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Abstract—We investigate a simple agent-based model, or robots can invent common classification or tagging
the Naming Game, on random geometric networks. The schemes from scratch without human intervention [6],
Naming Game is a minimal model, employing local com- [7]. The original model by Steels [6], [8]-[10], was
munications, capturing the emergence of shared communi- cqnstrycted to account for the emergence of shared vo-
cation schemes (languages) in a population of autonomous 1, 12 ies or conventions in a community of interacting
semiotic agents. Implementing it on random geometric agents. More recently a simplified version of the NG was

graphs, local communications being local broadcasts, we . . -
can model the corresponding agreement dynamics in large- Proposed and studied on various network topologies by

scale, autonomously operating wireless sensor networks.Baronchelli et al. [11]-[13] and Dall'Asta et al. [14].
A potential application of the algorithm is encryption key ~The advantage of studying a minimal model is that one
creation for a community of agents for secure communi- can gain a deeper understanding of the spontaneous self-
cations, visible only to the members of the community. organization process of networked autonomous agents
The !ate-stage temporal behavior o_f the dynamics of the jn the context of reaching global agreement, and can
Naming Game can be understood in terms of the theory gyt quantitative scaling properties for systems with a
of coarsening, occurring in domain and phase ordering in 546 number of agents. They investigated this simplified
physical and chemical systems. .
version of the NG on fully-connected (FC) (also referred

to as mean-field or homogeneous mixing) [11], [12],
regular [13], and small-world (SW) networks [14].

Reaching agreement without global coordination is of In the FC network, each agent has a chance to meet
fundamental interest in large-scale autonomous mubliith all others and compare their current local vocabu-
agent systems. In the context of social systems, tlaies before updating them. On regular networks, agents
objective is to understand and predict the emergengave only a limited and fixed number of neighbor with
of large-scale population-level patterns arising from emwhom they can interact/communicate. The communica-
pirically supported local interaction rules between indtion in both cases is “local”, in thatairs of agentsare
viduals (e.g., humans). Examples for such phenomesglected to interact and to update their vocabularies. The
driven by social dynamics include the emergence and thasic algorithmic rules of the NG are as follows [11],
evolution of languages [1] or opinion formation [2], [3].[13]. A pair of “neighboring” nodes (facilitated by the
From a system-design viewpoint in technological (e.gunderlying communication topology), a “speaker” and
sensor) networks [4], [5], the objective can be somewhat“listener”, are chosen at random. The speaker will
reversed, in that it is to construct local rules giving risgansmit a word from her list of “synonyms” to the
to a fast and efficient convergence to a global consenslistener. If the listener has this word, the communication
when needed. is a success, and both players delete all other words,

In this paper we “borrow” and slightly modify ai.e., collapse their list of synonyms to this one word.
simple set of rules, referred to as Language or Namitfgthe listener does not have the word transmitted by
Games (NG), originally proposed in the context ahe speaker, she adds it to her list of synonyms without
semiotic dynamics [6], [7]. Such problems have beconamy deletion. It was found that employing the above
of technological interest to study how artificial agentecal rules pair-wise interactions), after some time, the
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agents vocabularies converge to a unique vocabularyThere are possible situations, however, when the NG
shared among all agents [11]-[14]. The major diffemlgorithm, in addition to being interesting for its own
ences between the NG on FC and on regular (e.merit in studying agreement dynamics on various net-
two-dimensional) networks arise in the memory neededbrks, can also be beneficial from a system-design
to develop the common language before convergengewpoint. That can be the case when we do not intend
occurs, and in the time to converge. In the FC networthe outcome of the agreement to be easily predictable.
the convergence process (reaching global agreementYle actual process of electing a “leader” or coordinator
fast, but large memory is needed per agent [11]. Foramong sensor nodes may actually be such a scenario.
regular two-dimensional network, spontaneous evolutidine leader must typically be a trusted node, with pos-
toward a shared dictionary is slow, but the memomible responsibilities ranging from routing coordination
requirement is much less severe [13]. When the NG tis key distribution [21]. The basic LE algorithms are
implemented on SW networks, the agreement dynamiessentially based on finding global extremum (e.g., max-
performs optimally in the sense that memory need iimum) through local communications [15]-[17]. Thus,
small, while convergence is much faster than on thie elections can be stolen by placing a node in the
regular networks [14]. network with a sufficiently high ID (e.g., the largest
The situation motivated above (i.e., the need for sharedmber allowed by the number representation scheme
vocabularies) can also be quite realistic in the contest the sensor chips.)
of sensor networks [4], [5]. Envision a scenario where Another possible application of the NG algorithm
mobile or static sensor nodes are deployed in a large sfgaautonomous key creation or selection for encrypted
tially extended region and the environment is unknowapmmunication in a community of sensor nodes. Instead
possibly hostile, the tasks are unforeseeable, and the seinhaving a centralized or hierarchial key management
sor nodes have no prior classification scheme/languaystem with domain and area key distributors [21], group
to communicate regarding detecting and sensing objeadt.sensor nodes can generate a shared “public” key
Since subsequent efficient operation of the sensor n@gecoming visible to group members).
work inherently relies on unique object identification, the Sensor networks are both spatial and random. As
autonomous development of a common “language” far large number of sensor nodes are deployed, e.g.,
all nodes is crucial at the exploration stage after netwoflom vehicles or aircrafts, they are essentially scattered
deployment [4], [5]. For this task, however, there amandomly across large spatially extended regions. In the
more efficient and faster schemes, guaranteeing to reaolresponding abstract graph two nodes are connected
global agreement on the naming (tagging) of an objedt.they mutually fall within each others transmission
In particular, basic leader-election (LE) algorithms ft5]range, depending on the emitting power, the attenuation
[20] could be employed to arrive at a common wortunction and the required minimum signal to noise ratio.
among a community of agents which observed the objd&®andom geometric graphs (RGGs), also referred to as
to be named: Upon observation, each agent “coins”spatial Poisson/Boolean graphs, capturing the above sce-
random tag (identification number) for the object. Fohario, are a common and well established starting point
lowing the observation, the observing agents participate study the structural properties of sensor network, di-
in the leader election algorithm (with not the purposeectly related to coverage, connectivity, and interfeeznc
of electing a leader, but choosing a unique identifier féiurther, most structural properties of these networks are
the object). For example, in a two-dimensional regulaiscussed in the literature in the context of continuum
network of N agents, the convergence to a unique idenfiercolation [22]-[24].
fier takes time of2(v/N) on average. Convergence time The common design challenge of these networks is
in the NG in two dimensions is af(NV), significantly to find the optimal connectivity for the nodes: If the
longer than the LE algorithm whelV is large. Thus, connectivity of the nodes is too low, the coverage is
for the purpose of constructing a shared classification poor and sporadic. If the node connectivity is too high,
tagging scheme in a sensor network, launching the LE aiterference effects will dominate and results in degraded
gorithm is the preferable choice. Unlike social networksjgnal reception [25]-[28]. From a topological viewpoint,
sensor networks, although operating autonomously, d@nese networks are, hence, designed to “live” somewhat
intelligently designed (by humans), who can make tlabove the percolation threshold. This can be achieved
choice a priori which algorithm to employ based on theby adjusting the density of sensor nodes and controlling
efficiency. the emitting power of the nodes; various power-control



schemes have been studied along these lines [25], [A8}ents a word; if she already has several synonyms, it
In this paper we consider random geometric graphsndomly chooses one. Her neighbors (the “listeners”)
above the percolation threshold, as minimal models foompare their vocabularies with the word transmitted by
the underlying network communication topology. Théhe speaker. If a listener has this word, she considers
focus of this work is to study the NG algorithanthese the communication a success, and she deletes all other
well studied graphs. words, collapsing her list of synonyms to this one word.
If a listener does not have the word transmitted by the
speaker, he adds it to his list of synonyms without any
deletion. If at least one listener had the word transmitted,
A. Random Geometric Networks the speaker considers it (at least a partial) success, and
As mentioned above in the Introduction, here we cofsomewhat optimistically) collapses her list of synonyms
sider random geometric graphs [22]-[24] as the simpldstthis one word. At every step, the “success” rétés
topological structures capturing the essential featufesdgfined as the fraction of listeners who were successful
ad hoc sensor networkd! nodes are uniformly random(i.e., those that had the word transmitted by the speaker).
distributed in anL x L spatial area. For simplicity we From the above it is clear that the listeners have to report
consider identical radio range for all nodes. Two nodes the outcome of the “word matching” to the speaker,
are connected if they fall within each other’s range. ARence the elementary algorithmic step requifes- 1)
important parameter in the resulting random geomethgoadcasts. (For actual communication implementations,
graph is the average degrée(defined as the averagefor a significant reduction of thé responses from the
number of neighbors per node}, = 2K/N, where Iisteners,_see Section 111.) In this paper timhis given in
K is the total number of links andV is the number units of (k + 1) broadcasts per node (during which, on
of nodes. In random geometrical networks, there isaerage,N word matching have been attempted). The
critical value of the average degrde, above which the main difference between the above algorithm and the
largest connected component of the network becon?e by Baronchelli et al. [13] is thbroadcast(instead
proportional to the total number of nodes (the emergen@gpairwise communications) and the underlying network
of the giant component) [22]-[24]. There is a simpléRGG in this paper) to capture the essential features of
relationship between the average degrethe density of the NG in sensor networks.
nodesp, and the radio rang® of the nodes [22]-[24], Other initial conditions may also be feasible. For

k = prR?, which can be used to control the connectivitgxample, for key generation, instead of starting from
of the network. “scratch” (empty list of words for each node), each

agent can have a pre-generated (possibly long) list of
words. The different initial conditions will only have an
We consider the Naming Game on random geometéffect on the early time behavior of the system (see next
cal graphs. In the original context of the NG, agents tigection).
to reach agreement in finding a unique “word” for an When starting from empty vocabularies, agents in-
object observed by them. In one of the above proposeent words randomly. After time o (1) [on average
potential applications, agents try to generate a shamdorder (k + 1) broadcast per nodel)(N/(k + 1))
public key for encrypted communication. For simplicitydifferent words have been created. Following the early-
we will use the term “word” for the latter as well whertime increase of the number of different wordg(¢),
describing the algorithm. through local broadcasts, agents slowly reconcile their
We modify the communication rules to make them apdifferences”, and eventually will all share the same
plicable for sensor networks. Instead of pairwise commword. First, a large number of small spatial clusters
nications, nodes will initiatdbroadcasf(to all neighbors) sharing the same word develop. By virtue of the random
in a continuous-time asynchronous fashion. First we codiffusivemotion of the interfaces separating the clusters,
sider the initial condition when the “vocabulary” of eacimore and more of the small clusters are being eliminated,
node is empty. At every elementary time step, a hodeg#/ing rise to the emergence of larger clusters, eventually
chosen randomly out ofV nodes (mimicking Poissonleading to one cluster in which all nodes are sharing
asynchrony for largeN). This node (the “speaker”’)the same word. As suggested by Baronchelli et al.
will broadcast a word from her list of “synonyms”; if[13], this late-time process is analogous to coarsening,
her list of synonyms is empty, the speaker randoméy well-known phenomenon from the theory of domain

[I. NAMING GAMES ON RANDOM GEOMETRIC
NETWORKS

B. The Naming Game
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Fig. 1.  (Color figure) Snapshots of the time evolution of the

contents of the agents’ word lists during the process offiéac rig Time evolution of the relevant observables in the ham
global agreement forV = 1000 nodes at time (af = L (b)  Game in the fully connected (FC), two-dimensiorzd) regular, and

t = 56; (c) t = 167; (d) t = 235. The average degree Is¥12  nq4om geometric networks (RGG) faf=1024, averaged over000
_Inltlal_ly, the word lists are empty for all a_gents. Time is asared independent realizations of the game; (a) the total numbevoeds

in unlts of (k+1) brqadcasts per nqde. leferent. colors.corresporm the systemV,, (¢); (b) the number of different word®,(t); (c) the

to different words, with black indicating nodes with mulépvords. average success rafét). The average degree of the underlying RGG
After the early-time increase in the number of different dgin the is k~50. Data for the FC an@d regular networks are reproduced

systems, small spatial clusters sharing the same word lgjuickm, by our simulations, following Refs. [11], [13], for compsoh.
then subsequently “coarsen” until eventually only one glatluster

prevails.

upon one word) is governed by a length scgle ~ t7
'gh ~v=1/2, analogous to that of domain formation

and phase ordering in physical and chemical systeﬁﬁ _
systems with a non-conserved order parameter [29].

29]. Figure[1 shows snapshots of vocabularies of t
[29]. Figure[1 P g us, in d dimensions, the total number different

nodes at different times. For later times, group of nod ds N ) | h ical b ¢
which already share the same word, slowly coarseforas NVa at time ¢ scales as the typical number o

until eventually only one domain prevails. This behavioqomaInS N N

is also captured by Fidld 2(b), tracing the number of Ny(t) ~ 00) ~ (1)
different words as a function of timé&/,(¢), eventually

reaching global agreemem; = 1 Further, the total number of wordd/,, at this late

Initializing the system with a possibly long list ofcoarsening stage, can be written as the number of nodes
words for all agents, motivated by key generation, afté¥ plus the number of nodes with more than one (on
some early time reduction (after which almost all agen&verage, between one and two) words, separating the
have one word in their list, except the ones at ttdifferent domains: of order of typical number of domains
interface between clusters), the system again exhibits thmes the typical length of the interface of one domain,

same coarsening behavior described above. yielding

Before turning to the detailed discussion of our sim- N N N
ulation results, we first sketch the framework of coars- Ny(t) — N ~ d—gd‘l(t) ~—n~—. (2
ening theory [29], applicable to the observed late-time §(t) )

dynamics of the NG on regulai-dimensional lattices similarly, the “failure rate” for word matching,—S(t),
[13]. While RGG is a random structure, it is embeddegvhere 5(t) is the success rate) scales as the fraction of

in two dimensions, and we also attempt to emplayodes at the interfaces separating domains with different
elementary scaling arguments from coarsening theofygrds

According to Ref. [13], on regulat-dimensional lattices, 1— St 1 1 3
the typical size of domains (each with already agreed SO~ ~ 7 (3)
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Fig. 4. The scaled version of the same data shown in[fFig. 3@n lo
log scales; (a) the total number of words in the sysfép(t)/N—1,

Sit)

L4

g3
292 (b) the number of different wordsV,(t)/N; (c) the average suc-
0.0 - . - - . ; ;
g J J I ¥ ¥ ¥ | cess ratel—S(t). The straight line segments correspond to the
ooEoom B m M bestit power-law decaysV,, (1) /N — 1t 038, Ny(t)/Neot =%,
t 1-S(t)~t=°3% for (a), (b), and (c), respectively.

Fig. 3. Time evolution of the relevant observables in the iam
Game in random geometric networks (RGG) for three systemssiz
averaged ovet000 independent realizations of the game; (a) the totdéhat of the NG on2d regular graphs. After time of

number of words in the systeV,, (¢); (b) the number of different 1 N/(k+1)) different words have been invented
words Ny (t); (c) the average success rat&). The average degree ofo( )’ O( /( iy ))

the underlying RGGs i&~50. The inset of (b) showsV,(¢) on log- [Fig. B(b) andB(b)].V.,(t) also reaches its maximum in
log scales, displaying the late-stage coarsening and thespmnding time of O(1) [Fig. [A(a) andB(a)]].
power-law decay, approximately(t)~t~"%. Focusing on the late-time behavior of the systems,
plotting N4(t)/N, Ny(t)/N—1, and 1-S(¢t) vs ¢t on
. log-log scales, confirms the power-law decays associated
The main feature of the above power-law decays (Up {ifith the underlying coarsening dynamics, predicted by
some system-size dependent cut-offs) is that the numiggfs 1), (@), and{3), respectively.
of different wordsN,, the total number of wordsv,,, Further, from Figs.[04(a) and (c) we find, within
and the success ratg(¢) only depend ort through the orrors two consistent estimates for the scaling expo-
characteristic length scalg(t). Further, for the typical ant for typical length scale [see EqEl (2) amdl (3)]:
ticrlne t. to reach global agreement or consensus, one has 33 and y~0.33, respectively. The number of dif-
£(te)~N, i.e., ferent words, according to Ed.(1), in turn, should scale
te ~ NV (4) as Ny(t)/N~1/t*7, close to our measured exponent
2v~0.65 [Figs.[3(b) and}4(b)]. The time to global agree-
ment scales as.~N'23, shown in Fig[b, in reasonable
Relevant quantities measured in the simulations aagreement with the one predicted by Eg. (4) with the
the total number of words in the systeM,(t) (cor- exponentl/(2y).
responding to the total memory used by the agentsin addition to the average convergence tifneve also
for word allocation at timet), the number of different measured the standard deviatidn,. [Fig. H], and con-
words Ny (t), and the average rate of succesg) of structed the probability densiti(¢.) for this observable
the word-matching attempts. Figurke 2 displays the tinjEig. [§]. The data collapse of the scaled probability den-
evolution of these three quantities for the RGG, consities for different system sizes [inset FIg. 6], supports
pared to the fully connected (FC) and to t regular the underlying coarsening picture, governed by a single
networks. Here, for the comparison, we reproduced ttength scalec~t” which reaches the linear system size
corresponding data of Refs. [11], [13]. The behavia¥'/¢ att=t.. These results also indicate some weakness
of the NG on RGG is qualitatively very similar toof the NG from a system-design viewpoint: the standard

C. Simulation Results
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Fig. 5. Average and the standard deviation of the convemyenEig. 7. Time evolution of the (scaled) number of differentrd®
time ¢. until global agreement is reached, as a function of thier three initial size of the word list on log-log scales. Tinember
number of nodes on log-log scales, averaged @@€0 independent of nodes isN = 1000 with average degreg~50. For comparison,
realization of the game. The average degree of the undgrRiBGs the same quantity is also shown for the "empty” word listiadit
is k~50. The straight lines correspond to the best-fit power-lansondition.
with exponentsl.23 and 1.21, for the average (solid line) and for
the standard deviation (dashed line), respectively.
To model random key selection from a pre-existing
list of keys, we also considered the NG with a different

I A — set of initial conditions, where each node has the same

list of keywords. The results foN=1000 agents and
for three different initial length of the word list is shown
in Fig. [, together with the previous "empty word list”
initial condition for comparison. As can be seen, agents’
choices quickly converge locally to small spatial clusters
of nodes having the same word, followed by tlate-
stagecoarsening dynamics, identical to the one observed
with the “empty word list” initial condition. The scaling
properties, and the average time to convergence, hence
S are |dent!c§1! to thos_e_ discussed earlier, regardless of the

t different initial conditions.
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Fig. 6.  Probability densities of the convergence time fare¢h III. CONCLUSION AND OUTLOOK

systems sizes. Data are gathered frodfi0 independent realizations . .
of the game. The average degree of the underlying RGGs-is. In this paper, we have explored the Naming Games

The inset shows the probability densities for the scaledabte on Random Geometric Graphs, a simple model for
x = tc/ 1. for the same data. agreement dynamics in a large-scale sensor networks.
Such a scheme can be applicable in scenarios when the
outcome of the agreement process (in terms of the value
deviation, within error, scales in the same fashion withf the IDs, tags, or keys) is preferred not to be biassed
the number of nodes as the average itsalf,~N'2!, toward extremal values. We have found that qualitatively
[Fig. B]. The lack of self-averaging for large systemsimilar to two-dimensional regular networks, the NG on
(strong dependence on the individual runs) of the NBGG can be reasonably well described by the physical
is inherently related to the coarsening dynamics, havitigeory of coarsening. In particular, local clusters of rmde
a single interface wondering at the latest stage (and rsttaring the same word quickly form, followed by slow
to the underlying random structure). Suppressing largearsening of these clusters in the late stage of the
average convergence times and the corresponding ladyaeamics. The typical linear size (diameter) of the clus-
standard deviations will be addressed in the next sectioers scales ag(t)~t”. Our simulation resultsy~0.38,
indicate that, at least for the range of finite system sizes



studied here (up tdv=5000), the characteristic lengthconnections) or by establishing designated multi-hop
scale for the NG in the RGG grows slower than in itsansmission patterns (logical long-range connections)
regular two-dimensional counterpart. In turn, the averapetween certain nodes [35]. The NG on RGG with
time to reach global agreement increases somewhat fastgrdom long-range links is expected to exhibit scaling
on RGGs. behaviors identical to that of the NG on SW networks
In addition to the typical time required to reach globdlL4]. In particular, the time to global agreement in the
agreement)(N'1-23) (for fixed average degree), we carresulting SW-like sensor network shall be reduced from
also estimate the typical message complexity of the NG(N!-23) to O(N"?) [14]. We also expect the standard
for an efficient implementation in sensor networks. Thigeviation of the agreement time to decrease. The nodes
quantity directly corresponds to the overall power comarticipating in the the required long-range or multi-
sumption until global agreement is reached, which is bbp communications may consume more power than
utmost importance in sensor networks. After just a fewhe majority of the ordinary nodes. Globally, however,
of O(1), broadcasts per node, coarsening begins, aibhdnay be (not only in terms of temporal reduction
locally agreeing spatial clusters form. Nodes inside theit also energetically) beneficial to pay the increased
clusters have reached agreement with all their neighbdagal costs for a small fraction of the sensor nodes,
of which they are readily aware, hence, they no longprovided global agreement is reached much faster. We
have to initiate broadcasts any longer. The number aife currently investigating such potential trade-offsr Ou
“active” nodes, however, found at the interfaces betweéuture works will also address NG on more realistic
these cluster and which have at least one neighbmmmunication topologies, relevant to wireless sensor
with different word(s), will initiate broadcast for wordnetworks, in particular, random spatial networks with
matching, but their number [typical number of nodeseterogeneous range distribution, and also networks with
at the interfaces, Eq](2)] decays a§t". Hence, the dynamically changing connectivity.
the total number of broadcasts during the game can be
written as(k + 1) ke, Nt ~ (K + 1)N [ledt t77 ~ ACKNOWLEDGMENT

(k+ )Nt ~ (k + 1)O(N'T°), where in the 1ast  we thank Biilent Yener and Joel W. Branch for com-
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and the exponent~0.38. The prefactor(k + 1) in the part by NSF Grant No. DMR-0426488 and B.K.S. and
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