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Abstract—We consider communication when there is no agreement about symbols and
meanings. We treat it within the framework of reinforcement learning. This framework en-
ables us to talk about emotional coupling and to consider the emergence of communication.
We apply different reinforcement learning models in our studies and simplify the problem
as much as possible. We show that the modelling of the other agent is insufficient in the
simplest possible case, unless the intentions can also be modelled. The model of the agent
and its intentions enable quick agreements about symbol-meaning association. We show that
when both agents assume an ‘intention model’ about the other agent then the symbol-meaning
association process can be spoiled and symbol meaning association may become hard.
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1. Introduction

The emergence of communication is one of the most enigmatic problems for several disciplines including
evolution, natural language theory, information technology. For a recent collection of papers, see, e.g., [2]. For
proper treatment, the concept of communication needs to be considered. First, let us see a few examples.

Smoke signals.These are ‘few bit’ signals that could meanattention , danger , help , and so on. The
vocabulary is small, the communication speed is high, the communication distance is large. The primary goal
of this communication is to overcome limited observation capabilities of other agents, to warn, and to coordinate
future actions.

Atomic interactions.Not all light enabled interaction is, however, communication: Atoms, for example, in-
teract each other by exchanging photons. The emission and the absorption of photons are not intentional and the
transmitted photon has no hidden meaning.

Grooming.According to Dunbar, grooming between monkeys is used, for example, to form alliances, serve,
or apologize [3]. Thus, we consider grooming communication, although it is non-verbal communication.

Then, the common features of communication are as follows: (i) communication is optional, (ii) it is inten-
tional, and (iii) communicated signals are symbols of certain meanings. Further, (iv) communication is successful,
if the meaning is the same for those who communicate. The emergence of communication is the subject of evolu-
tionary linguistics (for a recent review on evolutionary linguistics, see [12]). Evolutionary linguistics focuses on
the selective scenario that might give rise to the appearance of early languages. There are many theories and many
possibilities. Let us consider the popular and efficient language game approach [13, 10, 9, 8]. In language games,
the theoretical approach makes certain assumptions. Presupposed conditions include the following: agents interact
and their interaction is ‘coordinated’. Thus, language game presupposes the existence of an agreement that agents
start to engage themselves in ‘coordinated actions’. Such an agreement is also a symbol-meaning association.
Thus, the language game approach assumes existing symbol-meaning association and builds on that assumption.

Our question concerns the very minimum of symbol-meaning association needed for successful communica-
tion. To this end, we make the problem as simple as possible. Our analysis is embedded into the framework of

1Corresponding author

Neural Information Processing – Letters and Reviews Vol. 11, Nos. 4-6, April-June 2007 

 109



reinforcement learning. We study how communication may depend on the presence or the absence of the commu-
nication of emotions or internalvalues. In our simulations, communication will emerge as a deliberate action of
the agents, but only if certain conditions are fulfilled.

The paper is organized as follows. We provide the theoretical analysis in Section 2. This analysis shows the
necessity of emotional coupling between agents. We illustrate the analysis with simulations in simple scenarios
(Section 3). We shall discuss our results in Section 4. We conclude in Section 5. The paper is understandable
without involved mathematical tools. Mathematical details are presented in the Appendices for the sake of com-
pleteness.

2. Theoretical Analysis

In this section, we investigate conditions when communication between two autonomous agents canemerge.
The question is, how two autonomous agents could learn to communicate? We assume that neither the meanings
nor the communication signals are fixed in advance, there is no special method of negotiation, and there is nowill
for communication. However, the possibility for communication is given, and the world is such that communication
could be advantageous.

We investigate the problem in the framework ofreinforcement learning(for an excellent introduction, see
[11]). We investigate how communication may emerge fromjoint problem solving. That is, we ask how agents
could learn when and what to communicate based on utility; how they could learn to emit and interpret signals
provided that both parties benefit from those. It is surprising that if communication has a cost, then it is still not
sufficient that

• the possibility of communication is given and

• communication would be beneficial for both agents (even with costs).

The underlying reason is that we have assumed that none of the agents has fixed an interpretation of the signals,
therefore they have to learnsimultaneouslythe translation from meanings to signals and vice versa. Let us call
one of the agents, that wishes to communicate something the ‘speaker’, and the other one, which should learn to
interpret it, the ‘listener’. Now consider the case, when both agents are in the learning phase, and the speaker
experiments with different signals to express different meanings. The listener may not be able to differentiate the
meanings, and because of the costs, stops listening (i.e. learns that it is not worth to communicate). This effect
appears already in the simplest possible case. In this case, behaviors can be computed analytically.

2.1 A simple communication scenario

Consider two agents,A andB. For the sake of simplicity, we assume that communication is one-directional:A
may speak andB may listen to it. In each episode, agentA may either be in state "1" or "2" (with equal probability),
and has three possible actions:communicate "X" , communicate "Y" , anddo not communicate .
Communication has a cost of1 > cA ≥ 0. AgentB may listen to the signal ofA for a cost of1 > cB ≥ 0, and has
to guess the state ofA (say"1" or "2" ). They both receive a reward of+1, if the guess is correct and a penalty
of −1 if not. Since the cost of communication is less than the reward obtainable by it, communication is desirable,
if the two agents are able to agree that saying"X" means one of the states and saying"Y" means the other.

Parametrization of the symbol-meaning association: The policy ofA can be described by the tripleMA =
(α, p1, p2), whereα is the probability that A will communicate something,p1 is the probability thatA says"X"
in state"1" , 1− p1 is the probability thatA says"Y" in state"1" given that he decides to communicate, andp2

is the probability thatA says"X" in state"2" , 1 − p2 is the probability thatA says"Y" in state"2" given that
he is communicating. Similarly, the policy ofB can be described by the tripleMB = (β, qX , qY ), whereβ is the
probability thatB will listen to the signal,qX is the probability thatB guesses"1" after hearing"X" , 1 − qX is
the probability thatB guesses"2" after hearing"X" given that he listens, andqY is the probability thatB guesses
"1" after hearing"Y" , 1 − qY is the probability thatB guesses "2" after hearing"Y" given that he listens. The
probabilities and rewards for the case whenA talks andB listens are summarized in Figure 1. IfB does not listen,
or A does not talk, thenB guesses"1" with probability 0.5.
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Figure 1: Various outcomes and associated rewards

The value functions: It is easy to calculate, that if both of them communicate, the common part of their expected
reward is(p1 − p2)(qX − qY ), and 0 if any of them is not communicating. Thus, the expected reward for policies
MA andMB is

RA(MA,MB) = α · (−cA) + 2αβ(p1 − p2)(qX − qY )

for agentA and
RB(MA,MB) = β · (−cB) + 2αβ(p1 − p2)(qX − qY ).

for agentB.

2.2 Reinforcement learning of association models

Reinforcement learning aims to solve behavior optimization based on immediate rewards. The main goal
of optimization is to maximize the long-term discounted and cumulated reward, thevalue, or return during the
decision making process. Reinforcement learning problems may be solved by value function estimation or by
direct strategy (policy) search methods. Invalue function estimation, states or state-action pairs are assigned
value estimates that reflect the expected value of the long term cumulated and possibly discounted reward of
choosing them. The agent is not greedy and may not choose the optimal immediate reward, but it tries to act
greedily according to this value function: he selects the next state or action, which promises the optimal long-term
(discounted and) cumulated reward also calledreturn.

It is known that in partially observed environment, like in our case when the internal states of the agents may
not be observed, thedirect policy searchmethod can be more efficient [1]. In this case, the policy of the agent
is explicitly represented in a parameterized form, and the parameters are updated so that the described policy
becomes optimal from the point of view of thereturn. Policy gradient methods maximize the expectedreturn by
using gradient methods. The gradient of thereturn functioncan be calculated explicitly if the return function is
known (see Appendix 6.1). However, general methods also exist for cases when the reward function is not known
explicitly (Appendix 6.2).

Difficulties of parallel learning: We have assumed that neitherA nor B can bind meanings to signals, so
initially p1 ' p2 andqX ' qY . Let us investigate the learning process of agentA. If |qX − qY | < ε (B cannot
distinguish well between meanings), the cost term ofA will be greater than his reward term, so (i) he cannot tune
p1 andp2 reliably (their gradient is small), and (ii) he can minimize his losses by loweringα. The exact value of
ε depends on the cost of communication. Similarly,B will try to minimize β until A does not learn to distinguish
between concepts, and cannot reliably tuneqX andqY .

As a result, during early trials,p1, p2, qX andqY can only change stochastically, by random walk. As the cost
of communication grows, so doesε, and the time needed to exceed this limit by random walk grows exponentially.
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However, during this time,α andβ keep diminishing. So by the timeA andB could (by chance) break the
symmetry, and learn the distinction of meanings, they will learn that communication is not useful. We note that
in the general case, knowing the otheragent’s dynamics(the parameter sets (p1, p2, α) and (qX , qY , β)) does not
always help; e.g., if the reward of one agent is not available to the other agent and vice versa, or, if the rewards of the
agents do not depend on each other’s behaviors. In our two-state example behaviors are coupled. Then, in theory,
agents could use certain methods to estimate the hidden reward function of the other agent. For example, non-
direct implicit estimation is accomplished by the general policy gradient method: this method – up to some extent
– overcomes partial observations. It is so, because individual trajectories are considered in this case. Successful
estimation is, however, highly improbable in sophisticated real life situations.

2.3 Main hypothesis

Within the framework of reinforcement learning, we have a single means to cure the flaw described previously;
the agents should be able to model each other’sintentions; the dynamics and the ‘goals’ of the other agent. This is
possible if the valuesRA and/orRB are made available to them.

Now, the situation becomes different: agentA can optimizeMA for a fixedMB . Although agentA cannot
modify the policy ofB, he can model, what would be rewarding for agentB. Furthermore, he considers the
optimal combination of theMA andMB strategies. Let us see the possible scenarios:

One-step modelling: OptimizingMA for a fixedMB means calculating the conditional strategy

MA|B(MB) = arg max
MA

RA(MA,MB),

that is,A can calculate, that ifB followed MB , what would be the optimal choice for himself, i.e., forA. (For
further mathematical details, see Appendix 6.3)

Two-step modelling: If agentA ‘knows’ that he is using the conditionalone-step modellingstrategy about
agentB, then he might as well suppose thatB does the same, i.e., agentA might suppose that the strategy of agent
B is the following:

MB|A(MA) = arg max
MB

RB(MA,MB),

Now, agentA can simply choose his optimal strategy:

M∗
A = arg max

MA

RA(MA,MB|A(MA)).

It might be worth noting that this abstract problem phrasing goes beyond the problem of communication; it is
a general learning problem. If an agent does something and it is visible to the other agent then it is a signal, which
is dependent on the state of the first agent. If both agents are learning, then the situation becomes similar to our
simplified example on communication. (For further mathematical details, see Appendix 6.4)

Here, we shall present numerical results for these methods. Note that in our simplified problem the immediate
reward and the long-term reward are identical. More sophisticated situations were also studied and they show the
same phenomena.

3. Computer Experiments

We have tested our theoretical analysis by conducting numerical experiments. We used policy gradient meth-
ods, and various methods where the agents modelled each other. We studied the following cases:

Method 1: The agents did not model each other. In this case we studied value based methods andexplicit policy
gradient method. We present results forexplicit policy gradient method.

Method 2: The agents did not model each other directly, but use thegeneral policy gradient method. This method
models the world and thus the other agent implicitly.

Method 3: AgentA estimated agentB’s dynamics, i.e. the parameters that determineB’s policy. In this case,
agentA used a one-step model of agentB. Thus, in this model, agentA sensesthe rewards of agentB and
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chooses the optimal policy accordingly. AgentB did not model agentA and applied the policy gradient
method

Method 4: Both agentA and agentB had access to the rewards of the other agent and estimated each other’s
dynamics. Both agents used a one-step model of each other to choose their optimal policy

Method 5: Both agentA andB had access to the rewards of the other agent and estimated each other’s dynamics.
AgentA used a two-step model ofB, agentB used a one-step model ofA to choose an optimal policy

Method 6: Both agentA andB had access to the rewards of the other agent and estimated each other’s dynamics,
and used a two-step model of each other to choose their optimal policy
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Figure 2: Performance of the various methods as a function of the cost of communication. Shorthand "vs": versus.
For example, two-step vs one-step: one agent used a one-step model, the other agent used a two-step model. Note
that the decrease of the explicit policy gradient and the general policy gradient curves should become steeper if the
number of symbol meaning associations increases (see text).

In the experiments, the valuesα andβ were initialized to0.75 in all cases. This choice enables us to compare
the different methods. The values are high enough to give a fair amount of chance for the agents at the beginning to
utilize communication. The valuesp1, p2, qX , qY were initialized randomly according to the uniform distribution
in the range[0.4, 0.6].

In the computational studies we averaged 1000 runs. In each run we had at most 1000 learning episodes. In
each episode an action was made by agentA and a reaction, i.e., a guess, was made by agentB. Learning was
considered successful if after a certain number of steps, trials were 100% successful; the reward in each of the next
100 trials was +1. The number of steps needed for successful communication (not including the 100 successful
ones that are used for measuring success rate) is the time needed for the agreement. Figure 2 depicts the success
rate for the different methods.

The general policy gradient method (Appendix 6.2) is superior to the explicit policy gradient method (Ap-
pendix 6.1), however, if each agents uses these methods then they will not learn to communicate if communication
cost is high. Value estimation based reinforcement learning methods seem to be the weakest amongst all methods
that we studied (results are not shown here). Methods where agents use one-step or two-step models are some-
times 100% successful, with a single notable exception: if both agents use two-step models then success rate is
only about 50%. When rewards of the other agents are available then value estimation based method (the SARSA
method [6]) succeeds, too.

It can be seen, that when agents do not model each other, the chance that they learn to communicate decreases
as the cost of communication increases. However, when agents model each other, they are able to learn that
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communication is useful even when the cost is high, with the peculiar exception when both agents use two-step
models.

Figure 3 depicts the time needed to reach an agreement. Situations when agreement was not reached are
excluded from these statistics.

Figure 3: Learning time for various methods as a function of the cost of communication. Averages include only
successful learning cases. Shorthand gen: general, pol: policy, grad: gradient

It can also be seen that when both agents can model the rewards of the other agent, then agreement about the
signal-meaning association is fast. This is so, because they shortcut the slow tuning procedure of reinforcement
learning: they can play the other agent’s behavior “in their head”, can perform the joint optimization, so they can
conclude that communication is beneficial. If this shortcut is not applied, like in the case of the value estimation
based SARSA method, agreement can be still reached, but only very slowly. When one of the agents thinks two
steps ahead, agreement is even faster. In this case, agreement is accomplished in 1 step after an initial transient
of 10 steps when the agents estimate each others’ parameters. When both agents try to think two steps ahead and
agreement is only achieved in 50% of the cases, agreement – if it occurs – is very fast. Thus, if agreement is not
reached quickly, then agents could suspect that the second-order intentional model (e.g., one agent assumes that
the other agent uses a one-step model) is not valid.

4. Discussion

Theory of reinforcement learning shows that globally optimal solutions can be learned ‘easily’ under strict
conditions. The relevant condition for us is the Markov condition: information from the past does not help in
improving decisions. In other words, every information is encoded into the actual state of the agent and all state
variables are amenable to the agent for acting and learning. If this condition together with some other technical
assumptions are fulfilled, then the learning task is called Markov decision problem (MDP, see, e.g., [11] and the
references therein).

The Markov condition is hardly met in real life. It is not met in our case either, because the parameters of
decision making of agentA (or B) (i) are subject to experiences of agentA (or B), i.e., they depend on the history,
(ii) these parameters are not available for agentB (or A), and (iii) agentB (or A) would benefit from knowing
these parameters. In this case the world is only partially observed and task is called partially observed Markov
decision problem (POMDP) (see, e.g., [5] and references therein).

This lack of information can be eased by modelling the other agent. The other agent might have many variables
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and a large subset of those variables can be modelled by different means. We demonstrated this by using policy
gradient methods. Both the explicit policy gradient and the general policy gradient method develop models of the
‘private’ parameters of the other agent: they model the state-action mapping, that is, the policy of the other agent.
The modelling process can be explicit: a particular model is assumed in this case, or implicit, when there is a
general parametrization in the policy gradient. Our simulations demonstrate that the performance of the explicit
policy gradient model is inferior to that of the general model. This observation can be traced back to the differences
between the methods: general policy gradient makes direct use of the immediate rewards, deals with individual
state-action sequences separately. Thus, the general policy gradient method – up to some extent and indirectly
– takes into account the intentions of the other agent. In the case of the model based explicit policy gradient
method this connection is highly remote: the same information enters the computation only after expected value
computation. Value estimation based methods (not shown here) have the same drawback and they are also inferior
to the general policy gradient method. These notes concern our simple scenario that does not fulfill the conditions
of MDPs.

We have shown that the lack of a single quantity, the reward, makes a huge difference: not having access to the
reward of the other agent, the emergence of communication can be seriously limited if communication involves
cost. The assumption that communication is costly seems realistic, because communication takes time. Without
access to the rewards of the other agent, the higher the cost, the sooner the agents learn that communication is
useless.

There are several exceptions to this simple observation. For example, if the policy of one of the agents is
steady (i.e., this agent is not learning), then this agent will act effectively as the teacher and the adaptive agent can
learn either the appropriate signal (if he is the speaker) or the appropriate meaning (if he is the listener).

The problem arises if the learning rates of the two agents are about the same. Then, to develop successful
communication, they should be able to sense and then model (implicitly or explicitly) the immediate rewards, or
the cumulated rewards of the other agent. Such quantities are, however, not available for the other agent. Agents
can make inferences about the value of these quantities from emotional signs, such as happiness or anger. Note
that the meaning of such signs can be hard to uncover. If reward related meaning of emotional signs is available for
the agent and that influences the behavior of the agent, alike to human newborns, then we shall say that the agent is
emotionally coupled. We shall say that the agents have the capability of judging and evaluating emotions of other
agents and can make inferences about their rewards. It is satisfactory if one of the agents has that capability. If an
agent is emotionally coupled to another agent, then the learning of symbol-meaning association may become very
efficient.

It is important to note that the decrease of the explicit policy gradient and the general policy gradient curves
should become much steeper if the number of symbol meaning associations increases. The reasons for this are
as follows: (i) more complex situations require a larger number of communication events, (ii) the number of
communication events scales with the number of possibilities, and (iii) the number of possibilities may scale with
the number of variables in the exponent. For example, if an agreement is to be reached on who does what, when
they do it and what will they use for doing it, then for two possible tasks, two agents, three alternative time
instances, and two different tools the number of possibilities is3× 23 = 24.

There are many ways to make this learning efficient, depending on what the agents assume about their partner.
Consider, for example, that both agents are emotionally coupled to each other and both agents use this when they
learn to communicate. Now, it makes a huge difference how they use the emotional information they have. For
example, indirect modelling of the situation occurs if we assume that the agents receive the same reward. Then
we are in the MDP domain and we can apply MDP methods such as SARSA [6]) – without directly modelling the
other agent – safely.

A large improvement was gained if both agents considered what is the best to them. Further, if (only) one of
the agents used that information to ‘anticipate’ what the other agent might prefer to do in the next step, in reaction
to his action, then learning became even faster – as it was expected from theory (Section 2).

However, learning is severely spoiled if both agents are clever enough and anticipate the next step of the other
agents. This has the following explanation: both agents suppose that the other is using a one-step model to model
him, which, in this case, is false, because both agents use two-step models. In this situation, in 50% of the cases the
randomly generated initial parameters allow to reach an agreement just by chance. In the other 50% no agreement
is reached.

As we have noted earlier, in this peculiar case the agents could suspect that the one-step model they use about
the other agent is false: the other agent also considers ‘what is on his partner’s mind’. Such consideration are the
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starting points of game theory. However, the situation here can be different from game theory. In principle, our
agents can expect very fast agreement and they can become frustrated because of the lack of this quick agreement.
Our agents are also emotionally coupled and they might sense the frustration of the other agent. That is, our agents
might note that their models are not valid. Thus, in our case, agents may use higher-order intentional models or
they might decide whose intentions are more important and they might come to a joint agreement quickly.

Another important situation may arise if an agent is lacking the capability of emotional coupled. Suchemo-
tionally blind agent will have little chance to look for joint advantages and to suggest compromises. This agent
has two main choices to come to agreements: it is either a supervisor (the agent is not learning) or it should be
supervised (the communicating partners of the agent are not learning). Success might be severely limited if both
the agent as well as the communicating partners of the agent are learning and the final result could be that the
emotionally blind agent stops the communication.

An advantage of our formulation is that a new freedom appears here. The agent has the freedom to decide if
he wants to optimize the sum of the two returns (cooperative agent), his own return (selfish agent), the return of the
other agent no matter how much it costs (altruistic agent), might decide to change this choice, and so on. In each
separate cases, agents can estimate return as well as the change of the model of the other agent. These situations
call for further investigations.

In our simple example, the immediate reward and the long-term reward were identical. Situations, where these
two quantities are different have also been studied. The observations are the same as in the simple case that we
presented here. The only difference is that the effect of delayed reinforcement appears.

5. Conclusions

We have used explicit and implicit models in reinforcement learning. The world was partially observed, but
otherwise it was simplified as much as possible: we used two agents, two actions and two signals. We have shown
that emotional coupling is necessary for the emergence of communications even in this simplest possible case.
Numerical simulations demonstrate that if the rewards of the other agent are available for modelling, then signal-
meaning associations can be learned quickly. The order of intentionality agents suppose in their models about the
other agent may give rise to problems, but the mere fact of the disagreement indicates that the models could be
invalid. Novel situations may arise: agents might decide about their attitude towards other agents.

Appendices: Algorithms and Pseudo Codes

A.1 Explicit policy gradient method

In this case the explicit reward functions are available for the two agents and they can calculate the gradients
of the parameter setsMA = (α, p1, p2) andMB = (β, qX , qY ):

RA(MA,MB) = α · (−cA) + 2αβ(p1 − p2)(qX − qY )

for agentA and
RB(MA,MB) = β · (−cB) + 2αβ(p1 − p2)(qX − qY ).

for agentB. As can be seen from the equations, each agent also needs to estimate the parameters of the other agent
in order to calculate its own expected reward.

A.2 General policy gradient method

Let our policyπ depend on the parameters summarized in a vectorθ ∈ Rk. Let X be the set of all possible
trajectories in the task, and letr(X) denote the reward collected in an episode. Thenη(θ), the value of the policy
π(θ), is the expected value of the reward:

η(θ) = E [r(X)] =
∑

x

r(x)q(θ, x)

whereE [.], denotes the expectation operator,x ∈ X denotes a trajectory,r(x) denotes the reward collected while
traversing trajectoryx andq(θ, x) is the probability of traversing trajectoryx having parametersθ. The gradient
of η(θ) with respect toθ is:
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Table 1: Pseudo-code of the Explicit Policy Gradient Method

ε = 0.05, r, p ∈ [0, 1]
for each test

α, β = 0.75, initializep1, p2, qx, qy to random values
for each episodei = 1, ..., MAX_EPISODESdo

Agent A
update the approximation of the parameters ofB: β̂, q̂x, q̂y

update own parameters by gradient:
∆α = −cA + β̂(r + p) + β̂(p1 − p2)(q̂X − q̂Y )(r − p)
∆p1 = αβ̂(q̂X − q̂Y )(r − p)
∆p2 = −αβ̂(q̂X − q̂Y )(r − p)
α ← α + ε∆α
p1 ← p1 + ε∆p1

p2 ← p2 + ε∆p2

Agent B
update the approximation of the parameters ofA: α̂, p̂1, p̂2

update own parameters by gradient:
∆beta = −cB + α̂(r + p) + α̂(p̂1 − p̂2)(qX − qY )(r − p)
∆qx = α̂β(p̂1 − p̂2)(r − p)
∆qy = −α̂β(p̂1 − p̂2)(r − p)
β ← β + ε∆β
qx ← qx + ε∆qx

qy ← qy + ε∆qy

end for
end for

∇η(θ) =
∑

x

r(x)∇q(θ, x) =
∑

x

r(x)
∇q(θ, x)
q(θ, x)

q(θ, x) = E

[
r(X)

∇q(θ, X)
q(θ, X)

]

A sequence of trajectoriesx1, x2, . . . , xn give an unbiased estimate of∇η(θ):

∇̂η(θ) =
1
N

N∑

i=1

r(xi)
∇q(θ, xi)
q(θ, xi)

Because of the law of large numbers:̂∇η(θ) → ∇η(θ) with probability 1. The quantity∇q(θ,x)
q(θ,x) is called likelihood

ratio or score function.
Let the trajectoryx be a sequence of statesx1, x2, . . . , xT , and letpxtxt+1(θ) be the probability of moving

from statext to xt+1 having parametersθ. Then:

∇q(θ, x)
q(θ, x)

=
T−1∑
t=0

∇pxtxt+1(θ)
pxtxt+1(θ)

,

which can be derived the following way:

q(θ, x) =
T−1∏
t=0

pxtxt+1

⇒ log q(θ, x) = log
T−1∏
t=0

pxtxt+1 =
T−1∑
t=0

log pxtxt+1

⇒ ∇ log q(θ, x) =
T−1∑
t=0

∇ log pxtxt+1 =
T−1∑
t=0

∇pxtxt+1

pxtxt+1

,

Neural Information Processing – Letters and Reviews Vol. 11, Nos. 4-6, April-June 2007 

  117



Table 2: Pseudo-code for the General Policy Gradient Method

z0 = 0 ∈ Rk,∆0 = 0 ∈ Rk

for each episodej = 1, ..., N do
R0 = 0 ∈ R
for each state transitionxt → xt+1 do

zt+1 = zt +
∇pXtXt+1 (θ)

pXtXt+1 (θ)

Rt+1 = Rt + 1
t+1 (rt −Rt)

end for
∆j+1 = ∆j + Rtzt

end for
θ ← θ + ∆N

N

since∇ log f(x) = ∇f(x)
f(x) . This sum can also be accumulated iteratively.

In our case the algorithm is simplified, since each episode consists of one step (agentA says something and
agentB replies). Furthermore, we update the parameters after each episode, which meansN = 1 in the above
algorithm. This way the two cycles boil down to one line of update after each episode:

θ ← θ + r
∇ps,a(θ)
ps,a(θ)

.

The respective gradients and probabilities can be calculated from the parametersα, p1, p2, β, qX , qY :

Table 3: Gradients and Probabilities for AgentA

state action ∇α ∇p1 ∇p2 probability
1 X p1 α 0 αp1

1 Y 1− p1 −α 0 α(1− p1)
2 X p2 0 α αp2

2 Y 1− p2 0 −α α(1− p2)
* ∅ -1 0 0 (1− α)

Table 4: Gradients and Probabilities for AgentB

state action ∇β ∇qX ∇qY probability
X 1 qX β 0 βqX

X 2 1− qX −β 0 β(1− qX)
Y 1 qY 0 β βqY

Y 2 1− qY 0 −β β(1− qY )
* ∅ -1 0 0 (1− β)
∅ 1 / 2 0.5 0 0 β
∅ ∅ -0.5 0 0 (1− β)

In the tables the state or action denoted by∅ means communicating nothing.

A.3 One-step modelling

In this case the agent calculates a conditional strategy that optimizesMA andMB jointly, as discussed in the
text. Recall, that by joint optimization we mean that we can calculate the conditional strategy

MA|B(MB) = arg max
MA

RA(MA,MB),
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that is,A can calculate, that ifB followed MB , what would the optimal choice ofA be. A can estimate the
parameters ofB and thus can estimate his policy,MB = (β, qX , qY ). The same is true vice versa, for agent
B estimating the policy ofA, MA = (α, p1, p2). The parameters can be estimated by the agents observing
each other’s behavior, and approximating the parameters with their relative frequencies, that is, the ratio of the
occurrence frequencies of certain actions:

Table 5: Estimating Parameters

α̂ = # episodes where A had chosen to communicate
# all episodes so far

p̂1 = # episodes where A said "X" in state "1"
# all episodes so far where A had chosen to communicate

p̂2 = # episodes where A said "X" in state "2"
# all episodes so far where A had chosen to communicate

β̂ = # episodes where B had chosen to listen
# all episodes so far

q̂X = # episodes where B guessed "1" after hearing "X"
# all episodes so far where B had chosen to listen

q̂Y = # episodes where B guessed "1" after hearing "Y"
# all episodes so far where B had chosen to listen

ThenMA|B(MB) can be derived analytically, and is the following:

• if B’s will to use communication(β̂) is so low that it is not worth using communication forA because of his
own cost, then do not communicate anything,

• otherwise, ifA is in state1, andB is more likely to answer1 to X than toY (q̂X > q̂Y ), or if A is in state2
andB is more likely to answer2 to X that toY (q̂X < q̂Y ), then sayX,

• otherwise sayY

The conditional policy of agent B,MB|A(MA), is essentially the same, but using the estimated parameters of
A (α̂, p̂1, p̂2).

A.4 Two-step modelling

Supposing thatB uses one-step modelling, A can think one step further. Based on that, he can simply choose
his optimal strategy:

M∗
A = arg max

MA

RA(MA,MB|A(MA)).

This optimal policy can also be derived analytically, and is the following:

• if B’s will to use communication(β̂) is so low that it is not worth using communication forA because of
his own cost, orA’s will to use communication(α̂) is so low that it is not worth using communication forB
because of his own cost, then do not communicate anything,

• otherwise, ifA is in state1, andp̂1 > p̂2 (or if A is in state2 andp̂1 < p̂2), then suppose thatB traces this,
and answers 1 (2) ifA saysX, so sayX,

• otherwise sayY

Again, the optimal policy for agentB is essentially the same, using the other’s parameters.

A.5 SARSA

The SARSA algorithm builds a table and computes the value of each entries. For the description of the
algorithm, see, e.g., [6, 7] and references therein.
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Table 6: Pseudo-code of the One-step Modelling Method for Agent A

if 2β̂ < cA

do not communicate
otherwise

if (A is in state1 andq̂X > q̂Y ) or (A is in state2 andq̂X < q̂Y )
sayX

otherwise
sayY

end if
end if

Table 7: Pseudo-code of the Two-step Modelling Method for Agent A

if 2β̂ < cA or 2α̂ < cB

do not communicate
otherwise

if (A is in state1 andp̂1 > p̂2) or (A is in state2 andp̂1 < p̂2)
sayX

otherwise
sayY

end if
end if
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