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Introduction

A feature of current computational models of language evolution is that the individuals in later
populations are not structurally, ‘physiologically’ , different from those in the first. Evolution may be
working on the language itself, as learned by agents which do not evolve, or on an innate communication
scheme. A number of models specifically demonstrate self-organisation of communication schemes and
grammars in populations that are already capable of language.

Such models do not show communities evolving from those capable of some simple proto-language
towards those capable of some fuller language. In contrast, in human evolution, vocalisations and speech
provided a selective advantage that led to the exaptation and adaptation of aspects of human physiology
to support improved language capacity (Deacon 1992; Lieberman 1992). This led to a process of
language-physiology coevolution. From the coevolution of physiology and language, hominids
developed differences from other primates, such as increased brain size and a supralaryngeal vocal tract.

The coevolution of speech and physiology in humans was also not without cost. The larger brain costs
more energy to maintain and requires a longer infancy to allow brain growth to complete. The dropped
epiglottis allows greater clarity and distinctiveness in speech, but increases risk of choking.

While some vocalisations are evolved responses - crying, laughter, etc. - speech is learned afresh with
every individual. Learning allows quicker adaptation to changes in the environment and faster solutions
to environmental problems. The Baldwin effect (Baldwin 1896) relates how learning can influence
evolution: individuals most capable of successfully adapting to their environment will be more likely to
contribute to future generations. Thus an increase in language capabilities can occur over a population
due to the higher fitness of individuals with greatest language capabilities, where the use of language
provides a selective advantage.

Continuous evolution from a species capable of only a basic proto-language to one capable of full
language is then possible. Wray (this volume) describes the evolution of language from a simple proto-
language. The start point is a learned holistic proto-language, with capabilities similar to the verbal
communication of modern primates, with a small set of words to convey general meanings. The start
point of language evolution in our model is the ability to learn and use very limited proto-language
consisting of only a pair of signals.

We develop our model to show evolution in language agent physiology to support communication. In
this model, the number of unique signals that an agent can produce defines its language ability. An
agent’s language ability may be greater or less than required for the agent to be able to communicate all
information of interest. Where additional language capabilities may provide benefit to individuals, such
evolution is dependent on the benefit being greater than the costs involved. We show that language
negotiation can succeed in heterogeneous populations, and that it is possible to model the evolution of
language ability. Finally we discuss the results with respect to the evolution of human language.

Computational Models of Language Learning Populations

A number of recent computational models demonstrate the evolution of innate communication schemes
(for example, Oliphant 1996, Cangelosi & Parisi 1996, Di Paolo, 1997). Other models demonstrate the
self-organisation of lexicons, grammars and sound systems in populations of language agents without
evolution (see Kirby, this volume, de Boer, this volume, Steels, 1996, Batali 1997).



Batali (1994) combines evolution and learning in an ANN (artificial neural network) model in which
recurrent neural networks attempt to learn context-free grammars in an investigation of innate language
biases and critical periods. The language agents have a fixed structure, and a predetermined number of
inputs and outputs. Evolution determines initial weight values for the networks, selecting appropriate
values for the class of languages on which the population is trained. This model demonstrates how
evolution can tune innate learning mechanisms towards certain grammars, once the mechanisms for
language have developed.

In Fyfe and Livingstone (1997) a population was modelled in which the individuals learn to identify
stochastic sources in an environment and then learn a common language to communicate about the
sources present in any given environment. The agents were implemented as neural networks with three
layers of neurons - an environment input layer, a hidden internal state layer and a language output layer.
The language agents first learned to identify different sources in the environment before language
negotiation began.

Experiments were performed with communities of agents with differing representational capabilities, i.e.
different hidden layer sizes. Communicative success was seen to improve in populations with a common
representational capability, and evolution towards homogenous representation capability was observed.
A weakness in this model was that the production of language was compared, but the ability to interpret
signals was not tested. Thus, by producing the same word for the same environment two agents are
assumed to be successfully communicating. No pressure to produce different signals for different
environments, or to be able to decode signals, existed.

A model using ANN agents learning to produce and interpret signals, with observational rather than
reinforcement based learning, is presented in Oliphant (1997, VI.E). In Oliphant’s model, ANN agents
relate meanings to signals and vice-versa with winner-take-all on the produced vector, with meanings
and signals represented by binary vectors with only one active value. Using a form of Hebbian learning
(learning which increases the strength of a weight when the neurons which are connected by it both fire
simultaneously), Oliphant shows successful negotiation to a common optimal language, with a different
signal being used for each meaning.

Another model where a community of ANN negotiates a shared lexicon is presented in Hutchins and
Hazelhurst (1995). The agents within this model are similar to the ones presented in this paper, although
their agents are more complicated with an additional layer (used only in learning). The authors limit their
investigation to the development of a shared lexicon.

Modelling Language-Physiology Coevolution

Our model comprises of a population of simple language agents capable of sending and receiving
messages to share information. In our model, agents learn to map messages that are sent by other agents
to internal states or ‘meanings’ . The agents use these messages to coordinate their internal states. By
learning from each other a coordinated communication system is developed by a community of agents.
An artificial neural network architecture is used for the production of messages from each arbitrary
meaning, and for the reverse mapping.

We add to the model by making the expressive capability of the language dependent on hereditary genes.
The genes determine the number of language nodes possessed by agents, which determines the range of
signals that can be produced. This forms the basis for investigating the evolution of language ability
within our model. A fitness cost according to the number of language nodes possessed by an agent is
added to represent the expense of language adaptations.

Our population is composed of two layer fully connected ANN with N inputs and M outputs. The
meaning is modelled as a  bipolar (±1) vector of length N, which is presented at the inputs of a language



agent. This can be fed forward through the NN to determine an agent’s ‘word’  for that meaning, each
output being thresholded to a bipolar value (±1), as given below
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then Yj = 1 if  y j ≥ 0,  Yj = −1 if  y j < 0

where the vector y , Myy ...1 , is the word generated for meaning vector x . In all cases described, a sparse
‘grandmother’  coding of the meaning is used with only one value in the vector of +1, all others being -1.
To interpret a signal vector, the signal can be fed back to generate a meaning vector. Competition can
then be applied to set one bit of the vector to +1, and the remaining bits to -1.

One significant difference in this model from that in Fyfe and Livingstone (1997) is that the successful
interpretation of the environment is taken as given. By doing away with the interpretation of a complex
environment, we can concentrate on the processes of language negotiation and evolution, adding
complexity when basic phenomena are better understood.

The population training algorithm for language negotiation is described in Figure 1.

1. For t  training rounds

2. pick random environment

3. for each agent (picked in random order)

4. pick another agent to be teacher

5. generate training signal from teacher

6. train pupil and teacher on signal

Figure 1. Population training algorithm

A standard training algorithm can be used for individual agent training during population training. The
training signal would be presented at the pupils outputs, the corresponding meaning at the inputs and the
training algorithm used to update the weights. Language would be successfully negotiated, but with no
pressure on an agent being able to interpret the correct meaning from a presented word the language
could use a single word for more than one meaning. It would even be possible for a language to be
negotiated which used only one word for all meanings. To be useful a communication scheme must carry
information. A negotiated communication scheme should optimise the amount of information
transmittable.

A learning algorithm which ensures the emergence of an optimal communication scheme - with a
different signal shared by the whole population for each meaning state - is desired. The algorithm used in
Oliphant (1997, VI.E) works in the case where individuals in a population are removed and replaced by
new learners, but does not work in a generation based population training algorithm. The algorithm in
Figure 1 is used as we wish to study evolution acting on language capability over generations of the
population.

The results of Oliphant suggest that optimal learning is performed by an algorithm using the transmission
behaviour of the population to train language reception and the reception behaviour to train language
production. In this way an agent is most likely to succeed in communicating with other members of the
population. This indicates inverse learning. An inverse, top-down, learning approach is presented in a
number of generative models for ANN learning presented by Hinton and Ghahramani (1997). In these
models there are feedback generative weights and feedforward recognition weights, and the problem of
recognition is posed as which hidden units could be responsible for generating the input pattern (Figure
2).



M e an i n g  L ay e r

L a n g u a g e  L a y e r

Figure 2. A language agent neural network. Recognition weights map language layer patterns to
meanings, generative weights map meanings to patterns at the language layer

An additional concern is that we wish to model the evolution of language capability. Thus our population
must be able to negotiate useful languages even where they are ‘physically’  incapable of learning a
communication scheme capable of representing all environmental states. Similarly, the earliest proto-
language users, physiologically incapable of learning a modern language, must have been able to learn
useful, if restricted, languages.

In our model, language agents are represented as two layer ANN with a meaning layer and a language
layer. Meanings are represented as sparse bipolar vectors, with only one bit set to +1. Signals are
represented at the language layer as arbitrary bipolar vectors. Thus, for N language neurons, there are 2N

possible signals or words in the language, and for M meaning neurons there are M possible meanings.
Competition exists between neurons in the meaning layer, such that any signal fed back from the
language layer only has one corresponding meaning. When a signal is fed-back during interpretation, it is
likely that several meaning neurons will fire at different strengths, the competition allowing a single
meaning to be chosen unambiguously.

The output word from one NN is presented at the output layer of another agent ANN and fed back to
produce a generated environment (2) - a ‘meaning’  vector - for the presented word. The error between
the actual environment, xi , and the generated environment, ′xi , is used for learning by the receiver agent,

(3). The error is multiplied by a learning rate, η, to determine the correction to be applied to the weights,
w, connecting the layers.
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We adapted the learning algorithm such that learning is only performed when a word is misclassified.
When a word is correctly classified the receiving agent performs no learning. The learning algorithm is
otherwise unchanged from (3).

More details of the model, including notes on implementation issues, can be found in Livingstone and
Fyfe (1998).

Experiment 1: Language Negotiation in Populations of Homogenous Language Capability

For our first experiment we test whether populations of networks are able to negotiate language with the
learning algorithm given above. Language agents have seven possible states, and agent populations are
homogenous with from zero to seven language neurons.

We use spatially arranged populations, arranged in rings, and all communication occurs within a
neighbourhood of the currently chosen agent. So, a teacher will be picked randomly according to the
location of the current learner. The area of the neighbourhood is defined by a normal distribution centred
on the learner. In all experiments described the standard deviation used is 0.6, placing a strong preference



on immediate and very close neighbours. A ring arrangement is not necessary, but means that all agents
have the same number of neighbours with the same chances of selection.

With neighbourhood limited communication the results in Figure 3 were produced for 300 and 1000
training rounds for populations of 40 agents, averaged over 10 runs for each language capability. Fitness
is measured by computing the number of signals out of 100 received which are correctly interpreted in a
separate fitness phase after completing learning. The same neighbourhoods used in language negotiation
are used for communication during fitness evaluation.
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Figure 3. Average fitness, and standard deviation, with homogenous populations of 0-7 language
neurons measured over ten experiment runs each case. With 300 (left) and 1000 (right)
negotiation rounds.

With no language neurons, the performance of the agents is at chance level - on average agents guess the
correct meaning one in seven times. As language capability increases, so does fitness showing that agents
are successfully sharing information about their internal state. With more neurons, average success
increases and with two or more language neurons increased training time increases fitness. If training
time is extended sufficiently, populations with four or more neurons will consistently negotiate a
language capable of allowing all information to be shared.

The results show that using our learning algorithm homogenous populations are able to negotiate useful
language, even where the capability for an optimal language does not exist. As the language capability
increases the success rate of communication increases. With four or more language units, the expressive
power of the language exceeds the communication requirements of the environment. This has the
potential for allowing multiple signals for the one meaning to be recognised correctly.

To test this, a homogenous language population with four language units is trained for 5,000 rounds.
This allows a very high degree of coordination amongst the agents but, due to the local communication,
does not negotiate a common language over the whole population. It is observed that large
neighbourhoods negotiate a common signal for a given meaning, but distant agents may have significant
differences in communication schemes used. At the boundaries between neighbourhoods, agents may
exist which interpret signals from different schemes correctly. This is shown in Figure 4. The three
agents included each attained a maximal fitness score, interpreting all signals correctly. A degree of
“bilingualism” is possible in the agent communication schemes of due to the redundancy in their
representation capacity.



Meaning 0 Meaning 4
Agent 4 -1 1 -1 -1 Agent 4 1 -1 -1 -1
Agent 5 -1 1 -1 1 Agent 5 1 1 -1 -1
Agent 6 -1 1 -1 -1 Agent 6 1 -1 -1 -1

Meaning 1 Meaning 5
Agent 4 1 1 1 1 Agent 4 1 -1 -1 1
Agent 5 1 -1 1 1 Agent 5 1 -1 -1 1
Agent 6 1 -1 1 1 Agent 6 1 -1 -1 1

Meaning 2 Meaning 6
Agent 4 1 1 1 -1 Agent 4 -1 -1 1 1
Agent 5 1 1 1 -1 Agent 5 -1 -1 1 1
Agent 6 1 1 1 -1 Agent 6 -1 -1 1 1

Meaning 3
Agent 4 -1 -1 1 -1
Agent 5 -1 -1 1 -1
Agent 6 -1 -1 1 -1

Figure 4. The signals used by three adjacent agents for seven environmental states. Each meaning
is represented by a bipolar (+ and – 1 values) signal vector, e.g. to indicate meaning 0, agent 5
would send the signal (-1,1,-1,1). All three scored maximum fitness, interpreting all signals
correctly, despite differing communication schemes.

Experiment 2: Language-Physiology Coevolution

The second experiment is to show evolution in language capability. The desired features of our model are
that it should contain evolving populations of language learners, whose language capability is in some
way genetically determined. This adds a further constraint to our model, requiring further modification to
allow agents of differing language capability to communicate. For this, we assume in these experiments
that all agents have full language interpretation capability, but genetically determined language
production capability. This is simply implemented by setting any language bits above an agent’s
capability to 0 when it produces a signal. A genetic binary string, representing 0 to 7 active production
neurons in the language layer, determines the language ability of an agent.

When a signal with a number of zeros is interpreted, only the bipolar signal bits affect the meaning found
by feeding the signal back, the zeros providing no information. With the learning algorithm in (3), a zero
signal bit also ensures that no learning is performed where no signal input is received. In this way, agents
with greater language production ability than others around can produce signals that can be learned by
others.

Explicitly, if the three agents represented in figure 4 had 2, 3 and 4 active production neurons in the
language layer the following signals would be produced by them to indicate meaning 0:  (-1, 1, 0, 0), (-1,
1, -1, 0) and (-1, 1, -1, -1). When an agent receives a signal at its language layer, it receives and tries to
interpret the complete signal, even if it is unable to produce such a signal.

As a heterogeneous population negotiates language, agents are able learn to interpret signals from more
language capable neighbours. Agents in the neighbourhood of a language capable agent have higher
fitness than those further away. As fitness is detemined by the ability to interpret the signals of others, the
language capable agent itself receives no benefit from its ability to produce clear signals (Figure 5).

No. of language neurons 1 1 1 5 1 1 1
Fitness 29 26 42 26 35 33 24

Figure 5. Number of language neurons and fitness scores for a small population sample in a
heterogeneous population of language agents.  The central agent has a greater language
production ability than that of the other agents, and its immediate neighbours benefit from the
good signals it provides.

As seen above, greater language production ability provides no direct benefit to an agent and hence will
not be favoured by natural selection. The language capable agent is behaving altruistically, helping



agents in its neighbourhood with no benefit for itself. Another selection mechanism is required.
(Oliphant 1994) shows that spatially organising a population can enable the evolution of altruistic
behaviour through the ‘selfish gene’  effect.

The same neighbourhood functions used for communication between agents are also used when selecting
parents for successive generations. After fitness has been evaluated, the new generation is formed. A
parent is picked randomly according to relative fitnesses of all agents. A mate is picked for this parent
according to the neighbourhood distribution. Two agents are then placed into the next generation, their
language ability determined by applying crossover and mutation operators to the parent genes. A
mutation rate of 0.005 per bit is used. Offspring are placed in the next generation in positions similar to
those occupied by their parents in the previous generation.

This approximates kin selection, by placing close kin in similar neighbourhoods and enabling kin
selection. Additionally, good signallers receive a more direct benefit. By increasing fitness of a
neighbour, a good signaller increases the likelihood that it will be selected as the second partner for
mating. The issue of spatial constraints on the evolution of communication is also discussed in Di Paolo
(1998), based on a model in which agents can increase chance of reward from social partner selection by
occupying space in a dense cluster of agents.

A number of runs were performed, all starting with homogenous populations with only one language
production neuron. Two typical results can be seen in Figure 6. In these experiments there is a relatively
rapid increase in the language capability of the population. In all runs, the language capability evolves to
an extent that the language is able to express all meanings. The populations do not evolve
homogeneously.

As well as the spatial selection providing a secondary benefit to a good signaller, the kinship rules make
survival harder for defectors – agents which provide poor signals. Individual defectors can enjoy a free
ride from good signallers but groups of defectors form, providing each other with poor signals limiting
their survival and reproduction.
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Figure 6. Average Fitness & Language Neurons against Generation. Two runs showing coevolution of language
with language production capability. 300 training rounds per generation.

Experiment 3: Costly Language-Physiology Coevolution

With our model we aim to show how language may be adopted by a population despite a cost of
possessing such an ability. For this purpose a fitness penalty is added to the model. By applying a penalty
according to the number of language units, language capable agents are penalised and less capable agents
get a free ride. For the results that follow, each agent is penalised by an arbitrary four fitness points per
active language node they possess. In tests, other penalties have been used without qualitatively altering
results.

With spatial selection, as previously described, the population still evolves to a more language capable
one. Results of two experiments are shown in Figure 7.
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Figure 7. Average Fitness & Language Neurons against Generation. Two runs showing costly
coevolution of language with language production capability. 300 language training rounds per
generation.

In both experiments, a number of generations pass before increased language ability evolves. The
language ability may then evolve slowly, in gradual increments, or rapidly, in a smaller number of larger
increments.

As seen in the results of Experiment 1 (Figure 3), at least four language neurons are required to achieve
maximum fitness. This would incur a 16 point fitness penalty in these experiments, resulting in a
maximum possible fitness of 84 points. In both runs, near maximum fitness is achieved.

Experiment 4: Negotiation and Evolution without Spatial Organisation

We have stated the importance of spatial organisation on the previous sets of results, and in this
experiment demonstrate this importance by reducing the strength of spatial selection and observing the
results. We find our results in accord with Oliphant (1994).

The radius of neighbourhoods can be changed, larger neighbourhoods weakening the effects of spatial
organisation, and the effects on language negotiation and evolution observed. Larger neighbourhoods
weaken the effect of kin selection as agents will usually not be communicating with their ‘kin’  and
reduces the likelihood that a good signaller agent will be selected as the partner of another agent to which
good signals have been provided..

This is less serious where there is no cost of communicating - a very wide neighbourhood is reached
before evolution of language fails. Where there is a cost even small increases in neighbourhood size
prevents the evolution of language. This is demonstrated in the Figure 8. These graphs show that some
form of spatial organisation is necessary for the evolution of an altruistic language ability.
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Figure 8. Evolution of language with reduced pressure from kin selection. Left, standard
deviation 12, non-costly language. Right, standard deviation 3, costly language.



Spatial organisation also has an effect on language negotiation in this model. With small
neighbourhoods, language forms in tight clusters. Close neighbours share negotiated languages, while
two agents selected from distant points may be unable to communicate with each other. With larger
neighbourhoods, the clusters are larger and ultimately global co-ordination of language can occur.

Discussion

The experiments above show evolution in the language ability of populations of simple language agents.
The relevance of this to the evolution of language in hominids is now considered.

Our artificial language lacks almost all of the properties of a real language - in particular there is no
grammar, no word morphology or sentence syntax. All communication consists of single words for
single meanings. At the same time our artificial language also differs from human involuntary non-verbal
vocalisations, such as laughter, crying or screaming, in that the communication scheme is learned rather
than inherited.

Our model can be considered an abstract representation of the evolution of language - language provides
an unspecified selective benefit to groups of kin who are able to share information. A number of different
ideas of the ‘original’  selective benefits of language exist, it being widely agreed, however, that language
does indeed have a selective benefit. However, language is clearly used to serve a great many functions
(Dunbar 1997). Embodied experiments on the evolution of language focus on very specific uses of
language, and some work has been carried out on evaluating the adaptive value of specific features or
uses of language (for example, Cangelosi & Harnard 1998). ‘Disembodied’  experiments, such as
presented in this paper, simply accept that language provides a benefit and directly reward agents for
successful communication.

Although not grounded in an environment, the language ability of the agents in our model can be
considered as their ability to learn useful languages - with inevitable cost and potential benefit. Our
model clearly shows that despite physiological costs, such abilities can evolve. This process takes a
number of generations before succeeding in a population. Individuals of different abilities frequently
coexist within populations. To allow language agents of differing abilities to communicate we have
given all agents a full capability to receive and learn signals, even those above their own production
ability. This detail is also important for the evolution of language. For the evolution of language to occur
over a period of time, it is necessary that language is learnable and useful at every stage of phylogenetic
evolution.

Burling (this volume) argues that the ability to comprehend language has to be greater than that at
producing language for the evolution of language to occur, that it is the act of interpreting an action that
turns it into a signal. Lyn and Savage-Rumbaugh (1998) provide evidence on the language learning
abilities of pygmy chimpanzees, which by far exceed their ability to produce language. The ability to
learn to interpret signals similarly exceeds the ability to produce signals in our model. Within our model
the ability to comprehend language is fixed throughout although it is clear that the ability to understand,
as well as to produce, language has evolved.

To conclude, some models have highlighted selection mechanisms required for evolution of altruistic
language users or the self-organisation of lexicons and grammars. Further models supporting
evolutionary theories of language are required that demonstrate evolving populations in which agents are
able to negotiate and learn useful languages at all stages of their evolution.

This has been achieved, with a high level of abstraction, in the model presented here. We have shown
communities of varying abilities negotiating and using language successfully. Language ability has been
seen to evolve gradually in communities of agents, and agents of differing abilities have been able to
coexist within those communities with kin selection favouring individuals more language capable.
Prospects for further work include the evolution of agents capable of rudimentary grammars from
grammar incapable agents and information theoretic studies of evolving communication schemes.
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