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Abstract

This paper investigates the use of genetic algorithms
for inferring small regular and context-free grammars.
Applied simply, a genetic algorithm is not very ef-
fective at this. To overcome this problem we invest-
igate two methods of structuring the chromosomes.
The first is to bias the distribution of ‘1’s in the
population of chromosomes according to an algeb-
raic expansion technique previously developed by the
author. This ‘design’ of the chromosome distribu-
tion, shows no bias to any particular type of language
(i.e. full generality is retained) yet improves conver-
gence. The second method involves performing the
evolution (i.e. making the mutations) in a different
space, where the grammars are represented in ‘em-
bedded normal form’. The latter approach structures
the chromosome to represent context-free rather than
regular grammars, for example. It is shown that bi-
asing the chromosome in this fashion produces ex-
tremely fast convergence, and 3-symbol palindromes
grammars are learned in typically less than 10 gener-
ations.

1 Introduction

Grammars are an extremely general and useful tool
with many applications. These include the higher
levels of signal processing, such as pattern recogni-
tion. However, the application of grammars is limited
by the algorithms we can apply to infer them from
samples of data.

As with many domains, there is a tradeoff between
the complexity of a model and the cost of estimat-
ing it. An example of this may be seen in speech
recognition, where hidden Markov models (equival-
ent to stochastic regular grammars) are applied with
great success. These are actually not the most
fitting model for speech recognition (for example,
context-free would be a theoretically more appropri-
ate choice), but due to the existence of fast robust

training algorithms, they have achieved great pop-
ularity.

Nonetheless, there is still a great deal of interest in
learning more powerful classes of grammar, such as
context-free.

The main contribution of this paper is the idea of
biasing the probability distribution of the population
of chromosomes, using an according to two distinct
techniques.

The first is to bias the distribution of ‘1’s in the
population of chromosomes according to an algebraic
expansion technique previously developed by the au-
thor [1, 2]. This ‘design’ of the chromosome distri-
bution, shows no bias to any particular type of lan-
guage (i.e. full generality is retained) yet improves
convergence. The second method involves perform-
ing the evolution (i.e. making the mutations) in a dif-
ferent space, where the grammars are represented in
‘embedded normal form’ (ENF). The latter approach
structures the chromosome to represent context-free
rather than regular grammars, for example. This
‘design’ of the chromosome distribution, while show-
ing no bias to any particular type of language (i.e.
full generality is retained) seems to be much more
effective than experimenting with parametric details
such as the mutation and crossover rates.

The next Section considers the problem of design-
ing chromosomes in general, while Section 3 con-
siders the specific problem of mapping from encod-
ing a grammar for evolutionary purposes, and con-
siders how to bias the probability distribution of bit
strings in favour of those corresponding to reason-
able grammars, or fragments of reasonable grammars.
Section 4 presents some initial results, and Section 5
concludes.

2 Chromosome Design

In many applications of genetic algorithms (GAs), the
choice of chromosome tends to be taken for granted.
Hence, the parameters of the model to be estimated
are each encoded as a string of bits (for example,



using a binary or gray-code representation), and the
chromosome is then formed from the concatenation
of these strings.

When dealing with grammars, however, the num-
ber of parameters required by the model is unknown,
and hence (ideally) the chromosomes can be of vari-
able lengths, making the operation of the crossover
operator less straightforward than before. Further-
more, the interactions of the individual genes is now
profound: the flipping of a single bit (and the cor-
responding removal or addition of a production) can
render a previously perfect grammar utterly useless.
Perhaps as a result of these problems, only relatively
simple (and deterministic) CFGs have been inferred

(e.g. [3]) using GAs.

Kitano [4] was perhaps the first to publish results
on the effects of chromosome design of relevance to us
here. His results compared the effects of using a direct
encoding of a neural architecture (as a binary mat-
rix indicating the presence or absence of a neuron),
with using a parallel rewriting grammar as the chro-
mosome. In the latter case, the grammar was then
run for a fixed number of cycles to produce a matrix
of the desired size. Kitano found that the grammar
outperformed the direct encoding by an order of mag-
nitude (where performance measured by the average
number of generations taken by the GA to converge
on a solution within the specified error bounds).

Since then Gruau [5] has done some interest-
ing work on designing more advanced grammars for
neural network evolution, and has made significant
progress since the work of Kitano. In particular,
Gruau identifies a set of characteristics that a good
chromosome should have. These include such prop-
erties as modularity, compactness and completeness.

Also of interest is the work of Boers and Kuiper
[6], whose approach is to model the artificial chromo-
somes on their biological counterparts, rather than
paying special attention to the formal properties of
the codes.

Rather than studying how grammars may be de-
signed to evolve neural architectures, this paper con-
siders the design of chromosomes for evolving good
grammars. While eventually we should like to em-
ploy some kind of structured approach (such as the
use of a grammar) to create the chromosomes, we
have not done this yet. Note however, that the effect
of imposing a higher level structure on the chromo-
somes (as would be the case if we used a grammar to
generate them) is to deform the probability distribu-
tion of the chromosomes; this is precisely the effect
we achieve here, but by using a different technique.

3 Chromosomes for grammar
representation

There are several ways of representing language-
equivalent grammars. They may be represented in
a free format, where each production is of the form:
A — o where A is a non-terminal and « is a (pos-
sibly empty) string of terminals and non-terminals, or
they may be represented in some normal form, where
restrictions are placed on the form of «.

Given any form of a grammar, it is possible to con-
jure up mutation and crossover operators, and these
will be different depending on the chosen form. It
would be interesting to experiment on the effect that
the form of the grammar has on the operation of the
GA, but this is left to future work for the moment.

Here our approach is to take the simplest normal
form for constructing binary codes. This is a form I
call Lucas Normal Form (LNF), which is closely re-
lated to Chomsky Normal Form (CNF). Grammars in
LNF tend to look uglier than their CNF counterparts,
but the advantage here is that their more rigid struc-
ture reduces the size of the search space (given the
same number of non-terminals) and simplifies pars-
ing.

3.1 Chomsky Normal Form (CNF)

In CNF each rule is either of the form A — BC or
of the form A — a where A, B, C' are non-terminals,
and a 1s a terminal.

3.2 ‘Embedded Normal Form’ (ENF)

ENF is not really a normal form, but a template
for a self-embedded production (hence the quotes).
However, examination of many toy CFGs (when rep-
resented in their most natural form reveals that many
of the productions are of the the form A — bAc or
of the form A — b where A is a non-terminal, and
b and ¢ are terminals.

3.3 Lucas Normal Form and Direct
Encoding

In LNF, each production right-hand side (RHS) now
has exactly two symbols, but these may be either
terminals or non-terminals. Hence, each production
is now of the form A — ajas, where A € N and
ap, 09 € (N UE).

In other words, there are exactly 4 types of pro-
duction: A — aa|aB|Ba|BB

The fact that each RHS now has exactly two sym-
bols means we can perform all parsing reductions (i.e.



replacing the appearance of an RHS with an LHS) us-
ing a binary two-dimensional parsing look-up-table

(PLUT) for each LHS.

3.4 Example

For experimentation purposes I have implemented
an algorithm which takes any regular or context-free
grammar, and converts it to LNF. Here we illustrate
the effects of doing this with a two-symbol palin-
drome grammar (PG). It should be pointed out that
LNF grammars have the restriction that all strings
they generate are at least two symbols long. This is
not a problem in practice.

Consider the following grammar, which is in ‘ENF”
and generates the complete (infinite) set of 2-symbol
palindromes.

S — 0S0[151[0|1]e

For illustration, we show the actual inputs and out-
puts of the algorithm in LISP:

> (Inf (S ->080) (S->181)
(8-> (8 ->0) (8->1)

((B->80) (B->10) (B->00)
(A->81) (A->11) (A->01)
(8->0B) (8->00) (S->14) (8->11))

S — 0B|1A]00[11
A — S111]01
B — S50[10]00

Table 1 shows how to package this into a binary
chromosome in this case the following string:

0000000000000000011001001000010000000
00000001000010000100000000000000100001

3.5 Biased Chromosomes

Some initial experiments suggested that GAs would
not perform well at CFG inference. This appeared to
be due to the fact that in many cases to improve a
grammar (and hence escape a local minima), many
chance mutations were needed simultaneously. Cros-
sover would take care of this in many applications,
but recall that a grammar is a complex structure,
and that particular genes are only good in relation
to other genes i.e. there is often an absence of simple
building blocks, and hence a rather shaky foundation
on which the GA must build.

The idea to overcome this is to bias the probabil-
ity distribution of chromosomes. In addition to nor-
mal mutation, and crossover, we would now also mix
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Table 1: Binary Parsing Tables for PG. We unwind
the chromosome as a bit-string by working through
each table in turn (from top to bottom), and going
through the rows from top to bottom, left to right.

in grammar sub-components (from a gene-pool) The
gene-pool is generated from an algebraic expansion
of all the strings in the positive sample.

This almost sounds like cheating, but it is not,
for the following reason: the biasing process is com-
pletely general, employing an algebraic expansion
which has no human input, and does not restrict the
languages that may be inferred.

Using this technique, grammars that parse all the
positive strings evolve quite rapidly; the main prob-
lem is then to avoid over-generalisation. There may
be scope for creating a pool of ‘negative’ genes from
the negative sample, to help overcome this, but this
possibility has not been investigated here.

3.6 Algebraic Expansion

The algebraic expansion of a string gives all the gram-
mars that could have possibly parsed that string,
given the set of non-terminals.

Full details of the algebraic expansion may be
found in [2], here consider the following example. We
take the algebraic parse of the string 0100; this has
45 terms, each corresponding to a possible set of pro-
ductions that could have been used to parse it. We
show one of these 45, with its corresponding grammar
below:



00000000000001000000000000000000000000
0000000000000000000000000100000100000
=> ((S->B0) (B->BO0) (B->01))

3.7 Fitness Function

The choice of fitness function is critical to the opera-
tion of the GA. For example, without thinking about
things too deeply, we might award 41 for each pos-
itive string parsed, and —1 for each negative string
parsed. However, this does not give enough weight to
the fact that positive strings are typically much rarer
than negative strings, and hence perhaps should be
more greatly rewarded. Also, it is desirable to build
into the system other factors, such as preferring a
small grammar over a larger grammar with the same
language score.

However, care should be taken to make the max-
imum reward for smallness smaller than the minimum
reward for superior language recognition. In this pa-
per the following fitness function F' was applied to
evaluate each chromosome c¢. F' is split into two com-
ponents: L measures language performance, while W
acts as a penalty for excess rules. In the equations
below, PS is the positive sample, NS is the negative
sample, P is the number of positive strings parsed
by the chromosome and N is the number of negative
strings parsed.

where

P N
L) = 1pg] ~ v

and
El'czlﬁi
e * (|PS] + [N SI)

i.e. the ‘weight’ of the chromosome is simply the num-
ber of bits in it set to one, or in other words, the
number of production in the grammar, divided by
the product of the possible number of productions
and the size of the largest sample (positive or negat-
ive). This adjustment ensured that the largest pos-
sible penalty for being large is smaller than the smal-
lest possible reward for getting an extra production
correct.

W)=

4 Results

In this Section we report results comparing an un-
biased direct encoding with an algebraically biased
direct encoding on the toy languages of parity, a regu-
lar language, and 2 and 3 symbol palindromes, which
are context-free. The goal of the GA is to evolve

grammars that parse all the strings in the positive
training sample, and none of the strings in the neg-
ative training sample. While the fitness function is
based entirely on the training sample, we also meas-
ure the performance of the inferred grammars on an
unseen test set. In all the results better performance
on the training set has led to better performance on
the test set, and usually (but not always) 100% on
the training set implies 100% on the test set.

4.1 Sample Sets

There are two basic alternatives with sample cre-
ation: we may either deal with a static sample that
is sufficiently large to capture the main types of syn-
tactic structures that characterise the language, or we
may use a small dynamically updated sample that
would be insufficient for learning purposes at any
given point in time, but over time its trajectory takes
it through a greater breadth of information than we
could reasonably include in the static set.

Here we choose a small static set for training, using
all strings of length 2,3 and 4. This allows fast com-
putation of the fitness of each chromosome, and tests
the generalisation powers of the GA to the limit. Pre-
vious results [1] had proven the possibility of perfect
generalisation from such small sample sets.

4.2 Implementation

All the code for the results presented here is written
in Sun Common-LISP and all experiments were per-
formed on a Sun SPARC-ELC rated at 22 MIPs. For
example, evaluation of a single generation of 40 indi-
viduals took between 2 and 3 seconds on the 2-symbol
palindrome problem.

The basic tools necessary are the LNF parser, a
GA, and a tool to construct the LNF-grammars from
the chromosomes. The LNF parser is required to be
as fast as possible and must be robust. By robust we
mean that it should be able to cope with ANY gram-
mar, no matter how ridiculous without taking excess-
ive time or halting with an error message. Hence, our
LNF parser is based on the CYK (matrix) parsing al-
gorithm [7], as for grammars that are highly ambigu-
ous (such as are often produced by the GA) this is
much faster than using an Multiple-LR parser [8] or a
chart parser (a chart parser is a matrix parser where
the matrix entries are represented in sparse form).

4.3 Experimental Details

Each generation consisted of about 40 individuals,
from which between 3 and 10 of the best parents were



selected for breeding the next generation (the exact

number depended on details of the mutation and cros-

sover rates). In the algebraically biased experiments
a special crossover was used, which OR-ed the string

Training Set Test Set
Grammar | Normal | Biased Normal Biased
Parity 97 (5.9) | 99 (2.1) | 92 (11.3) | 98 (3.4)
2-Pal 87 (7.3) | 97 (5.3) | 68 (14.8) | 92 (13.4)

with a chromosome from the biased gene-pool.

The mutation and crossover rates were adjusted in
each experiment to keep the number of fitness evalu-
ations constant; this avoids giving an unfair advant-
age to one approach over the other.

Table 2: Percentage accuracy (with standard devi-
ations in parentheses) of the unbiased and algebraic-
ally biased GA, based on 10 repetitions of each ex-
periment.

Some experimentation was done varying things
such as the mutation and crossover rates, and while

this was not as varied and as exhaustive as would

have been ideal, it did not result in any significant

Training Set Test Set
Grammar | ALG ENF ALG ENF
3-Pal 83 (4.4) | 100 (0.0) | 59 (5.5) | 100 (0.0)

differences from the results shown here (once we take
into account the total number of fitness evaluations,
rather than the number of generations).

The GA was run for 20 generations each time on
the parity problem, and 50 generations each time on
the 2 and 3 symbol palindrome problems.

For the ENF chromosomes, productions conform-
ing to ENF were generated at random to produce
an initial population. Evolution then proceeded by
mutation only (there was insufficient time to imple-
ment a crossover operator for this representation).
ENF grammars were mutated by removing a produc-
tion at random, or by adding a random production,
with equal probability.

As mentioned above, each training set was a com-
plete sample of strings of length 2,3 and 4. Each test
set was a complete sample of strings of length 6 and
7. Hence, the GA is not only having to generalise to
unseen strings, but to strings of a length never seen
during evolution.

The results in Table 2 show that there is a distinct
performance gain in algebraically biasing the chro-
mosomes. However, Table 3 shows that this biasing
is insufficient for evolving the more difficult 3-symbol
palindromes. The problem here is that the length of
the binary chromosome is now 196 bits, and to evolve
an a self embedded production in this form requires
two chance mutations to happen cooperatively. This
becomes increasingly unlikely as the size of the prob-
lem (and hence the length of the binary encoding)
grows. However, we see that the ENF structuring
is very effective, and from the the graph in Figure 1
we see that convergence is normally achieved within
well under 10 generations. Incidentally, there ENF
structuring was developed after the algebraic bias-
ing, and there has not been time yet to test it on the
easier problems in Table 2, but it would be expec-
ted to perform poorer than the algebraic method on
the parity problem (due to its context-free bias), and
much better than the algebraic method on 2-symbol
palindromes.

Table 3: Percentage accuracy (with standard devi-
ations in parentheses) of the unbiased and algebra-
ically biased GA, based on 10 repetitions of learning
3-symbol palindromes.

It is perhaps worth mentioning that inferring 3-
symbol palindromes is generally regarded as a reas-
onably difficult problem, and stochastic re-estimation
methods (such as the inside/outside algorithm) take
many hours to learn this, and are prone to getting
trapped in local minima [9], but with the ENF struc-
tured chromosomes we evolve solutions to this prob-
lem reliably in less than a minute.
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Figure 1: Comparison of algebraically biased chromo-
somes (ALG) with ‘embedded normal form’ (ENF)
structured chromosomes on 3-symbol palindromes.

5 Conclusions

In this paper we investigated various ways of biasing
the chromosomes to improve the process of evolving



context-free grammars to fit and generalise datasets.

Grammatical inference is a difficult problem for ge-
netic algorithms, due to the lack of natural build-
ing blocks in binary-encoded grammars. Two ap-
proaches were investigated to overcome this. In the
first method, the distribution of chromosomes was
biased towards chromosomes containing automatic-
ally generated partial grammars (i.e. sets of produc-
tions that by themselves could parse at least one pos-
itive string). This improved the convergence charac-
teristics of the GA, and more significantly, the gen-
eralisation performance of the evolved grammars.

However, when dealing with the more difficult 3-
symbol palindromes, even this biasing proved inef-
fective. To overcome this, we biased the chromosomes
in a more direct manner — by generating them accord-
ing to production templates — many of which pro-
duced productions in ‘embedded normal form’. This
proved dramatically more successful. This approach
now needs to be tested on a wider range of grammars.

There is something slightly dissatisfying about the
ENF structuring,, in that the biasing was generated
from high-level human knowledge i.e. from the fact
that the very essence of a CFG is self-embedding, and
also by examining the most natural form of many
CFGs for toy problems (e.g. a™b" etc.). More in-
terestingly, the biasing could have been evolved nat-
urally, given suitable chromosome structures, and a
suitable environment for the evolution to proceed.
This natural biasing will be explored further in a fu-
ture paper, using the idea of cross-generalisation, but
it is worth a mention here.

The idea behind cross-generalisation is that we
could evolve grammars for several test languages, and
build up probability distribution function of produc-
tion templates found in the fittest grammars. Then
we could test the effect of using evolved-biased chro-
mosome structures on unseen languages. Ultimately,
these techniques may provide answers to some fun-
damental problems in grammatical inference. For ex-
ample, many theoretical results exist that show that
non-trivial context-free grammars should be practic-
ally unlearnable. Yet people learn them without dif-
ficulty. This apparent contradiction might be due to
the fact that we are biased (i.e. we have evolved to
be biased) to learn classes of natural language, for ex-
ample, rather than the toy languages presented here.

Finally, it is worth emphasising the main result of
this paper: that the design of the chromosome has a
far more profound effect on the performance of evol-
utionary computation than messing about with al-
gorithmic details of the GA.
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