neuron with the highest 
activation is set to 1 and the other to 0. 

The activation state of internal neurons was updated 
accordingly to the following equations (output neurons were 
updated according to the logistic function): 
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With Aj being the activity of the jth neuron (or the state 

of the corresponding sensor in the case of sensory neurons), 
tj the bias of the jth neuron, Wij the weight from the ith to 
the jth neuron, Oi the output of the ith neuron. Oj is the 
output of the jth neuron, τj the time constant of the jth 
neuron.  

Each individual was tested for 36 epochs, each epoch 
consisting of 150 sensorimotor cycles. At the beginning of 
each epoch the arm is fully extended. A spherical or a cubic 
object is placed in a random selected position in front of the 
arm. The position of the object is randomly selected 
between the following intervals: 15.0 <= X <= 25.0; Y = 
7.5; –5.0 <= Z <= 5.0). The object is a sphere (15 units in 
diameter) during even epochs and a cube (15 units in side) 
during odd epochs so that each individual has to 
discriminate the same number of spherical and cubic objects 
during its lifetime. 

In addition to the proprioceptive information, agents 
also receive in input a 2-bit signal produced by some other 
agent in the population, such as the parent or any agent from 
the population (linguistic comprehension task). The protocol 
of interaction and communication between agents was 
systematically varied and is analyzed in section 3.  

Before they act as speaker, agents undergo a linguistic 
production task. That is, each agent is put in the 
environment and asked to interact with the object. The value 
of the two output neurons in the last cycle of the epoch is 
saved and used as the signal produced to “name” the object. 

A genetic algorithm is used to evolve the behavior of 
agents. The genotype of each agent consists of 81 
parameters that include 67 weights, 11 biases, and 3 time 
constants. Each parameter is encoded with 8 bits. Weights 
and biases are normalized between –5.0 and 5.0, time 
constants are normalized between 0.0 and 1.0.  

The fitness rewards the behavior of the agent with the 
current object in the environment. Good communication 
behavior does not produce any fitness gain for the speaker. 
Following the behaviors evolved in Nolfi &  Marocco’s 
(2002) simulation, the agent has to touch and stay in contact 
with one object (the sphere) and has to avoid as much as 
possible to touch the other object (cube). The fitness of 
individuals is computed by summing the number of cycles 
in which the agent touches the sphere or does not touch the 
cube. Fitness scores decrease for each cycle the agent 
touches the cube or when it does not touch the sphere.  

A population of 80 agents is used in each simulation. 
During selection, the 20 agents with the highest fitness (i.e. 
behavioral performance) reproduce and each make 4 
offspring. The genotype of each offspring is then subject to 
mutation with an overall probability of 2%. That is, each bit 
has a 2% probability of being mutated, by generating a 
random binary value. There is generational overlap between 
the population of parents and that of new offspring. The first 
will only act as speakers and cannot reproduce anymore. 
The population of new offspring will be subject to the 
fitness test and will reproduce at the end of their lifetime. 

Evolutionary simulation of embodied robotic agents can 
be time consuming and computationally expensive. To 
reduce the time necessary to test individual behaviors and to 
model the real physical dynamics as accurately as possible, 
the rigid body dynamics simulation SDK of VortexTM was 
used1. This was linked to the EvoRobot simulator (Nolfi, 
2000). 

3. Results 
The simulation model was used to run a series of 
experiments on the role of various social and evolutionary 
variables in the emergence of shared communication. The 
first independent variable refers to the selection of speakers 
(SPEAKER) with two levels: Parent or All. In the first case, 
each agent receives communication signals only from its 
own parent. In the second level of the variable, each agent 
                                                             
1 http://www.cm-labs.com/products/vortex/ 
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can receive signals from any individual of the previous 
population. This factor is aimed at investigating the role of 
different social groups of speakers in facilitating shared 
communication. 

The second independent variable manipulated during 
experiments consists in the time in which communication is 
allowed (COMMUNICATION) with two levels: From_0 
and From_50. In the first case, agents were allowed to 
communicate from the initial random generation. In the 
second level of the variable, agents start to communicate 
between themselves only at generation 50, i.e. after they 
have evolved a good ability to touch/avoid the two objects. 
Through this variable it will be possible to investigate the 
initial behavioral and cognitive abilities necessary to evolve 
communication. 

For each of the 4 conditions (2 SPEAKER × 2 
COMMUNICATION), 10 replications were executed, by 
changing the initial random population. Fifty generations 
were necessary to pre-evolve an optimal behavior of object 
manipulation to be used in the From_50 conditions. Table 1 
reports the communication success in each condition in 
terms of good populations and percentage of good speaker 
in the population. The criterion for deciding whether a 
population has successfully evolved communication 
depends on the fact that, at the last generation, at least 50% 
of agents produce two signals that differentiate the two 
objects.  

Table 1 – Data on the emergence of communication in each 
experimental condition. The first line contains the number of 
populations (out of 10) where communication emerged. The 
second line contains the average percentage of good speakers 
for the 10 replications and the average for the best performing 
population (value between brackets). 

 
SPEAKER 

COMMUNICATION 
From 0 

COMMUNICATION 
From 50  

Parent # good pops

 % speakers (best pop)

5 
27% (75%) 

7 
63% (100%)  

All # good pops

 % speakers (best pop)

0 
7% (20%) 

0 
5% (27%) 

  
The results of the number of populations that evolve 

shared communication clearly show that it is only when the 
parents act as the speakers there is a selective pressure for 
the emergence and preservation of a shared communication 
system. In particular, 7 populations out of 10 reach a stable 
communication system when language is introduced after 
agents have learned to use both objects. Figure 3 shows the 
fitness curves and the proportion of good speaker in the best 
seed of the condition From_50 - Parent speaker.  

When communication is introduced directly from the 
initial random population, the probability of evolving a good 
language, together with a good behavior, is lower (5 
populations out of 10). This advantage for evolving 
languages after the basic behavioral skills have evolved is 
similar to that observed by Cangelosi &  Parisi (2001) in a 
grounded simulation model on the emergence of verbs and 
nouns.  

When agents listen to all individuals of the previous 
generation, no stable communication exists in the last 
generations. In fact, during evolution good lexicons 
sometimes emerge for a short time, but they are not 
maintained or further developed by the whole population. A 
temporary good lexicon is defined as the case in which at 
least 20% of agents use two different signals to name the 
two objects. In 8 of the 10 From_50 - All speaker 
populations, such temporary appearances of good signal 
production is observed. Figure 4 shows the best population 
in the From_50 - All speaker conditions. Here the longest 
period of good production only lasts for 17 generations, 
with a maximum peak of best language at 41%.  
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Figure 3 – Data for the best population of the condition Parent 
speaker - From_50. 
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Figure 4 – Data for the best population in condition All speakers 
- From_50. 

The lexicon produced by agents in successful 
replications has been tested to investigate whether 
individuals actually use this language in a meaningful way, 
i.e. avoid the cube when the signal produced in response to 
the cube is used, and touch the sphere when the other signal 
is used. Figure 5 shows the behavior of an agent that 
interacts with the cube with or without language. This tests 
the linguistic comprehension ability of agents. The pictures 
on the left column (Figure 5 - left) show the behavior of the 
agent when no input signal is used. The agent needs to touch 
the cube, at least once (in cycle 95), to identify it as a cube 
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and then retract from it. The pictures on the right (Figure 5 - 
right) show the behavior of the agent when the signal “10” 
is used as additional input. This signal is produced by the 
parent organism at the end of the interaction with a cube. 
During this scene, the agent does not need to touch the cube 
at all because the signal “10”  identifies it as a cube. The 
meaning of “10”  can be interpreted as “cube” 2, because the 
listener treats the object as a cube, and the speaker produces 
it after its interaction with a cube. When the signal “01”  is 
used, the agent touches the object regardless of its shape. In 
this case, “01” has the meaning of “sphere”. 

 
Figure 5 – Agent’s interaction with the cube and test of linguistic 
understanding ability. Left column: Only the proprioceptive input 
is given to the agent. Right column: An additional 
communication signal is given as input. This is produced by 
another agent at the end of its interaction with a cube. Figures 
from the best individual of a From_50 - Parent speaker 
population.  

Fitness data shows that final scores in the 4 experimental 
conditions reflect the pattern of results on the emergence of 
successful communication. The two conditions with Parent 
speakers reach the highest fitness scores, with a significant 

                                                             
2 This signal can also be interpreted as the verb avoid, instead of as 
the noun cube. In fact, in this model it is not possible to distinguish 
between syntactic word classes (cf. Cangelosi & Parisi 2001 and 
Cangelosi 2001 for a discussion) 

advantage for the From_50 populations (e.g. average fitness 
of best individuals = 0.55; fitness peak in best population = 
0.72) versus the From_0 population (average = 0.45, peak = 
0.66). The baseline for the behavior without communication 
is the fitness at generation 50 of the From_50 simulation, 
before agents start to communicate (average = 0.44, peak = 
0.52). Consider that the maximum hypothetical fitness score 
is 1. This can never be reached because, for example, at the 
beginning of each epoch some negative fitness cycles are 
always necessary for agents to reach the spherical object and 
start gaining fitness.  

4. Discussion 
There are several issues that can be discussed regarding 
these results, and what we can learn from the model. A 
series of questions will be used to analyze the results. 
Question 1: Is there any benefit to be in a population where 

good communication has emerged? 
Question 2: Is there any direct advantage to evolving a 

good linguistic comprehension ability? 
To answer the first question, it is possible to compare the 

fitness results in the simulations where no shared 
communication emerged, and those where good 
communication systems evolved. The condition in which 
communication emerged more frequently (From_50, Parent 
speaker) will be used as example. In this condition, 7 
populations evolved good languages, whilst 3 did not. 
Figure 6 shows the average fitness of the good 
communication populations (thick lines) and that of the no 
communication populations (thin lines). The chart clearly 
shows that agents who use communication reach fitness 
values that are higher that those not communicating. This is 
true both for the fitness of the best individual and for that of 
the whole population. For example, at the final generation 
the average fitness of the 7 successful communication 
replications is 0.35, while it is 0.21 for the 3 unsuccessful 
populations. Moreover, the fitness in these 3 populations 
remains relatively constant during the simulation. In the first 
50 generations after communication is permitted (i.e. from 
50 to 100), there is no increase and the average fitness at 
generation 100 is very similar to that at generation 50. In the 
remaining generations, the agents gain some extra fitness 
points, which are due to the continuation of the evolutionary 
algorithm search.  

The extra fitness gain in populations that evolve 
communication is easily explained by the direct benefits for 
the behavior (i.e. fitness) of using two different signals: one 
for the cube, and one for the sphere. As already shown in 
Figure 5, during the interaction with a cube the input of its 
“name” produces significant improvements to behavioral 
performance. Agents do not need to touch the object to 
recognize it, and therefore do not lose fitness due to such 
exploratory behavior. In addition, they gain fitness in every 
cycle. There is also some benefit for the use of the signal for 
the sphere. If an agent initially is told that there is a 
spherical object in the environment, it can go directly 
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towards the object and touch it, without having to use some 
interaction cycles for recognizing the object as a non cube.  

The previous explanations also answer the second 
question, since they identify a direct adaptive advantage for 
evolving a good comprehension ability.  
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Figure 6 – Average fitnesses of the conditions From_50 - 
Parent speaker. Thick lines refer to the average fitness of the 7 
replications where good communication emerged (continuous 
line for the best agent and dotted line for the average of all 
agents). Thin lines refer to the average fitness of the 3 
replications where no shared communication emerged. 

Question 3: Is there any “ direct”  advantage to evolving 
good linguistic production abilities? 

This question is more difficult to answer. In fact, there 
seems to be no direct fitness advantage to the agents to 
speaking well. Individuals only update their fitness when 
they hear others speaking. When agents act as speakers, 
some have already reproduced, whilst the others have not 
been selected at all. In the condition Parent speaker, agents 
only speak to their own children. Therefore, the kinship 
relationship can partially explain this apparent altruistic 
behavior and the indirect fitness gain for the common genes 
shared by the parent and its offspring (e.g. Ackley & 
Littman, 1994). The benefits of kin selection can also 
explain the successful evolution of communication in the 
Parent speaker versus the All speaker conditions. However, 
there is another important phenomenon to be considered. In 
the Parent speaker conditions, the linguistic input to each 
listener is constant, since its parent will always use the same 
signal for the same object. In addition, when the parent is a 
good speaker (i.e. it uses two different signals to refer to the 
two objects), its signals are more reliable. The child can 
then try to use them to improve its fitness performance. In 
the All speaker conditions, the high variability of the 
linguistic input coming from all agents of previous 
generation can be too unreliable, and agents will tend to 
ignore it.   

In the All speaker conditions, some communication 
abilities also emerge, although the number of good speakers 
never reaches the critical amount needed to allow it to 

remain stable until the end of the simulation (cf. Figure 4). 
In addition, in the Parent speaker conditions, there are three 
cases when shared communication does not evolve. 
According to the altruistic, kin selection explanation, all 
Parent speaker populations should evolve communication 
because of it indirect adaptive advantage. The fact that this 
does not always happen raises the issues of understanding 
the relation between linguistic comprehension/production 
abilities and other behavioral/cognitive abilities (question 
4), and the identification of factors that cause and favor the 
emergence of shared communication (question 5). First, the 
data in Table 1 indicates that it is easier to evolve good 
communication when language is introduced after the pre-
evolution of good behavioral capacities (7 out of 10 
populations) than when agents are allowed to communicate 
from the initial generation (5 out of 10 seeds). In addition, 
the onset of effective communication (i.e. when at least 20% 
of agents speak well) is much earlier in the From_50 
populations (on average after 16 generations) that in the 
From_0 simulations (on average after 41 generations). This 
data is consistent with Cangelosi and Parisi’s (2001) model 
on the evolution of syntactic languages. This research 
showed that agents learn languages more efficiently when 
communication is introduced after the pre-evolution of good 
behavioral skills. Effectively, the pre-evolution of good 
behavior “prepares” a cognitive ground upon which good 
linguistic abilities can start to develop. Analyses of the 
categorical perception effects in language learning models 
have shown that language uses and modifies the space of 
similarities between members of different perceptual and 
linguistic categories (Cangelosi &  Harnad, 2000).  
Question 4: What is the relation between comprehension, 

production and behavioral abilities?  
Question 5: What are the underlying factors that cause and 

favor the emergence of communication? 
To understand better the relations between 

communication abilities and behavioral skills, the 
correlations between fitness scores and a measure of the 
quality of produced language have been computed. Figure 7 
and 8 present the averages of the fitness curves, the 
proportions of good speakers (i.e. language index), the 
fitness/language correlation rall for the whole population, 
and the fitness/language correlation rbest for the best 20 
agents. Figure 7 refers to the 7 successful populations of the 
From_50 - Parent speaker condition. Figure 8 refers to data 
from the remaining 3 populations without communication. 
For the computation of the language index based on the 
proportion of good speakers, an agent is classified as good 
speaker when it produces two opposite signals respectively 
for the two objects in at least half of the 36 epochs. The 
Pearson r correlations index was used.  

Overall, the two figures show that the correlation 
between the fitness of all agents and their language 
production index is positive and quite high (rall ≈ 0.5) after 
good communication emerges. This can explain the 
maintenance of good communication, since it reflects a link 
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between good speaking abilities and good comprehension 
(i.e. behavioral fitness).  
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Figure 7 – Fitness curve of the whole population, number of 
good speakers, fitness/language correlation rall for the whole 
population and fitness/language correlation rbest for the best 20 
agents (i.e. future parents and speakers). Average curves over 
the 7 successful From_50-Parent speaker populations. Only the 
data for generations 51-150 are shown. (see text for discussion) 
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Figure 8 – Data for the 3 unsuccessful From_50-Parent speaker 
populations. (see text for discussion) 

There is no correlation between the fitness of the 20 best 
performing agents and their speaking ability. The rbest stays 
around 0 (with peaks of ±0.2) in both groups, for the 
majority of generations. However, this correlation differs 
significantly in the initial generations of the two groups of 
populations with and without communication. At generation 
51, there is a high positive fitness/language correlation for 
the 20 best organisms (rbest=0.33) of the populations that 
succeed. The correlation is much lower in the populations 
that do not succeed (rbest=0.13). This indicates that, to 
evolve communication, it is necessary to be in a population 
where there is an initial positive correlation between the 
fitness and language of the best performing individuals. This 
initial correlation could be due to the role of hidden units, 
where the linguistic production ability and the 
comprehension/fitness abilities interact. As it has been 
shown previously (Cangelosi &  Parisi, 1998), the ability to 
recognize and categorize the two objects can produce quite 
distinct activation patterns in the hidden units. These will, in 
turn, increase the possibility of initially producing different 
signals for the two categories of objects.  

The initial difference in the correlation rbest between the 
successful and unsuccessful populations quickly disappears. 
The correlation index becomes 0 after approximately 5 
generations (cf. smaller chart of Figures 7 and 8, which 
zoom in the first 10 generations). However, the initial 
advantage of this high rbest correlation has the effect of 
supporting the fitness/language correlation rall. In the 
unsuccessful populations, this correlation goes down and 
stays around 0 for all subsequent generations. Instead, in the 
successful population, rall never reaches 0, and it starts to 
grow since generation 4. The initial strengthening of the link 
between production and fitness in the whole population will 
subsequently help the establishing and maintenance of a 
shared lexicon. 

The analyses of such correlations explain the fine 
interrelationships between language production, language 
comprehension, and fitness. In addition, it highlights the 
role of cognitive factors in supporting and favoring the 
emergence of communication. 

Conclusions 

To summarize, the simulation of this evolutionary robotics 
model of the evolution of communication shows that: (a) the 
emergence of language brings direct benefits to the agents 
and the population, in terms of increased fitness and 
comprehension ability; (b) there is a benefit in 
communicating with your kin-related agents (e.g. between 
parents and children), since this improves the possibilities of 
successfully evolving shared lexicons also by maintaining 
stable and reliable signals; (c) good sensorimotor and 
cognitive abilities permit the establishment of a link 
between production and comprehension/behavioral abilities; 
(d) the kinship relation between speaking parents and 
listening offspring does not fully explain the emergence of 
communication, since the rbest stays around 0 for most of the 
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generations – instead, this is important in the early stages of 
communication because it exploits the cognitive benefits of 
positive production/fitness correlations. 

Most of these results have important implications for the 
theories and hypotheses on the origins of language. For 
example, this simulation highlights and explains the role of 
cognitive factors in the emergence of communication 
(Burling, 1993). In particular, the model supports the 
hypothesis that the ability to form categories constitutes the 
grounding for the subsequent evolution of words and 
language (Harnad, 1996; Cangelosi &  Harnad, 2000). In 
addition, future developments of this model could also have 
an impact on computational investigations of the mirror 
neuron hypothesis for the origins of language (Arbib, 2002). 

Further simulations will address in more detail the role 
of sensorimotor coordination, cognitive, neural and social 
factors in the emergence of complex communication 
systems, such as syntactic languages. For example, the 
authors plan to investigate (a) the factors that favor the 
emergence of syntactic lexicon within such an evolutionary 
robotics model, (b) whether listening to our own language 
might contribute to the development of a communication 
ability, and (c) whether language and communication might 
lead to the development of internal categories that, aside 
from communication, can be used by the robot to better 
fulfill its own goals.  
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