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Abstract

A complete understanding of communication, language, intention-
ality and related mental phenomena will require a theory integrating
mechanistic explanations with ethological phenomena. For the foresee-
able future, the complexities of natural life in its natural environment
will preclude such an understanding. An approach more conducive to
carefully controlled experiments and to the discovery of deep laws of
great generality is to study synthetic life forms in a synthetic world
to which they have become coupled through evolution. This is the
approach of synthelic ethology. Some simple synthetic ethology ex-
periments are described in which we have observed the evolution of
communication in a population of simple machines. We show that

*Artificial Life 1I: The Second Workshop on the Synthesis and Simulation of Living
Systems, Santa Fe Institute Studies in the Sciences of Complexity, proceedings Vol. X,
edited by Christopher G. Langton, Charles Taylor, J. Doyne Farmer, and Steen Rasmussen.
Redwood City, CA: Addison-Wesley, 1992, pp. 631-658.



even in these simple worlds we find some of the richness and complex-
ity found in natural communication.

I am an “old bird,” ...a Stmorg, an “all-knowing Bird of Ages” ...

— DeMorgan, Budget of Paradozes, 1872, p. 329.

1 The Problem

Language, communication and other mental phenomena have been
studied for many centuries, yet some of the central issues remain un-
resolved. These include the mechanisms be which language and com-
munication emerge, the physical embodiment of mental states, and
the nature of intentionality. I will argue below that answering these
questions requires a deep theoretical understanding of communication
in terms of the relation between its mechanism and its role in the evo-
lution of the communicators. This is one of the goals of ethology, which
“is distinguished from other approaches to the study of behaviour in
seeking to combine functional and causal types of explanation.”[23]
Our approach differs from traditional ethological methods in that it
seeks experimental simplicity and control by studying synthetic or-
ganisms in synthetic environments, rather than natural organisms in
natural environments; it is thus called synthetic ethology.

To explain why we expect synthetic ethology to succeed where
other methods have failed, it is necessary to briefly review the previous
approaches. In doing this I will focus on a single issue: How can a
symbol come to mean something?

1.1 Philosophical Approaches

Although philosophical methods are quite different from those pro-
posed here, the investigations of several philosophers lend support to
synthetic ethology. To see why, consider the denotational theory of
meaning, in which the meaning of a word is the thing that it denotes.
This theory, which is commonly taken for granted, works well for
proper names (‘Bertrand Russell’ denotes a particular person; ‘Santa



Fe’ denotes a particular city), but becomes less satisfactory with in-
creasingly abstract terms. Even for concrete general terms (‘dog’,
‘mountain’) it is already difficult to say exactly what they denote, as
evidenced by 2500 years of debate over the nature of universals. Verbs
are even more problematic, and a denotational theory of terms such
as ‘of” and ‘the’ seems hopeless.

In this century denotational theories of meaning came under attack
from Wittgenstein and other “ordinary language” philosophers.[33]
They pointed out that only a small number of linguistic forms can
be understood in terms of their denotation; a more generally appli-
cable theory must ground the meaning of language in its use in a
social context. For example, in a simple question such as ‘Is there
water in the refrigerator?’, the term ‘water’ cannot be taken to have
a simple denotational meaning (such as a certain minimum number
of H,O molecules). Rather, there is a common basis of understand-
ing, grounded in the speaker’s and hearer’s mutual interests and in
the context of the utterance, that governs the quantity, state, purity,
spatial configuration, etc. that a substance in the refrigerator should
have to elicit a truthful “yes” response. To understand the meaning
of ‘water’ we must know the function of the word in its contexts of
use. Even scientific terms (e.g., length, mass, energy) acquire their
meaning through measurement practices that form a common basis of
understanding among scientists.

Heidegger makes very similar points, although with a different
purpose.[12, 14, 15] He shows how our everyday use of language is
part of a culturally constituted nexus of needs, concerns and skillful
behavior. In his terms this nexus is a “world,” and thus our linguistic
behavior both is defined by and contributes to defining the various
“worlds” in which we dwell: consider common expressions such as
“the world of politics,” “the academic world,” and “the world of sci-
ence.” Meaning emerges from a shared cultural background of beliefs,
practices, expectations and concerns. (Related ideas are discussed by
Preston.[25])

One consequence of these views of language is that the study of
language cannot be separated from the study of its cultural matrix.
Thus one might despair that we will ever have a scientific theory of
meaning. Fortunately, another philosopher, Popper, has shown a pos-
sible way out of this difficulty: “The main task of the theory of hu-
man knowledge is to understand it as continuous with animal knowl-



edge; and to understand also its discontinuity — if any — from ani-
mal knowledge.”[24] This is a very unconventional view of epistemol-
ogy; traditionally philosophers have limited their attention to human
knowledge, and in particular to its embodiment in human language.
Although Heidegger and others have helped to bring non-verbal knowl-
edge into the scope of philosophical investigation, Popper goes a step
further, by indicating the importance of animal knowledge.

The importance of Popper’s observation for the study of language
and the mind is that it encourages us to study these phenomena in
the context of simple animals in simple environments. Science usually
progresses fastest when it is able to study phenomena in their simplest
contexts. We expect this will also be the case with communication and
other mental phenomena: we will learn more if we start by studying
their simplest manifestations, rather than their most complex (i.e. in
humans).

1.2 The Behaviorist Approach

The preceding observations might suggest a behaviorist approach, since
communication is a behavior and behaviorist experiments often in-
volve simple animals in simple environments. But the behaviorist
approach is inadequate for several reasons. First, it suffers from eco-
logical invalidity. Animals behave in abnormal ways when put in alien
environments, but what could be more alien than a Skinner box? As
a result, the behavior of animals in laboratory situations may do little
to inform us of their behavior in their natural environments.

Second, behaviorism investigates little snippets of behavior, such
as pressing a lever to get some food, an approach that removes these
behaviors from the pragmatic context that gives them their meaning.
The result is an investigation of meaningless behavior resulting from
a lack of pragmatic context. An example will illustrate the pitfalls of
this approach. On the basis of behavioristic tests it had been thought
that honey-bees were color-blind. However, von Frisch showed that in
a feeding context they were able to distinguish colors. In the captive,
laboratory context the color of lights was not relevant to the bees.[23]

In principle, of course, we could design experimental situations
that mimic the natural environment in just the relevant ways and
simplify it in ways that don’t distort the phenomena. Unfortunately,
we don’t yet adequately understand the pragmatics of real life, and



so we don’t know how to design laboratory environments that match
the natural environments in just the relevant ways. Therefore, the
behaviorist approach is, at very least, premature.

1.3 The Ethological Approach

An alternative approach to the study of communication is found in
ethology, which is in part a reaction against behaviorism. Ethology
recognizes that the behavior of an organism is intimately coupled
(through natural selection) with its environment. Therefore, since
removing an organism from its environment destroys the context for
its behavior, ethology advocates studying animals in their own worlds
(or in laboratory situations which closely approximate the natural en-
vironment). Unfortunately there are difficulties with this approach.

First, the real world, especially out in the field, is very messy; there
are too many variables for clean experimental design. Consider some
of the factors that could plausibly affect the behavior of a group of
animals: the distribution of other animals and their behavior, the dis-
tribution of plants and their growth, the terrain, the weather, ambient
sounds and odors, disease agents, etc. etc.[28] Animals are much too
sensitive to their environments to permit a cavalier disregard for any
of these factors.

Second, there are practical and ethical limits to the experiments
we can perform. The ethical limits are most apparent where human
behavior is the subject, but the situation differs only in degree where
other animals are concerned. Even in the absence of ethical con-
straints, control of many variables is difficult.[28] Some of the exper-
iments we would most like to perform are completely beyond our ca-
pabilities, such as restarting evolution and watching or manipulating
its progress.

These two problems — the large number of variables and our in-
ability to control them — make it unlikely that deep ethological laws
will be discovered in the field. The history of the other sciences shows
that deep, universal laws are most likely to be found when the relevant
variables are known and under experimental control. When this is not
the case, the best we can hope for is statistical correlation; causal un-
derstanding will elude us. Of course, I’'m not claiming that empirical
ethology is futile, only that it is very hard. Rather I anticipate that
synthetic and empirical ethology are complementary approaches to the



study of behavior, and that there will be a fruitful exchange between
them.

1.4 The Neuropsychological Approach

Behaviorist and ethological investigations of communication are lim-
ited in an additional way: they tell us nothing of the mechanism by
which animals communicate. They are both based on black-box de-
scriptions of behavior. On the other hand, deep scientific laws are
generally based on a causal understanding of the phenomena. Thus
it is important to understand the mechanism underlying meaning and
other mental phenomena.[20] Several disciplines investigate the mech-
anisms of cognition. One is neuropsychology. Unfortunately, the com-
plexity of biological nervous systems is so great that the discovery of
deep laws seems unlikely, at least at the current stage of the science.
Furthermore, as we’ve seen, true understanding of communication and
other mental phenomena requires them to be understood in their eco-
logical context. Thus a complete theory of communication must unite
the neuropsychological and ethological levels. This is far beyond the
reach of contemporary science.

1.5 The Artificial Intelligence Approach

Another discipline that investigates cognitive mechanisms is artificial
intelligence, but with the goal of creating them, rather than studying
their naturally occurring forms. Since Al creates its subject matter,
all the variables are in its control, and so it might seem that Al is an
ideal vehicle for studying communication, meaning and the mind. Un-
fortunately, as is well known, there’s much argument about whether
Al systems can — even in principle — exhibit genuine understanding.
In other words, it is claimed that since Al systems perform meaning-
less (syntactic) symbol manipulation, they lack just the properties we
want to study: meaningful (semantic and pragmatic) symbol use and
genuine intentionality. 1 will briefly review the key points.

The issue can be put this way: Are Al programs really intelligent
or do they merely simulale real intelligence. Several well-known ex-
amples make the difference clear. It has been pointed out that no one
gets wet when a meteorologist simulates a hurricane in a computer;
there is an obvious difference between a real hurricane and a simu-



lated hurricane.[26, 27] Similarly, it is been observed that thinking,
like digestion, is tied to its biological context. The same chemical
reactions will not be digestion if they take place in a flask, that is,
out of the context of a stomach serving its functional role in the life
of an organism. By analogy it is claimed that there cannot be any
real thinking outside of its biological context: just as the flask is not
digesting, so the computer is not thinking. It has also been claimed
that computers may be able to simulate meaningful symbolic activity,
but that symbols cannot really mean anything to a computer. In par-
ticular, any meaning born by machine-processed language is meaning
that is derived from our use of the language. The rules we put into
the machine reflect the meaning of the symbols to us; they have no
meaning to the machine. That is, our linguistic behavior has original
intentionalily; whereas machines’ linguistic behavior has only derived
intentionality.[10, 11]

1.6 Summary

Here is the problem in a nutshell. If we want to understand what
makes symbols meaningful (and related phenomena such as intention-
ality), then Al — at least as currently pursued — will not do. If we
want genuine meaning and original intentionality, then communica-
tion must have real relevance to the communicators. Furthermore,
if we are to understand the pragmatic context of the communication
and preserve ecological validity, then it must occur in the communi-
cators’ natural environment, that to which they have become coupled
through natural selection. Unfortunately, the natural environments
of biological organisms are too complicated for carefully controlled
experiments.

2 Synthetic Ethology as a Solution

2.1 Definition of Synthetic Ethology

The goal of synthetic ethology is to integrate mechanistic and etho-
logical accounts of behavior by combining the simplicity and control
of behaviorist methods with the ecological and pragmatic validity of
empirical ethology. The idea of synthetic ethology is simple: Instead
of studying animals in the messy natural world, and instead of ripping



animals out of their worlds altogether, we create artificial worlds and
simulated organisms (simorgs') whose behavior is coupled to those
worlds. Since the simulated organisms are simple, we can study men-
tal phenomena in situations in which the mechanism is transparent.
In brief, instead of analyzing the natural world, we synthesize an ar-
tificial world more amenable to scientific investigation. This is really
just the standard method of experimental science.

Synthetic ethology can be considered an extension of Braiten-
berg’s synthetic psychology[4] that preserves ecological validity and
pragmatic context by requiring that behavior be coupled to the en-
vironment. We ensure this coupling by having the simorgs evolve in
their artificial world. Synthetic ethology is also related to computa-
tional neuroethology,[1, 2, 8] the principal distinction being that that
discipline typically studies the interaction of an individual organism
with its environment, whereas our investigations require the study of
groups of organisms.

2.2 Requirements of a Solution

In the following I argue that synthetic ethology does in fact solve the
problems discussed above. First observe that, rather than starting
with nature in all its glory, as does empirical ethology, or with de-
natured nature, as does behaviorism, synthetic ethology deals with
complete, but simple worlds. Complexity is added only as necessary
to produce the phenomena of interest, yet the worlds are complete, for
they provide the complete environment in which the simorgs “live” or
“die” (persist or cease to exist as structures).

Second, observe that because synthetic ethology creates the worlds
it studies, every variable is under the control of the investigator. Fur-
ther, the speed of the computer allows evolution to be observed across
thousands of generations; we may create worlds, observe their evolu-
tion, and destroy them at will. Also, such use of simorgs is unlikely
to be an ethical issue, at least so long as they are structurally simple.

Finally I claim that synthetic ethology investigates real, not sim-
ulated, communication. But how can we ensure that linguistic struc-
tures really “mean” something, that communication is taking place,

!The simorg (simurg, simurgh), a monstrous bird of Persian legend, was believed to be
of great age and capable of rational thought and speech.



and not merely the generation and recognition of meaningless sym-
bols? Wittgenstein has shown that we are unlikely to find necessary
and suflicient conditions governing our everyday use of words such as
‘communication’, and he has warned us of the pitfalls of removing
words from their everyday contexts. Nevertheless, in the very non-
everyday context of synthetic ethology, we need a definition that can
be applied to novel situations.

As a first approximation, we might say that something is meaning-
ful if it has relevance to the life of the individual. Perhaps we could go
so far as to say it must be relevant to its survival — even if only indi-
rectly or potentially. Relevance to the individual cannot be the whole
story, however, since there are many examples of communication that
do not benefit the communicator (e.g., the prairie dog’s warning call,
a mother bird’s feigning injury). Thus, as a second approximation we
can say that something is meaningful if it is relevant to the survival
of the language community.

Additional support for this criterion comes from ethology, which
has had to grapple with the problem of defining communication.[5, 9,
28, 30] The means that animals use to communicate, both within and
between species, are so varied that identifying an act as communica-
tion becomes problematic. One animal scratches the bark of a tree;
later another animal notes the scratches and goes a different way. Was
it a communication act? The first animal might have been marking its
territory, which is a form of communication, or it might simply have
been sharpening its claws, which is not.

On the one hand we might say that a communication act has oc-
curred whenever the behavior of one animal influences the behavior
of another, but this definition is useless, since it views almost every
behavior as communication. On the other hand we might say that it
is not a communication act unless the first animal intended to influ-
ence the other’s behavior, but this criterion requires us to be able to
determine the intent of behaviors, which is very problematic. If it is
questionable to attribute intent to a fly, it is reckless to attribute it to
a simorg: we need a definition of communication that does not appeal
to problematic ideas like “intent.”

A definition of communication that is very consistent with our
approach has been proposed by Burghardt:[5, 6]

Communication is the phenomenon of one organism pro-
ducing a signal that, when responded to by another organ-



ism, confers some advantage (or the statistical probability
of it) to the signaler or his group.

This says that communication must be relevant — in an evolutionary
sense — to the signaler. In addition it gives us an operational way
of determining if a communication act has taken place: we can com-
pare the fitness of a population in the two situations differing only in
whether communication is permitted or suppressed. This is the sort
of experiment that can be undertaken in synthetic ethology, but that
is infeasible for empirical ethology.

2.3 Making Real Worlds Inside the Computer

The objection may still be made that any communication that might
take place is at best simulated. After all, nothing that takes place in
the computer is real, the argument goes; no one gets wet from a hurri-
cane in a computer. To counter this objection I would like to suggest a
different way of looking at computers. We are accustomed to thinking
of computers as abstract symbol-manipulating machines, realizations
of universal Turing machines. I want to suggest that we think of com-
puters as programmable mass-energy manipulators. The point is that
the state of the computer is embodied in the distribution of real mat-
ter and energy, and that this matter and energy is redistributed under
the control of the program. In effect, the program defines the laws
of nature that hold within the computer. Suppose a program defines
laws that permit (real!) mass-energy structures to form, stabilize, re-
produce and evolve in the computer. If these structures satisfy the
formal conditions of life, then they are real life, not simulated life,
since they are composed of real matter and energy. Thus the com-
puter may be a real niche for real artificial life — not carbon-based,
but electron-based.? Similarly, if through signaling processes these
structures promote their own and their group’s persistence, then it is
real, not simulated, communication that is occurring.

3 Preliminary Experiments

To illustrate the method of synthetic ethology, 1 will describe several
experiments that have been completed. The goal of these experiments

2There is no claim here, however, that the simorgs used in these experiments are alive.
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was to demonstrate that genuine communication could evolve in an
artificial world. A secondary goal was to accomplish this with the
simplest procedure possible, so that the phenomena would be most

exposed for observation.?

3.1 Setup

3.1.1 Environment

What are the minimum requirements on a world that will lead to the
emergence of communication? First, it must permit some simorgs
to “see” things that others cannot, otherwise there would be no ad-
vantage in communicating. For example, in the natural world the
signaler may perceive something which is out of the range of the re-
ceiver’s senses, or the signaler may be communicating its own internal
state, which is not directly accessible to the receiver. Second, the
environment must provide a physical basis for communication: some-
thing which the signaler can alter and the alteration of which the
receiver can detect. Finally, we want the environment to be as simple
as possible, so that the phenomena are manifest.

The solution adopted in these experiments is to give each simorg
a local environment that only it can “see.” The states of the local
environments, which we call situations, are determined by a random
process; therefore there is no way they can be predicted. This means
that the only way one simorg can reliably predict another’s situation
is if the second simorg communicates that information to the first. To
provide a medium for potential communication there is also a shared
global environment in which any simorg can make or sense a symbol.
Any such symbol replaces the previous contents of the global environ-
ment; there can be only one symbol in the “air” at a time. See Figure
1 for the topology of the environment.

In these experiments the situations and symbols (local and global
environment states) are just natural numbers representing uninter-
preted elements of a finite discrete set. Since we are creating an arti-
ficial world, there is no need to equip it with familiar environmental

30ur experiment may be contrasted with that of Werner and Dyer, who also observed
the evolution of communication, but in a more complicated synthetic world.[31] That such
different experimental designs resulted in qualitatively similar observations is evidence
that synthetic ethology can reveal general properties of communication.
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Figure 1: Topology of the Environment

features such as temperature, water supply, food supply, etc. We can
define the laws of this universe so that the simorgs will survive only if
they interact correctly with the uninterpreted states of this artificial
environment. Although these states have no interpretable “meaning,”
they are not simply syntactic, since they are directly relevant to the
continued persistence (“survival”) of the simorgs.

3.1.2 Simorgs

Next consider the simorgs; they should be as simple as possible, yet
be capable of evolving or learning complex behaviors. Two simple
machine models have the required characteristics, although there are
certainly others; they are finite state machines (FSMs) and artificial
neural networks (ANNs). Although ANNs are better models for a
variety of reasons,[19] we used FSMs in the experiments described
here. (See our progress report for some ANN-based experiments.[22])

Finite state machines get their name from their internal memory,
which at any given time is in one of a finite number of states. In
addition, an FSM may have a finite number of sensors and effectors,
the states of which are also finite in number. The behavior of an FSM
is defined by its transition table, which comprises a finite number of
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discrete rules. For each sensor state s and each internal state 7, the
table defines an effector state e and a new internal state ¢. The
machines used in these experiment have only one internal (memory)
state. In other words, they have no ability to remember; therefore
their response is completely determined by the current stimulus (i.e.,
their own situation and the shared symbol). In effect, each machine
is defined by a table mapping symbol/situation pairs into responses.

There are two kinds of responses, emissions and actions. The effect
of an emission is to change the symbol in the global environment,
hence a response that is an emission must specify the symbol to be
emitted. Actions are what must be accomplished effectively for the
simorg to survive. Since we are selecting for cooperation we consider
a simorg’s action effective only if it matches the situation of another
simorg. Thus a response that is an action must specify a situation
that it is trying to match.

In these experiments we placed an additional requirement on ef-
fective action, namely that the action match the situation of the last
emitter. This increases the selective pressure in favor of communica-
tion. Although one may find analogs of this in the natural world (e.g.,
a predator signaling for appropriate aid in bringing down some prey),
the essential point is that we are making an artificial world and so we
can define the laws to suit the needs of our experiment.

3.1.3 Fitness

The principal goal of the selective criteria is that they lead to the
emergence of communication — without being overly “rigged.” In
these experiments the environment selects for cooperative activity that
requires knowledge of something that cannot be directly perceived,
namely another simorg’s local environment. Specifically, whenever
a simorg acts, its action is compared to the situation of the simorg
that most recently emitted. If the two match, then we consider an
effective action to have taken place, and both the emitter and actor are
given a point of credit. Since several simorgs may respond to a given
emitter, a successful emitter can in principle accumulate considerable
credit. FEach simorg is given an opportunity to respond ten times
before all the local environments are changed randomly.? This interval

*In these experiments the simorgs were serviced in a regular, cyclic fashion. This means
that communications with one’s nearest neighbors in one direction (say clockwise) are least
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is called a minor cycle. Credit is accumulated over a major cycle,
which comprises five minor cycles. The resulting total is considered the
simorg’s “fitness” for that major cycle, since it measures the number
of times the simorg cooperated successfully; it is the criterion by which
simorgs are selected to breed or die.

3.1.4 The Birth and Death Cycle

At the end of each major cycle, one simorg is selected to die and two
simorgs are selected to breed. This keeps the size of the population
constant, which simplifies the simulation and the analysis. Of course,
we want the most fit to be most likely to breed and the least fit to be
most likely to die.

For reasons discussed later (Section 3.2.3), we use the fitness to
determine the probability of breeding or dying. In these experiments
we made the probability of breeding proportional to the fitness (credit
accumulated over one major cycle):

o

szpa

where py is simorg k’s probability of breeding, ¢y is its fitness, P is
the population size, and @ = P! 25:1 ¢k is the average fitness of
the population. (If o = 0 we set pr = 1/P.) The probability of dying
cannot in general be inversely proportional to fitness. However, we can
make it a monotonically decreasing first-degree polynomial of fitness:

B — o
P(B - a)

where ¢ is the probability of dying and § is the fitness of the most
fit simorg. (If & = § we set g, = 1/P.)

The offspring is derived from its parents by a simplified genetic
process. Each simorg has two transition tables, its genotype and its
phenotype. The genotypes of the parents are used to determine the
genotype of their offspring by a process described below. In general the
genotype defines a developmental process leading to the phenotype,
and the phenotype determines the simorg’s behavior. In these exper-
iments this process is trivial: the initial phenotype is the genotype.

qr =

likely to be disrupted by other emitters. This may be important in forming “communities”
using the same “language” (code).

14



Further, if learning is disabled (see Section 3.1.5), then the phenotype
remains identical to the genotype.

The genotype of a simorg is a transition table, which defines a re-
sponse for every symbol /situation pair. Each response is represented,
in these experiments, by a pair of numbers, the first of which is 0 or
1, indicating act or emit, and the second of which is the situation or
symbol that goes with the action or emission. The genome itself is
just a string containing all these pairs; thus each “gene” defines the
response to a given stimulus.

The (unmutated) genotype of the offspring is derived from its
parents’ genotypes by a process called crossover. For purposes of
crossover we interpret the genetic string as a closed loop. Two crossover
points § and 8’ are selected randomly, and a new genetic string is gener-
ated from those of the parents. That is, between # and ¢’ the genes will
be copied from one parent, and between 6’ and € from the other. Note
that our crossover operation never “splits its genes;” it cannot break
up a transition table entry. We have found that this leads to faster
evolution since the genetic operations respect the structural units of
the genetic string. With low probability (0.01 in these experiments)
the genetic string may be mutated after crossover. This means that
a randomly selected gene is completely replaced by a random allele
(i.e., a pair of random numbers in the appropriate ranges).

3.1.5 Learning

In order to experiment with the effects of learning on the evolution of
communication, we have implemented the simplest kind of “single case
learning.” Specifically, whenever a simorg acts ineffectively we change
its phenotype so that it would have acted effectively. That is, suppose
that the global environment state is v and the local environment state
is A, and that under this stimulus a simorg responds with action X',
but that the situation of the last emitter is A” # X. Then we replace
the (v, \) entry of the phenotypic transition table with the action A”.
(Of course, learning alters the phenotype, not the genotype.) This is
a very simple model of learning, and could easily lead to instability;
nevertheless it produces interesting results (see Section 3.2).
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3.1.6 Importance of Overlapping Generations

Because we are interested in the influence of learning on the evolution
of communication, we have done some things differently from typi-
cal genetic algorithms.[13, 17] GAs typically replace the entire pop-
ulation each generation, with the fitness of the parents determining
the frequency with which their offspring are represented in the new
generation. In contrast, we replace one individual at a time, with
fitness determining the probability of breeding and dying. The dif-
ference is significant, because the GA approach prevents the passage
of “cultural” information from one generation to the next (through
learning). In the current experiment this happens indirectly, since
symbol/situation associations are learned through ineffective action.
Future experiments may model more direct transmission by having the
less successful simorgs imitate the behavior of the more successful. We
expect that “cultural” phenomena will be central to understanding the
interaction of learning and communication. (See also Belew[3].)

3.1.7 Measurements

How can we tell if communication is taking place? As noted previously
(Section 2.2), Burghardt’s definition of communication suggests an
operational approach to identifying communication: detect situations
in which one simorg produces a signal, another responds to it, and the
result is a likely increase in the fitness of the signaler or its group.

In our case, fitness is a direct measure of the number of times that
an effective action resulted from a simorg’s response to the last emitter.
Therefore, the average fitness of the population measures the advan-
tage resulting from actions coincident with apparent communication.
But how do we know that the advantage results from communication,
and not other adaptations (as it may; see Section 3.2.3)7

I have claimed that synthetic ethology permits a degree of con-
trol not possible in natural ethology, and here is a perfect example.
We may start two evolutionary simulations with the same population
of random simorgs. In one we suppress communication by writing
a random symbol into the global environment at every opportunity;
in effect this raises the “noise level” to the point where communica-
tion is impossible. In the other simulation we do nothing to prevent
communication. If true communication — as manifested in selective
advantage — is taking place, then the fitness achieved by the two pop-
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ulations should differ. In particular, the rate of fitness increase should
be significantly greater when communication is not suppressed. This
is the effect for which we must watch.

In these experiments we record several fitness parameters. The
most important is «, the average fitness of the population (smoothed
by a rectangular window of width 50). The second most important
is B, the fitness of the most fit simorg at the end of each major cycle
(similarly smoothed). The figures in this chapter show the evolution
of a; the evolution of § is qualitatively similar.[21]

I am proposing synthetic ethology as a new way to study com-
munication. Therefore, if by the process just described we find that
communication is taking place, then we must see what the simulation
can tell us about it. At this stage in the research program we have
addressed only the most basic questions: What are the meanings of
symbols, and how do they acquire them?

To answer these questions we construct during the simulation a
data structure called a denotation matriz. This has an entry for each
symbol/situation pair, which is incremented whenever there is an ap-
parent communication act involving that pair. If symbols are being
used in a haphazard fashion, then all the pairs should occur with ap-
proximately the same frequency; the matrix should be quite uniform.
On the other hand, if the symbols are being used in a very system-
atic way, then we should expect there to be one situation for each
symbol, and vice versa.® Each row and each column of the denota-
tion matrix should have a single nonzero entry, and these should all
be about equal; this is a very nonuniform matrix, which we will call
the ideal denotation matrix. Thus systematic use of symbols can be
detected (and quantified) by measuring the variation (or dispersion)
of the denotation matrix.

One of the simplest measures of variation is the standard devia-
tion, which is zero for a uniform distribution, and increases as the
distribution spreads around the mean. However the standard devi-
ation is not convenient for comparing the uniformity of denotation
matrices between simulations, since the mean may vary from run to
run. Instead, we use the coefficient of variation (V'), which measures

5This is assuming that the number of local environment states equals the number of
global environment states, as it does in these experiments. We discuss later (Section 4)
the consequences of having unequal numbers of states.
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the standard deviation (o) in units of the mean (u):

V=o/u

The coeflicient of variation is 0 for a uniform denotation matrix, and
for the ideal matrix is /N — 1 (where N is the number of global or
local environment states, which are assumed equal).

Another measure of uniformity is the entropy of a distribution,

which is defined:®
H ==Y pilogps.
k

This is maximized by the uniform distribution; since there are N?
equally likely states, its entropy is 2log N. The minimum entropy
H = 0 is achieved by the “delta distribution” (which makes all the
probabilities zero except one). This is not so interesting, however, as
the entropy of the ideal matrix, which is easily calculated to be log V.
To allow comparisons between simulation runs, we also use a “disorder
measure”:

~ log N a
This is a scaled and translated entropy, which has the value 1 for a
uniform matrix, 0 for the ideal matrix, and —1 for the “overstructured”
delta matrix.

There are a variety of other statistical measures that may be used
to quantify the structure of the denotation matrix. For example, x?
will be 0 for the uniform matrix and maximum for the ideal matrix.
Fortunately the results we have observed so far are robust in that they
are qualitatively the same no matter what statistics are used.

Ui

3.2 Results

Unless otherwise specified, the experiments described here used a pop-
ulation size P = 100 of finite state machines with 1 internal state.
Since the number of local and global environment states were the
same, N = 8, each machine was defined by a transition table contain-
ing 64 stimulus/response rules. Simulations were generally run for
5000 major cycles (one birth per major cycle).

6We use logarithms to the base 2, so that our entropy measure is more easily interpreted.
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Figure 2: Average Fitness, Communication Suppressed and Learning Dis-

abled

3.2.1 Effect of Communication on Fitness

Figure 2 shows the evolution of the (smoothed) average fitness («)
of a typical random initial population when communication has been
suppressed and learning has been disabled. It can be observed to have
wandered around the fitness expected for machines that are guessing,
a = 6.25. (The analysis may be found in an earlier report.[21]) Linear
regression detects a slight upward trend (& = 1.55 x 107°). This is a
stable phenomenon across simulations, and is explained later (Section
3.2.3).

Figure 3 shows the evolution of the average fitness for the same
initial population as Figure 2, but with communication permitted
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Figure 4: Average Fitness, Communication Permitted and Learning Enabled

(learning still disabled). Within 5000 major cycles the average fit-
ness reaches o = 11.5, which is significantly above the guessing level
(o = 6.25). Furthermore, linear regression shows that the average
fitness is increasing over 50 times as fast as when communication was
suppressed (& = 8.25x107* vs. & = 1.55x107°). We conclude that in
this experiment communication has a remarkable selective advantage.

Figure 4 shows the evolution of « for the same initial population,
but with communication permitted and learning enabled. First ob-
serve that the average fitness begins at a much higher level (a & 45)
than in the previous two experiments. This is because each simorg
gets ten opportunities to respond to a given configuration of local en-
vironment states. Since learning changes the behavior of a simorg so
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Table 1: Average Measurements over Several Random Populations

Measurement Comm/Learning
N/N Y/N Y/Y
! 6.31 11.63 59.65

& x 10 0.36  11.0 28.77
1% 047 258  2.65
H 581 3.79  3.87
n 0.94 0.26 0.29

that its response would have been correct, an incorrect response could
be followed by up to nine correct responses (provided no intervening
emissions change the global environment). The combination of com-
munication and learning allowed the average fitness to reach 55, which
is nearly five times the level reached without learning and nearly nine
times that achieved without communication. The rate of fitness in-
crease was & = 2.31 x 1073, which is almost three times as large as
that without learning, and nearly 150 times as large as that without
communication.

We have observed quantitatively similar results in many experi-
ments. Table 1 (adapted from an earlier report[21]) shows average
measurements from several experiments that differ only in initial pop-
ulation.

To better understand the asymptotic behavior of the evolutionary
process, we have run several simulations for ten times as long as those
previously described. Figure 5 shows the evolution with communica-
tion permitted but learning disabled, and Figure 6 shows the evolution
of the same initial population, but with communication permitted and
learning enabled. In the first case average fitness reached a level of ap-
proximately 20.7 In the second (learning permitted) o seems to have
reached an equilibrium value (@ = 56.6 in fact); we can also observe
an apparent “genetic catastrophe” at about ¢ = 45000.

The greatly increased fitness that results from not suppressing the
signaling process supports the claim that we are observing genuine
communication. The communication acts have real relevance to the

“Under reasonable assumptions the maximum « achievable without learning by a ho-
mogeneous population can be calculated to be 87.5; details are presented elsewhere.[21]
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Table 2: Denotation Matrix, Communication Suppressed and Learning Dis-

abled

situation
symbol 0 1 2 3 4 5 6

-~

0320 138 189 360 266 354 224 &9
1]364 130 189 359 261 342 266 75
21332 126 184 385 252 365 257 82
31350 125 193 366 257 351 255 98
4340 119 190 354 254 356 225 78
5328 145 170 343 244 348 217 86
6| 345 119 194 374 214 361 237 78
7346 149 159 343 242 383 226 83

V =0.409451

H = 5.868233

n = 0.9560777

simorgs because they significantly affect the survival of the signaler
and its group (cf. Burghardt’s definition, Section 2.2).

3.2.2 Analysis of Denotation Matrices

If genuine communication is taking place, then we ought to be able to
observe it in more structured use of symbols; therefore we consider the
structure of the resulting denotation matrices. First consider Table
2; this is the denotation matrix from the same simulation shown in
Figure 2. In the absence of communication and learning we see a very
uniform matrix, as measured by its coeflicient of variation V = 0.41
and entropy H = 5.87, which is nearly the maximum possible, 6.
This is also reflected in the disorder parameter = 0.96; recall that a
uniform matrix has n = 1 and an “ideal” matrix has n = 0.

Table 3 shows the denotation matrix that results when commu-
nication is permitted; even to the eye it is much more structured
than Table 2. This is confirmed by our measurements: V = 2.27 (cf.
V = 2.65 for the ideal matrix), H = 3.92, n = 0.31.

Finally, Table 4 is the denotation matrix resulting from both com-
munication and learning. Qualitatively and quantitatively it is very
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Table 3: Denotation Matrix, Communication Permitted and Learning Dis-

abled
situation

symbol 0 1 2 3 4 5 6 7
0| 695 5749 0 1157 0 2054 101 0
1| 4242 11 1702 0 0 0 1 0
2| 855 0 0 0 0 603 862 20
3 0 0 0 0 1003 430 0 1091
4 0 0 0 0 0 0 2756 464
5 0 0 40 0 548 0 817 0
6 | 1089 90 1 281 346 268 0 62
7 0 201 288 0 0 2 0

V =2.272352

H = 3.915812

n = 0.3052707

Table 4: Denotation Matrix, Communication Permitted and Learning En-

abled
situation
symbol 0 1 2 3 4 5 6 7
0 0 0 2946 0 0 635 4239 3233
1| 2084 0 672 1457 0 6701 8517 1284
2 0 0 646 433 0 230 63 879
3 0 1074 446 46 2315 1623 0 1265
4 | 27850 5504 0 2326 11651 243 3428 20076
51 1301 0 0 854 858 368 0 0
6 | 13519 2676 0 2223 2391 874 0 644
7 356 226 365 107 1357 27 100 1

V = 2.165397
H = 4.208782
n = 0.4029273
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similar to Table 3, but slightly less structured. This phenomenon is
even more apparent in longer simulations, such as the £ = 50000 sim-
ulations shown in Figures 5 and 6. In these, evolution in the absence
of learning produced a denotation matrix having n = —0.2, indicating
an overstructured language, whereas evolution with learning produced
a less structured language (7 = 4+0.2) but higher fitness.® This phe-
nomenon seems to be consistent with research indicating that there
is an optimal degree of structure[18] and that that optimum is more
easily achieved with learning.[16]

The “ideal” denotation matrix has one symbol for one situation
and vice versa; this is a structure that we might expect to see emerging.
For example, in the denotation matrix in Table 3 there is at least one
symbol that predominantly denotes a single situation: in 86% of its
recent uses, symbol 4 denoted situation 6, in the remainder situation
7. Since these are the only two uses of symbol 4, it seems likely that
the denotation matrix reflects two subpopulations (of unequal size)
using the same symbol for different situations. More nearly equal
subpopulations may be indicated by symbols such as 7, which is used
for situations 1 and 3 with nearly equal frequency.

Symbols being used to denote several situations may also result
from their being used equivocally by a single population; they could
reflect an intermediate stage in the evolution to univocal symbol use.
It is difficult to discriminate between these two possibilities on the
basis of just the denotation matrix. Doing so requires more detailed
analysis of the simorgs in the final population, a process which is
straight-forward in synthetic ethology, since we have complete access
to the structure of the simorgs. (Simple examples of this kind of
analysis are presented in our report.[21])

The natural way to interpret the denotation matrix is by rows,
which reflects the significance of a symbol to a recipient; ethologists
sometimes call this the meaning of a signal.[7, 28, 29, 30] We can also
look at the denotation matrix by columns, which shows the situation a
signaler was expressing by a symbol; ethologists call this the symbol’s
message.[7, 28, 29, 30] Sometimes the two are symmetric. For example,
in Table 3 the meaning of symbol 4 is usually (86%) situation 6, and
the message ‘situation 6’ is usually (61%) represented by symbol 4.

8See Tables 17 and 18 in our earlier report[21] for the denotation matrices resulting
from these experiments.
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On the other hand, asymmetries may occur. Symbol 6 usually (51%)
means situation 0, but situation 0 is usually (62%) represented by
symbol 1. Conversely, situation 2 is usually (98%) represented by
symbol 1, but symbol 1 usually (71%) means situation 0.

Even in a synthetic ethology experiment as simple as this, we may
begin to observe some of the richness and complexity of real com-
munication. For example, in the actual “language” or code reflected
in the evolved denotation matrix — as opposed to the ideal matrix
given by theory — we find that there is rarely a one-to-one (univocal)
correspondence between symbols and situations. Indeed, it is quite
possible that a simorg will attach different significance to a symbol
when it is received or when it is emitted; that is, a simorg need not
associate the same meaning and message to a given symbol. If this
is the case for simorgs, then it would seem foolish to assume that in
human languages an utterance has the same pragmatic significance
when it is spoken as when it is heard.

The denotation matrix captures the actual use of the code by the
entire population over the last 50 major cycles of the simulation. In
this sense it is an irreducible description of the message and meaning
associated with every symbol. It is irreducible because any attempt
to ignore the lesser entries and specify a unique denotational meaning
for a symbol will misrepresent the facts of communication. In fact
symbol 4 means situation 7 some (16%) of the time; this is part of the
overall meaning of symbol 4 in that population at that time. To say
that symbol 4 really means situation 6, and that the rest is noise, is a
misrepresentation of the “language.”

Given that the denotation matrix is the irreducible description of
the code, we see that the evolution of the code is mirrored in the evo-
lution of the denotation matrix. Indeed, in the denotation matrix we
may see the code as an emergent nonequilibrium system, which orga-
nizes itself by promoting the fitness of simorgs that behave in accord
with its emerging structure.[20] This emerging structure is measured
by the decreasing entropy of the denotation matrix.

Over time we may observe a changing constellation of meanings
associated with a given symbol, and of the symbols representing a
given message. We have already seen that these experiments indi-
cate both synonymous and equivocal symbols. The experiments also
exhibit both context-sensitive emission and context-sensitive interpre-
tation of symbols. This is because the emission of a symbol by a
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simorg may depend on the global environment (providing a context)
as well as its local environment. Similarly, the response of a simorg to
a symbol depends on its situation, which supplies a context. Finally,
we observe that the differing use of symbols in various contexts makes
it quite possible for every simorg to be using a different dialect of the
“language” manifest in the denotation matrix. Even in these simple
experiments we can begin to appreciate the complexity of the relation
between symbols and their significance.

3.2.3 Other Observations

In the course of these experiments we have made several observations
that provide some insight into the evolution of communication.

All of our experiments in which communication (and learning) is
suppressed show a slight upward trend in fitness (see Figure 2 and
Table 1). This is surprising, since in the absence of communication
it would seem that there is no way to improve on guessing. However,
that is not the case, and the way that it can occur is an interesting
demonstration of the force of the evolutionary process. To see this,
observe that our definition of effective action (Section 3.1.3) permits
a kind of “pseudo-cooperation through coadaptation.” Specifically, a
simorg is credited whenever its action matches the situation of the last
emitter, which is also credited. Therefore, if the population contains
a group of simorgs that emit only when they are in a fixed subset
FE of situations, then the possible states of the last emitter will not
be equally likely; specifically states in F will be more likely than the
other states. Under these conditions a simorg can “beat the odds” by
always guessing a situation in E. The coadaptation of such “pseudo-
cooperating” groups of simorgs seems to account for the increase of
fitness even when communication is suppressed.

We checked this hypothesis in several ways. First, we compared
simulations with the usual scoring algorithms to those in which fit-
ness was credited by a match to any other simorg (vice just the last
emitter); this eliminated the possibility of pseudo-cooperation. As ex-
pected, there was no trend in the average fitness. Second, we inspected
the denotation matrices; doing so showed that emissions occurred in
only a subset of the situations. Third, we calculated the expected
average fitness for homogeneous populations and subsets F of the ob-
served size. With the parameters we used, and the observed size 3
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for F, we calculated the expected fitness to be a = 20.83; in four
simulations we observed a = 20,29, 21,23. Together these are strong
evidence in favor of the hypothesis.

Pseudo-cooperation can be eliminated by not favoring a match to
the most recent emitter. Unfortunately, this removes much of the se-
lective pressure toward communication (since it makes guessing almost
as good a strategy as communicating) and therefore slows the simu-
lations. For this reason we have retained the original scoring rule; in
most cases pseudo-cooperation is a low level effect that is unintrusive
and can be ignored.

Another observation arose from earlier, unsuccessful experiments.
Recall that fitness determines the probability of breeding or dying;
there is always a chance that the least fit will breed and that the most
fit will die. In earlier experiments we used a simpler approach: breed
the two most fit simorgs and replace the least fit. Thus the current
algorithm is stochastic, whereas the older one was deterministic (ex-
cept in the case of fitness ties). The change was made because we
never observed the evolution of communication in the deterministic
situation.

The reason seems to be as follows. Since only the two most fit
simorgs breed, other good, but not great, simorgs are forever excluded
from contributing to the gene pool. Since language is hard to get
started, it is to be expected that nascent communicators will not be
as fit as guessers. Language communities will never evolve, unless they
have some chance of breeding, and this seems to be prevented by the
brittleness of the deterministic algorithm.

4 Conclusions

I have argued that a complete understanding of language, communica-
tion and the representational capabilities of mental states will require
a theory that relates the mechanisms underlying cognition to the evo-
lutionary process. I also argued that the complexity of natural organ-
isms makes it unlikely that such an integrated theory can be found by
empirical ethology. Therefore synthetic ethology has been proposed
as a complementary research paradigm, since carefully controlled ex-
periments and deep theoretical laws are more likely to be achievable
in the comparative simplicity of synthetic worlds.
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As an example of synthetic ethology I have described experiments
in which we have observed the evolution of communication in a pop-
ulation of simple machines. This was accomplished by constructing
a world in which there is selection for cooperation and in which ef-
fective cooperation requires communication. The control granted by
synthetic ethology permitted us to observe the evolution of the same
population in two worlds (one in which communication was suppressed,
the other permitted), and thus to measure the evolutionary effect of
communication. Further, synthetic ethology affords complete access
to the structure of the simorgs, thus exposing the mechanisms under-
lying their communication.

We are hopeful that synthetic ethology will prove a fruitful method
for investigating the relation between linguistic and mental structures
and the world. The experiments described here are just a beginning,
and there are many directions in which to proceed. For example,
if the number of situations exceeds the number of symbols, then we
would expect the simorgs to string symbols together into “sentences”;
this has already been observed, but more experiments are needed to
discover the syntax that will emerge and the factors affecting it.

It also seems likely that the complexity of language reflects the
complexity of the world. Our experiments to date have used environ-
ments that are in one of a finite number of discrete, atomic situations,
and the resulting “languages” have been similarly simple. This sug-
gests that we equip our synthetic worlds with environments containing
objects in various relationships; we expect this to lead to categories of
symbols analogous to the parts of speech (nouns, adjectives, etc.).

To date our experiments have been based on finite, discrete sets of
symbols and situations, but much of the natural world is characterized
by continuous variation, and both human and animal communication
make significant use of continuously variable parameters (loudness,
pitch, rate etc.). Ethological studies[32] suggest that discreteness —
so called “typical intensity” — will emerge to the extent that commu-
nication is noisy, an easy variable to control in synthetic ethology. We
hope to address this issue in future experiments and thus identify the
principles underlying the emergence of discrete symbolic processes.
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