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Abstract— We investigate a simple agent-based model,
the Naming Game, on random geometric networks. The
Naming Game is a minimal model, employing local com-
munications, capturing the emergence of shared communi-
cation schemes (languages) in a population of autonomous
semiotic agents. Implementing it on random geometric
graphs, local communications being local broadcasts, we
can model the corresponding agreement dynamics in large-
scale, autonomously operating wireless sensor networks.
A potential application of the algorithm is encryption key
creation for a community of agents for secure communi-
cations, visible only to the members of the community.
The late-stage temporal behavior of the dynamics of the
Naming Game can be understood in terms of the theory
of coarsening, occurring in domain and phase ordering in
physical and chemical systems.

I. INTRODUCTION

Reaching agreement without global coordination is of
fundamental interest in large-scale autonomous multi-
agent systems. In the context of social systems, the
objective is to understand and predict the emergence
of large-scale population-level patterns arising from em-
pirically supported local interaction rules between indi-
viduals (e.g., humans). Examples for such phenomena
driven by social dynamics include the emergence and the
evolution of languages [1] or opinion formation [2], [3].
From a system-design viewpoint in technological (e.g.,
sensor) networks [4], [5], the objective can be somewhat
reversed, in that it is to construct local rules giving rise
to a fast and efficient convergence to a global consensus,
when needed.

In this paper we “borrow” and slightly modify a
simple set of rules, referred to as Language or Naming
Games (NG), originally proposed in the context of
semiotic dynamics [6], [7]. Such problems have become
of technological interest to study how artificial agents

or robots can invent common classification or tagging
schemes from scratch without human intervention [6],
[7]. The original model by Steels [6], [8]–[10], was
constructed to account for the emergence of shared vo-
cabularies or conventions in a community of interacting
agents. More recently a simplified version of the NG was
proposed and studied on various network topologies by
Baronchelli et al. [11]–[13] and Dall’Asta et al. [14].
The advantage of studying a minimal model is that one
can gain a deeper understanding of the spontaneous self-
organization process of networked autonomous agents
in the context of reaching global agreement, and can
extract quantitative scaling properties for systems with a
large number of agents. They investigated this simplified
version of the NG on fully-connected (FC) (also referred
to as mean-field or homogeneous mixing) [11], [12],
regular [13], and small-world (SW) networks [14].

In the FC network, each agent has a chance to meet
with all others and compare their current local vocabu-
laries before updating them. On regular networks, agents
have only a limited and fixed number of neighbor with
whom they can interact/communicate. The communica-
tion in both cases is “local”, in thatpairs of agentsare
selected to interact and to update their vocabularies. The
basic algorithmic rules of the NG are as follows [11],
[13]. A pair of “neighboring” nodes (facilitated by the
underlying communication topology), a “speaker” and
a “listener”, are chosen at random. The speaker will
transmit a word from her list of “synonyms” to the
listener. If the listener has this word, the communication
is a success, and both players delete all other words,
i.e., collapse their list of synonyms to this one word.
If the listener does not have the word transmitted by
the speaker, she adds it to her list of synonyms without
any deletion. It was found that employing the above
local rules (pair-wise interactions), after some time, the



agents vocabularies converge to a unique vocabulary
shared among all agents [11]–[14]. The major differ-
ences between the NG on FC and on regular (e.g.,
two-dimensional) networks arise in the memory needed
to develop the common language before convergence
occurs, and in the time to converge. In the FC network,
the convergence process (reaching global agreement) is
fast, but large memory is needed per agent [11]. For a
regular two-dimensional network, spontaneous evolution
toward a shared dictionary is slow, but the memory
requirement is much less severe [13]. When the NG is
implemented on SW networks, the agreement dynamics
performs optimally in the sense that memory need is
small, while convergence is much faster than on the
regular networks [14].

The situation motivated above (i.e., the need for shared
vocabularies) can also be quite realistic in the context
of sensor networks [4], [5]. Envision a scenario where
mobile or static sensor nodes are deployed in a large spa-
tially extended region and the environment is unknown,
possibly hostile, the tasks are unforeseeable, and the sen-
sor nodes have no prior classification scheme/language
to communicate regarding detecting and sensing objects.
Since subsequent efficient operation of the sensor net-
work inherently relies on unique object identification, the
autonomous development of a common “language” for
all nodes is crucial at the exploration stage after network
deployment [4], [5]. For this task, however, there are
more efficient and faster schemes, guaranteeing to reach
global agreement on the naming (tagging) of an object.
In particular, basic leader-election (LE) algorithms [15]–
[20] could be employed to arrive at a common word
among a community of agents which observed the object
to be named: Upon observation, each agent “coins” a
random tag (identification number) for the object. Fol-
lowing the observation, the observing agents participate
in the leader election algorithm (with not the purpose
of electing a leader, but choosing a unique identifier for
the object). For example, in a two-dimensional regular
network ofN agents, the convergence to a unique identi-
fier takes time ofO(

√
N) on average. Convergence time

in the NG in two dimensions is ofO(N), significantly
longer than the LE algorithm whenN is large. Thus,
for the purpose of constructing a shared classification or
tagging scheme in a sensor network, launching the LE al-
gorithm is the preferable choice. Unlike social networks,
sensor networks, although operating autonomously, are
intelligently designed (by humans), who can make the
choice a priori which algorithm to employ based on their
efficiency.

There are possible situations, however, when the NG
algorithm, in addition to being interesting for its own
merit in studying agreement dynamics on various net-
works, can also be beneficial from a system-design
viewpoint. That can be the case when we do not intend
the outcome of the agreement to be easily predictable.
The actual process of electing a “leader” or coordinator
among sensor nodes may actually be such a scenario.
The leader must typically be a trusted node, with pos-
sible responsibilities ranging from routing coordination
to key distribution [21]. The basic LE algorithms are
essentially based on finding global extremum (e.g., max-
imum) through local communications [15]–[17]. Thus,
the elections can be stolen by placing a node in the
network with a sufficiently high ID (e.g., the largest
number allowed by the number representation scheme
of the sensor chips.)

Another possible application of the NG algorithm
is autonomous key creation or selection for encrypted
communication in a community of sensor nodes. Instead
of having a centralized or hierarchial key management
system with domain and area key distributors [21], group
of sensor nodes can generate a shared “public” key
(becoming visible to group members).

Sensor networks are both spatial and random. As
a large number of sensor nodes are deployed, e.g.,
from vehicles or aircrafts, they are essentially scattered
randomly across large spatially extended regions. In the
corresponding abstract graph two nodes are connected
if they mutually fall within each others transmission
range, depending on the emitting power, the attenuation
function and the required minimum signal to noise ratio.
Random geometric graphs (RGGs), also referred to as
spatial Poisson/Boolean graphs, capturing the above sce-
nario, are a common and well established starting point
to study the structural properties of sensor network, di-
rectly related to coverage, connectivity, and interference.
Further, most structural properties of these networks are
discussed in the literature in the context of continuum
percolation [22]–[24].

The common design challenge of these networks is
to find the optimal connectivity for the nodes: If the
connectivity of the nodes is too low, the coverage is
poor and sporadic. If the node connectivity is too high,
interference effects will dominate and results in degraded
signal reception [25]–[28]. From a topological viewpoint,
these networks are, hence, designed to “live” somewhat
above the percolation threshold. This can be achieved
by adjusting the density of sensor nodes and controlling
the emitting power of the nodes; various power-control



schemes have been studied along these lines [25], [28].
In this paper we consider random geometric graphs
above the percolation threshold, as minimal models for
the underlying network communication topology. The
focus of this work is to study the NG algorithmon these
well studied graphs.

II. NAMING GAMES ON RANDOM GEOMETRIC

NETWORKS

A. Random Geometric Networks

As mentioned above in the Introduction, here we con-
sider random geometric graphs [22]–[24] as the simplest
topological structures capturing the essential features of
ad hoc sensor networks.N nodes are uniformly random
distributed in anL × L spatial area. For simplicity we
consider identical radio rangeR for all nodes. Two nodes
are connected if they fall within each other’s range. An
important parameter in the resulting random geometric
graph is the average degreek (defined as the average
number of neighbors per node),k = 2K/N , where
K is the total number of links andN is the number
of nodes. In random geometrical networks, there is a
critical value of the average degree,kc, above which the
largest connected component of the network becomes
proportional to the total number of nodes (the emergence
of the giant component) [22]–[24]. There is a simple
relationship between the average degreek, the density of
nodesρ, and the radio rangeR of the nodes [22]–[24],
k = ρπR2, which can be used to control the connectivity
of the network.

B. The Naming Game

We consider the Naming Game on random geometri-
cal graphs. In the original context of the NG, agents try
to reach agreement in finding a unique “word” for an
object observed by them. In one of the above proposed
potential applications, agents try to generate a shared
public key for encrypted communication. For simplicity,
we will use the term “word” for the latter as well when
describing the algorithm.

We modify the communication rules to make them ap-
plicable for sensor networks. Instead of pairwise commu-
nications, nodes will initiatebroadcast(to all neighbors)
in a continuous-time asynchronous fashion. First we con-
sider the initial condition when the “vocabulary” of each
node is empty. At every elementary time step, a node is
chosen randomly out ofN nodes (mimicking Poisson
asynchrony for largeN ). This node (the “speaker”)
will broadcast a word from her list of “synonyms”; if
her list of synonyms is empty, the speaker randomly

invents a word; if she already has several synonyms, it
randomly chooses one. Her neighbors (the “listeners”)
compare their vocabularies with the word transmitted by
the speaker. If a listener has this word, she considers
the communication a success, and she deletes all other
words, collapsing her list of synonyms to this one word.
If a listener does not have the word transmitted by the
speaker, he adds it to his list of synonyms without any
deletion. If at least one listener had the word transmitted,
the speaker considers it (at least a partial) success, and
(somewhat optimistically) collapses her list of synonyms
to this one word. At every step, the “success” rateS is
defined as the fraction of listeners who were successful
(i.e., those that had the word transmitted by the speaker).
From the above it is clear that the listeners have to report
the outcome of the “word matching” to the speaker,
hence the elementary algorithmic step requires(k + 1)
broadcasts. (For actual communication implementations,
for a significant reduction of thek responses from the
listeners, see Section III.) In this paper timet is given in
units of (k + 1) broadcasts per node (during which, on
average,N word matching have been attempted). The
main difference between the above algorithm and the
one by Baronchelli et al. [13] is thebroadcast(instead
of pairwise communications) and the underlying network
(RGG in this paper) to capture the essential features of
the NG in sensor networks.

Other initial conditions may also be feasible. For
example, for key generation, instead of starting from
“scratch” (empty list of words for each node), each
agent can have a pre-generated (possibly long) list of
words. The different initial conditions will only have an
effect on the early time behavior of the system (see next
Section).

When starting from empty vocabularies, agents in-
vent words randomly. After time ofO(1) [on average
of order (k + 1) broadcast per node],O(N/(k + 1))
different words have been created. Following the early-
time increase of the number of different wordsNd(t),
through local broadcasts, agents slowly reconcile their
“differences”, and eventually will all share the same
word. First, a large number of small spatial clusters
sharing the same word develop. By virtue of the random
diffusivemotion of the interfaces separating the clusters,
more and more of the small clusters are being eliminated,
giving rise to the emergence of larger clusters, eventually
leading to one cluster in which all nodes are sharing
the same word. As suggested by Baronchelli et al.
[13], this late-time process is analogous to coarsening,
a well-known phenomenon from the theory of domain



Fig. 1. (Color figure) Snapshots of the time evolution of the
contents of the agents’ word lists during the process of reaching
global agreement forN = 1000 nodes at time (a)t = 1; (b)
t = 56; (c) t = 167; (d) t = 235. The average degree isk≈12
Initially, the word lists are empty for all agents. Time is measured
in units of (k + 1) broadcasts per node. Different colors correspond
to different words, with black indicating nodes with multiple words.
After the early-time increase in the number of different words in the
systems, small spatial clusters sharing the same word quickly form,
then subsequently “coarsen” until eventually only one global cluster
prevails.

and phase ordering in physical and chemical systems
[29]. Figure 1 shows snapshots of vocabularies of the
nodes at different times. For later times, group of nodes
which already share the same word, slowly coarsen,
until eventually only one domain prevails. This behavior
is also captured by Fig. 2(b), tracing the number of
different words as a function of timeNd(t), eventually
reaching global agreement,Nd = 1

Initializing the system with a possibly long list of
words for all agents, motivated by key generation, after
some early time reduction (after which almost all agents
have one word in their list, except the ones at the
interface between clusters), the system again exhibits the
same coarsening behavior described above.

Before turning to the detailed discussion of our sim-
ulation results, we first sketch the framework of coars-
ening theory [29], applicable to the observed late-time
dynamics of the NG on regulard-dimensional lattices
[13]. While RGG is a random structure, it is embedded
in two dimensions, and we also attempt to employ
elementary scaling arguments from coarsening theory.
According to Ref. [13], on regulard-dimensional lattices,
the typical size of domains (each with already agreed
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Fig. 2. Time evolution of the relevant observables in the Naming
Game in the fully connected (FC), two-dimensional (2d) regular, and
random geometric networks (RGG) forN=1024, averaged over1000
independent realizations of the game; (a) the total number of words
in the systemNw(t); (b) the number of different wordsNd(t); (c) the
average success rateS(t). The average degree of the underlying RGG
is k≈50. Data for the FC and2d regular networks are reproduced
by our simulations, following Refs. [11], [13], for comparison.

upon one word) is governed by a length scaleξ(t) ∼ tγ

with γ=1/2, analogous to that of domain formation
in systems with a non-conserved order parameter [29].
Thus, in d dimensions, the total number ofdifferent
words Nd at time t scales as the typical number of
domains

Nd(t) ∼
N

ξd(t)
∼ N

tdγ
. (1)

Further, the total number of wordsNw, at this late
coarsening stage, can be written as the number of nodes
N plus the number of nodes with more than one (on
average, between one and two) words, separating the
different domains: of order of typical number of domains
times the typical length of the interface of one domain,
yielding

Nw(t) − N ∼ N

ξd(t)
ξd−1(t) ∼ N

ξ(t)
∼ N

tγ
. (2)

Similarly, the “failure rate” for word matching,1−S(t),
(whereS(t) is the success rate) scales as the fraction of
nodes at the interfaces separating domains with different
words

1 − S(t) ∼ 1

ξ(t)
∼ 1

tγ
. (3)



Fig. 3. Time evolution of the relevant observables in the Naming
Game in random geometric networks (RGG) for three system sizes,
averaged over1000 independent realizations of the game; (a) the total
number of words in the systemNw(t); (b) the number of different
wordsNd(t); (c) the average success rateS(t). The average degree of
the underlying RGGs isk≈50. The inset of (b) showsNd(t) on log-
log scales, displaying the late-stage coarsening and the corresponding
power-law decay, approximatelyNd(t)∼t−0.65.

The main feature of the above power-law decays (up to
some system-size dependent cut-offs) is that the number
of different wordsNd, the total number of wordsNw,
and the success rateS(t) only depend ont through the
characteristic length scaleξ(t). Further, for the typical
time tc to reach global agreement or consensus, one has
ξd(tc)∼N , i.e.,

tc ∼ N1/(dγ) . (4)

C. Simulation Results

Relevant quantities measured in the simulations are
the total number of words in the systemNw(t) (cor-
responding to the total memory used by the agents
for word allocation at timet), the number of different
words Nd(t), and the average rate of successS(t) of
the word-matching attempts. Figure 2 displays the time
evolution of these three quantities for the RGG, com-
pared to the fully connected (FC) and to the2d regular
networks. Here, for the comparison, we reproduced the
corresponding data of Refs. [11], [13]. The behavior
of the NG on RGG is qualitatively very similar to

Fig. 4. The scaled version of the same data shown in Fig. 3 on log-
log scales; (a) the total number of words in the systemNw(t)/N−1;
(b) the number of different wordsNd(t)/N ; (c) the average suc-
cess rate1−S(t). The straight line segments correspond to the
best-fit power-law decaysNw(t)/N−1∼t−0.38, Nd(t)/N∼t−0.65,
1−S(t)∼t−0.33 for (a), (b), and (c), respectively.

that of the NG on2d regular graphs. After time of
O(1), O(N/(k +1)) different words have been invented
[Fig. 2(b) and 3(b)].Nw(t) also reaches its maximum in
time of O(1) [Fig. 2(a) and 3(a)]].

Focusing on the late-time behavior of the systems,
plotting Nd(t)/N , Nw(t)/N−1, and 1−S(t) vs t on
log-log scales, confirms the power-law decays associated
with the underlying coarsening dynamics, predicted by
Eqs. (1), (2), and (3), respectively.

Further, from Figs. 4(a) and (c) we find, within
errors, two consistent estimates for the scaling expo-
nent for typical length scale [see Eqs. (2) and (3)]:
γ≈0.38 and γ≈0.33, respectively. The number of dif-
ferent words, according to Eq. (1), in turn, should scale
as Nd(t)/N∼1/t2γ , close to our measured exponent
2γ≈0.65 [Figs. 3(b) and 4(b)]. The time to global agree-
ment scales astc∼N1.23, shown in Fig. 5, in reasonable
agreement with the one predicted by Eq. (4) with the
exponent1/(2γ).

In addition to the average convergence timetc, we also
measured the standard deviation∆tc [Fig. 5], and con-
structed the probability densityP (tc) for this observable
[Fig. 6]. The data collapse of the scaled probability den-
sities for different system sizes [inset Fig. 6], supports
the underlying coarsening picture, governed by a single
length scaleξ∼tγ which reaches the linear system size
N1/d at t=tc. These results also indicate some weakness
of the NG from a system-design viewpoint: the standard
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x = tc/ tc for the same data.

deviation, within error, scales in the same fashion with
the number of nodes as the average itself,∆tc∼N1.21,
[Fig. 5]. The lack of self-averaging for large systems
(strong dependence on the individual runs) of the NG
is inherently related to the coarsening dynamics, having
a single interface wondering at the latest stage (and not
to the underlying random structure). Suppressing large
average convergence times and the corresponding large
standard deviations will be addressed in the next section.

Fig. 7. Time evolution of the (scaled) number of different words
for three initial size of the word list on log-log scales. Thenumber
of nodes isN = 1000 with average degreek≈50. For comparison,
the same quantity is also shown for the ”empty” word list initial
condition.

To model random key selection from a pre-existing
list of keys, we also considered the NG with a different
set of initial conditions, where each node has the same
list of keywords. The results forN=1000 agents and
for three different initial length of the word list is shown
in Fig. 7, together with the previous ”empty word list”
initial condition for comparison. As can be seen, agents’
choices quickly converge locally to small spatial clusters
of nodes having the same word, followed by thelate-
stagecoarsening dynamics, identical to the one observed
with the “empty word list” initial condition. The scaling
properties, and the average time to convergence, hence
are identical to those discussed earlier, regardless of the
different initial conditions.

III. C ONCLUSION AND OUTLOOK

In this paper, we have explored the Naming Games
on Random Geometric Graphs, a simple model for
agreement dynamics in a large-scale sensor networks.
Such a scheme can be applicable in scenarios when the
outcome of the agreement process (in terms of the value
of the IDs, tags, or keys) is preferred not to be biassed
toward extremal values. We have found that qualitatively
similar to two-dimensional regular networks, the NG on
RGG can be reasonably well described by the physical
theory of coarsening. In particular, local clusters of nodes
sharing the same word quickly form, followed by slow
coarsening of these clusters in the late stage of the
dynamics. The typical linear size (diameter) of the clus-
ters scales asξ(t)∼tγ . Our simulation results,γ≈0.38,
indicate that, at least for the range of finite system sizes



studied here (up toN=5000), the characteristic length
scale for the NG in the RGG grows slower than in its
regular two-dimensional counterpart. In turn, the average
time to reach global agreement increases somewhat faster
on RGGs.

In addition to the typical time required to reach global
agreementO(N1.23) (for fixedaverage degree), we can
also estimate the typical message complexity of the NG
for an efficient implementation in sensor networks. This
quantity directly corresponds to the overall power con-
sumption until global agreement is reached, which is of
utmost importance in sensor networks. After just a few,
of O(1), broadcasts per node, coarsening begins, and
locally agreeing spatial clusters form. Nodes inside the
clusters have reached agreement with all their neighbors,
of which they are readily aware, hence, they no longer
have to initiate broadcasts any longer. The number of
“active” nodes, however, found at the interfaces between
these cluster and which have at least one neighbor
with different word(s), will initiate broadcast for word
matching, but their number [typical number of nodes
at the interfaces, Eq. (2)] decays asN/tγ . Hence, the
the total number of broadcasts during the game can be
written as(k + 1)

∑tc

t=1 Nt−γ ∼ (k + 1)N
∫ tc

1 dt t−γ ∼
(k + 1)Nt1−γ

c ∼ (k + 1)O(N1.76), where in the last
step, we used our empirically found scalingtc∼N1.23

and the exponentγ≈0.38. The prefactor(k + 1) in the
above scaling form of the total number of broadcasts
can be further reduced by eliminating a progressively
increasing fraction of responses (and the corresponding
broadcasts) by the listeners: only those listeners that
are not successful respond. Then, after listening for an
appropriate default period, the speaker node would know
the outcome of her word matching attempt by default:
no response means success for the particular listener. As
the fraction of active nodes decays, this implementation
will cut significantly the above prefactor from(k +1) to
(const.× k/tγ + 1).

In light of recent results on NG on SW networks [14],
one can consider accelerating the agreement process by
adding a small fraction of possibly long-range “random”
communication links between certain nodes of the RGG.
Such networks have long been known to speed up the
spread of local information or epidemics to global scales
[30]–[32], with applications ranging from synchroniza-
tion problems in distributed computing [33] to alarm-
detection schemes in wireless sensor networks [34]. For
sensor networks, this can be implemented either by
including a small fraction of sensors equipped with long-
range unidirectional antennas (“physical” long-range

connections) or by establishing designated multi-hop
transmission patterns (logical long-range connections)
between certain nodes [35]. The NG on RGG with
random long-range links is expected to exhibit scaling
behaviors identical to that of the NG on SW networks
[14]. In particular, the time to global agreement in the
resulting SW-like sensor network shall be reduced from
O(N1.23) to O(N0.5) [14]. We also expect the standard
deviation of the agreement time to decrease. The nodes
participating in the the required long-range or multi-
hop communications may consume more power than
the majority of the ordinary nodes. Globally, however,
it may be (not only in terms of temporal reduction
but also energetically) beneficial to pay the increased
local costs for a small fraction of the sensor nodes,
provided global agreement is reached much faster. We
are currently investigating such potential trade-offs. Our
future works will also address NG on more realistic
communication topologies, relevant to wireless sensor
networks, in particular, random spatial networks with
heterogeneous range distribution, and also networks with
dynamically changing connectivity.

ACKNOWLEDGMENT

We thank Bülent Yener and Joel W. Branch for com-
ments on this work. G.K. and Q.L. were supported in
part by NSF Grant No. DMR-0426488 and B.K.S. and
Q.L. were supported in part by NSF Grant No. NGS-
0103708. This research was also supported in part by
Rensselaer’s Seed Program.

REFERENCES

[1] F.A. Matsen and M.A. Nowak, “Win-stay, lose-shift in language
learning from peers”, Proc. Natl. Acad. Sci. USA101, 18053–
18057 (2004).

[2] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch, “Mixing
beliefs among interacting agents”, Adv. Compl. Syst.3, 87–98
(2000).

[3] E. Ben-Naim, “Opinion dynamics: Rise and fall of political
parties”, Europhys. Lett69, 671–677 (2005).

[4] Y. Lee, T.C. Collier, C.E. Taylor, E.E. Stabler, “The role of
population structure in language evolution”, Proceedingsof the
10th International Symposium on Artificial Life and Robotics
(2005).

[5] T.C. Collier and C.E. Taylor, “Self-Organization in Sensor Net-
work”, Journal of Parallel and Distributed Computing 64, 866-
873 (2004).

[6] L. Steels, “The synthetic modeling of language origins”, Evolu-
tion of Communication1, 1–34 (1997).

[7] S. Kirby, “Natural Language from Artificial Life”, Artificial Life
8, 185–215 (2002).

[8] Luc Steels, “The Origins of Ontologies and Communication
Conventions in Multi-Agent Systems”, Autonomous Agents and
Multi-Agent Systems 1, 169-194 (1998).



[9] Luc Steels, “A self organizing spatial vocabulary”, Artificial Life
2, 319-332 (1995).

[10] Luc Steels and Angus McIntyre, “Spatially DistributdeNaming
Games”, ECAL 97 (1997).

[11] A. Baronchelli, M. Felici, E. Caglioti, V. Loreto, and L. Steels,
“Sharp Transition towards Shared Vocabularies in Multi-Agent
Systems”, arXiv:physics/0509075 (2005a).

[12] A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto,
“Strategies for fast convergence in semiotic dynamics”,
arXiv:physics/0511201.

[13] A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto, “Topology
Induced Coarsening in Language Games”, Phys. Rev. E73
(2006) 015102(R); arXiv:physics/0512045.

[14] L. Dall’Asta, A. Baronchelli, A. Barrat, V. Loreto, “Agreement
dynamics on small-world networks”, Europhys. Lett.73, 969–
975 (2006); arXiv:cond-mat/0603205.

[15] D. Angluin, “Local and global properties in networks ofpro-
cessors”, inProceedings of the 12th ACM Symposium on Theory
of Computing, 82–93 (1980).

[16] D.S. Hirschberg, and J.B. Sinclair, “Decentralized extrema-
finding in circular configurations of processors”, inCommuni-
cations of the ACM23, 627–628 (1980).

[17] G. LeLann, “Distributed systems, towards a formal approach”,
in IFIP Congress Proceedings, 155–160 (1977).

[18] N. Malpani, J. Welch and N. Vaidya”, “Leader Election Algo-
rithms for Mobile Ad Hoc Networks”, inProc. Fourth Interna-
tional Workshop on Discrete Algorithms and Methods for Mobile
Computing and Communications, 96-103 (2000).

[19] S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, D.
Towsley, “Leader Election Algorithms for Wireless Ad Hoc
Networks”, in Proc. of the 3rd DARPA Inf. Survivability Conf.
and Exposition (DISCEX- III)(2003).

[20] S. Vasudevan, J. Kurose, and D. Towsley, “Design and Analysis
of a Leader Election Algorithm for Mobile Ad Hoc Networks”,
in Proc. of the 12th IEEE International Conference on Network
Protocols(2004).

[21] B. DeCleene et al., “Secure group communications for wireless
networks”, inProc. of MILCOM, VA, 2001.

[22] R. Meester and R. Roy,Continuum Percolation(Cambridge
University Press, 1996).

[23] M. Penrose,Random Geometric Graphs(Oxford University
Press, 2003).

[24] J. Dall and M. Christemsen, “Random geometric graphs”,Phys.
Rev. E66, 016121 [9 pages] (2002).

[25] P. Gupta and P.K.Kumar, “The Capacity of Wireless Networks”,
IEEE Trans. Inf. Theor.IT-46, 388–404 (2000).

[26] F. Xue and P.R. Kumar, “The number of Neighbors Neeeded
Connectivity of Wireless Networks” Wireless Networks 10, 169–
181 (2004).

[27] B. Krishnamachar, S.B. Wicker, and R. Béjar, “Phase Transition
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