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Abstract – That almost all language networks are small-world and scale-free raises the question
of whether syntax plays a role to measure the complexity of a language network. To answer
this question, we built up two random language (dependency) networks based on a dependency
syntactic network and investigated the complexity of these three language networks to see if the
non-syntactic ones have network indicators similar to the syntactic one. The results show that
all the three networks are small-world and scale-free. While syntax influences the indicators of a
complex network, scale-free is only a necessary but not sufficient condition to judge whether a
network is syntactic or non-syntactic. The network analysis focuses on the global organization of
a language, it may not reflect the subtle syntactic differences of the sentence structure.
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Introduction. – Previous studies [1–5] investigating
into language networks, which are built on different
principles, show that they are small-world and scale-free,
just like most other real-world networks [6]. Questions
remain, however, if all language networks have properties
such as small-world and scale-free: Could they be viewed
as a general feature of a language network? What role
does syntax play in such a syntactic (language) network?
If dependencies are built by randomly linking words in
the same sentence, would the network still follow the
properties similar to the syntactic one? Can the local
(micro) syntactic analysis in a sentence be reflected in the
global (macro) properties of a language network?
The present paper intends to answer these questions.

To do that, syntactic networks are chosen to be the object
of study, because “[T]he vast expressive power of human
language would be impossible without syntax, and the
transition from non-syntactic to syntactic communication
was an essential step in the evolution of human language.
(see [7], p. 495).
Presented in the second section are some formal

fundamentals on dependency syntax and means to gener-
ate a random dependency graph based on a syntactic
dependency graph. Results of the network analysis of
one syntactic network and two corresponding random
networks are discussed in the third section, followed by
concluding remarks and directions for further research in
the fourth section.

(a)E-mail: lhtcuc@gmail.com

Fig. 1: Syntactic dependency structure of The boy has a toy.

Formal description of the dependency analy-
sis. – Dependency approaches have many advantages,
as discussed in detail in [8]. For the present study, a
dependency approach was employed according to which
the syntactic structure of a sentence consists of nothing
but the dependencies between individual words. Figure 1
shows a dependency analysis of The boy has a toy.
In fig. 1, all the words in a sentence are connected

together by grammatical relations. For example, the
subject and object depend on the main verb; the deter-
miner depends on the nouns that they modify; and so on.
A formal expression can be given to describe how

the dependency analysis generates random dependency
corpora:
Given a sentence S with the length of n (n> 1),

S = (x1, x2, . . . , xn),

where xi (1� i� n) is the i-th word in S and i is accord-
ingly called the word order of xi in S.
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After parsing a sentence based on the dependency
syntax, a dependency graph can be obtained. The
dependency graph of the sentence S often includes three
elements: the words, the POS (part of speech) of the
words and the dependency relations between two words
(governor and dependent). The first two elements can be
considered as functions of the word order i, and the third
as a function of ordered pairs of word orders.
A dependency grammar in language L consists of a

word list, a POS list and the dependency relation list. For
parsing a sentence S, the words are put into a one-to-one
correspondence with their word orders, so the words can
be recognized as a function of word orders:

xi = fword(i), 1� i� n.

(pos1, pos2, . . . , posn) is the sequence of POSs of this
sentence and it can be described as a function of word
orders:

posi = ftag(i), 1� i� n.

Dependency parsing links all words in S using dependency
relations, which can be expressed by a number of ordered
triples as follows:

〈i, j, rnameij〉.

Here i is the word order of the governor, j is the word
order of the dependent, and rnameij is the type of
the dependency relation between xi and xj . Thus, the
dependency relation type can be defined as a function of
ordered pairs 〈i, j〉:

rnameij = frelation(〈i, j〉), 1� i, j � n and xi governs xj .

In this way, a dependency graph D of S is defined as

D= (V,E, fword, ftag, frelation),

V = {1, 2, . . . , n},
E ∈ V 2,
fword: V →W,
ftag : V → T,
frelation:E→R,
W = {w1, w2, . . . , wMAXW }, MAXW � 1,
T = {t1, t2, . . . , tMAXT }, MAXT � 1,
R= {r1, r2, . . . , rMAXR}, MAXR� 1,

where W is the word list, T is the POS list, and R is the
dependency relation list in L.
D is a well-formed dependency graph if and only if E

satisfies the following four conditions [9,10]:
1) Single-governor:

(∀x∈V )(〈x, x〉 /∈E∧((∃y, z∈V )(〈y, x〉∈E∧〈z, x〉∈E))⇒
(y= z)).

1 2 3 4 5

Fig. 2: A dependency graph with crossing arcs.

In a dependency graph, a word has at most a governor,
which should not be equal to itself.
2) Single-root:

(∃x∈V )((∀y∈V )(〈y, x〉 /∈E)∧((∃z∈V )(∀w∈V )(〈w, z〉 /∈E)⇒
(z = x))).

The dependency graph of a sentence has one and only one
root. As a default rule we call the unique element as root
of a dependency graph.
3) Connectedness:

∀(x∈ V )(∃v1, v2, . . . , vk ∈ V )(〈root, v1〉 ∈
E ∧ 〈v1, v2〉 ∈E ∧ · · · 〈vk, x〉 ∈E)), 0� k� n− 2.

There are directed paths from the vertex labeled root to all
other vertices. x

∗−→ y shows a directed path from vertex
x to vertex y. These three conditions imply that a well-
formed dependency graph is also acyclic:

(∀x∈ V )(x ∗−→ x).

Satisfying conditions (1)–(3) cannot guarantee that
there are no crossing arcs, as shown in fig. 2.
There are dependency graphs with crossing arcs in some

languages. However, no-crossing arcs are often considered
as a condition of a well-formed dependency graph for
constructing a more efficient parsing algorithm. To form
a graph without crossing arcs, the serial numbers of all
vertices which can be reached from vertex x should be
continuous —this is called continuity condition of a graph.
Continuity, also called projectivity, was first discussed
in [11,12], and then given a formal definition in [10].
A new notion of reachable domain in the present paper

is introduced to describe continuity. The reachable domain
Ax of vertex x is a set of vertices that are reachable from
x and x itself:

Ax = {x}∪ {y|x ∗−→ y}, x∈ V.

Using Ax, we can define continuity as
4) Continuity:

(∀x∈ V )(|Ax|=max(Ax)−min(Ax)+ 1),

where |Ax| is the number of elements of set Ax. max(Ax)
denotes the maximum value of Ax and min(Ax) the
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minimum value of Ax. For example, while fig. 1 is a well-
formed dependency graph, the vertices 1 and 2 in fig. 2
violate the continuity condition. So, the graph contains
crossing arcs.
Theoretically, a language could be produced with a

randomly generated lexicon and sentences, but it is impos-
sible to syntactically analyze such a language or build
a syntactic network for the sentences. Thus, we will
randomly assign the governor for every word in a sentence
to generate a random dependency analysis of a sentence
based on the original syntactic analysis.
To describe the syntactic well formedness of the analy-

sis of a sentence, we randomly generated two depen-
dency graphs satisfying conditions (1)–(2) and condi-
tions (1)–(4), respectively. We removed all dependency
relations in a well-formed dependency graph and randomly
assigned the governor for all words in a sentence according
to different constraints.
Supposing that there are n (n� 1) words in a sentence

with the word orders 1, 2, . . . , n, the algorithm attempts
to assign a number to each word as its governor’s word
order. The root of the dependency graph has no governor,
so the algorithm will assign 0 to it as its governor’s order
number. The two algorithms are stated as follows.
Algorithm 1 : Randomly generating dependency graphs

satisfying conditions (1) and (2). Firstly, choose a number
from 1 to n randomly as root and assign 0 to the root as
its governor. Then, assign one randomly generated number
between 1 and n to each remaining word as its governor
but which is not the word itself. Figure 2 shows one of
such dependency graphs.
In the random graph generated by algorithm 1 (here-

inafter as RL1), we select one word as root within each
sentence, disregarding syntax and meaning; and then, for
each of the remaining words, we randomly selected a word
in the same sentence as its governor.
Algorithm 2 : Randomly generating dependency struc-

ture graphs satisfying conditions (1)–(4). This algorithm
builds dependency graphs increasingly like a snowball.
Firstly, generate a number from 1 to n randomly as root
and assign 0 to the root as its governor. Then, using the
root as the start point of the dependency graph, select a
word randomly from the words which still have no gover-
nor, randomly assign a governor for it from the graph,
attach the word into the graph. During this process, the
continuity principle should not be violated. Repeat the
process until all words are added into the dependency
graph. This algorithm can generate a dependency graph
such as that in fig. 3.
In the random graph generated by algorithm 2 (here-

inafter RL2), only dependency trees are generated satisfy-
ing the conditions (1)–(4), i.e. without crossing arcs, while
the governor is assigned to a word.
Three dependency graphs for a sentence can be made

following the methods mentioned above. The first as in
fig. 1 is syntactic, RL1 as in fig. 2 has the lowest syntactic
degree, and RL2 in fig. 3 is more syntactic than RL1.

1 2 3 4 5

Fig. 3: Random dependency graph without crossing arcs.

In a syntactic network, a vertex is a word (type), and
the edge is the relation between two words. Researchers
use the word (type) as vertex of a syntactic network in a
common way, but they prefer to use various means to build
links between two words. From these ways, dependency
syntax describes a sentence based on an asymmetrical
binary relation between two words that makes it into
a more natural choice for building syntactic (language)
networks of human language [3,5,13].
The author of ref. [5] proposes a method that converts

a dependency syntactic treebank into a syntactic network.
A treebank is a collection of dependency graphs for many
sentences. Treebanks are often used in computational
linguistics [14]. In this paper, we used a dependency
treebank that was built on the news (xinwen lianbo,
hereinafter as xwlb) of China Central Television, a genre
which is similar to the written reports. The treebank
includes 16654 word tokens. Based on this treebank,
we have built two random dependency treebanks with
the same words, but with random-generated governors.
Following the methods proposed in [5], three undirected
networks were built for further investigation. The results
and discussion are presented in the section which follows.

Analysis of three dependency networks. – The
average path length, clustering coefficients and the
degree distribution of a network are among the most
frequently investigated network indicators for evaluating
the complexity of a network.
The average path length 〈d〉 is defined as the average

shortest distance between any pair of vertices in a network:

〈d〉= 2

N(N +1)

∑

i�j
dij . (1)

Here, N is the number of vertices in the network; dij
is the distance between the vertices i and j, which can
be defined as the number of edges in the shortest path
linking the two vertices. The three networks in the present
study have the same N (4015), but with different 〈d〉. The
syntactic one has the greatest value of 3.372, the 〈d〉 of
RL1 and RL2 is closer, 3.147 and 3.129, respectively.
The diameter D is defined as the longest shortest path

in a network. For instance, in the syntactic network, such
path is found from the vertex 821 to the vertex 3032,
because there are 10 edges in this path, thus, the diameter
of the network is 10. RL1 and RL2 have the same D (9).
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Fig. 4: Network structure of The boy has a toy.

In a syntactic network, the number of links of a given
word type is called its degree k, which works in a very
similar manner as valency in dependency and valency
grammar [5]. 〈k〉 is the average degree of a network. From
the three networks, the syntactic 〈k〉 (6.48) is less than
RL1 (7.80) and RL2 (7.95). The degree distributions are
defined as the frequency P (k) of having a word type with
k links.
The clustering coefficient is the probability that two

vertices (e.g., word types) that are neighbors of a given
vertex are neighbors of each other. This can be better
explained with fig. 4, which is the network’s structure of
the sentence in fig. 1.
For the syntactic network in fig. 4, the clustering

coefficient reflects the probability that two words has a
link, as between the and has, has and a, boy and toy.
Let ki denote the degree of vertex i, Ei denotes the

number of edges among the vertices in the nearest neigh-
borhood of vertex i. Then, the clustering coefficient Ci of
the vertex i is defined as

Ci =
2Ei

ki(ki− 1) . (2)

The clustering coefficient of the network is given by the
average of Ci over all the vertices in the network:

C =
1

N

N∑

i=1

Ci. (3)

Figure 4 shows that there is a less probable link between
a and has in the syntactic network, while two random
networks allow to make such link. This is confirmed by the
data of the present study. From three networks, the clus-
tering coefficient of the syntactic network is 0.128; RL1,
0.185; RL2, 0.175. In other words, the clustering coefficient
is increasing with the randomness of the network.
If a network has a high clustering coefficient C and

a very short path length 〈d〉, it is a small-world (SW)
network [15]. In other words, a small-world graph
can be defined as a network such that 〈d〉 ∼ 〈drand〉 and
C�Crand.
If the degree distribution of a network is following a

power law,
P (k)∼ k−γ . (4)

The network is a scale-free network, if the constant γ is
between 2 and 3 [16]. In (4), P (k) is the fraction of vertices

Fig. 5: Cumulative degree distributions of the three networks.
Their cumulative degree distributions were fitted by a power
law with slopes −1.401 (syntactic), −1.366 (no-crossing) and
−1.372 (random), which corresponds to the exponent γ =
2.401, 2.366 and 2.372, respectively.

in the network that have degree k. In other words, P (k) is
the probability that a vertex chosen uniformly at random
has degree k.
We can calculate the C and 〈d〉 of the E-R random

network with the same parameters, whose values are
0.00135 and 4.66.
The above data show that the three networks have

average path length similar to E-R random networks,
but their clustering coefficients are much greater than
those of E-R random networks. Therefore, all the three
dependency networks are small-world networks. Since the
degree distributions of the three networks are power law
like as fig. 5 reveals, they are also scale-free networks.
Based on the indicators of these networks and E-R

random networks, we therefore conclude that all the three
networks are small-world and scale-free. The data also
show that there are some differences between syntac-
tic and non-syntactic networks. Two random dependency
networks have parameters closer than those of the syntac-
tic dependency network; however, in spite of the difference
between random and syntactic networks, all the networks
belong to the same basic network types, so the classifi-
cation as small-world and scale-free does not distinguish
true syntactic networks from random ones.
Two questions remain to be asked: Why do the three

networks have the indicators which are reasonable in order
to classify them in small-world and scale-free networks?
Why is the difference between syntactic network and non-
syntactic one greater than that between two non-syntactic
networks?
The Zipf law function [17], which is the same for the

three networks, probably explains why the three networks
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have similar values of network indicators. The authors of
ref. [18] argue that in a language network the degree of
a word is equivalent to its frequency, whose distribution
obeys the Zipf law or the power law. The author of ref. [5]
compares two syntactic networks in detail and finds that
the degree distributions of syntactic networks are not
equivalent to their Zipf curves in the strict sense. In this
way, the Zipf law maybe is helpful to explain the similarity
of the indicators of the three networks to some extent, but
it could not be useful to explain the differences between
syntactic and random networks, because random texts
often follow the Zip law [19].
Syntax tells us that the word plays an important role in

human language [8]. If we pay no attention to the agency
of the vertex (word) in a network, it is difficult to find
the factors that make the difference between syntactic
and non-syntactic networks. For instance, in a syntactic
network, a vertex (word) may not freely link to other
vertices, but the limit is looser in RL1 and RL2. The result,
that the average degree 〈k〉 of the syntactic network is
less than that of RL1 and RL2, addresses the question.
Figure 4 shows that it is less probable to build a link
between the vertices (word) boy and toy in a syntactic
network than in RL1 and RL2 and that it is reasonable
to explain why the clustering coefficient of the syntactic
network is less than that of RL1 and RL2. The data show
that syntax may influence the indicators of a complex
network, but it is impossible to explain the role of syntax
only based on the standpoint whether a network is small-
world or scale-free.
The findings of the present study are helpful to explain

why language networks based on different building prin-
ciples are often small-world and scale-free, because such
network indicators do not only reflect the syntactic feature
of a language. The author of ref. [20] shows that syntac-
tic links tend to no-crossing, the similarity of RL1 and
RL2 in our study demonstrates that such difference cannot
be observed through the indicators of complex networks.
If non-syntactic and syntactic networks are scale-free,
perhaps we might not argue that syntactic rules are just a
by-product of scale-free networks [21]. Our findings prob-
ably are not enough to dismiss the claim in [21], but they
may show that the indicators of complex networks are not
enough to study the syntax of human language. Scale-free
is only a feature of syntactic networks, it may not be used
as a sole means to assess if a network is syntactic or non-
syntactic.

Concluding remarks. – All language networks, if
built on certain principles, are small-world and scale-free.
But other real-world networks have similar features, too.
This makes it difficult to claim that small-world and scale-
free are basic properties of human languages and the
mentioned indicators of complex networks can be used
to explore the structure of human languages. Given that
syntax is the most important property of human language,
we investigated the complexity of a syntactic network and

two randomly generated networks based on the syntactic
one. Our results show that all the three networks are small-
world and scale-free. The syntactic network has lower
average degree and clustering coefficient than the two
random networks; however, the differences are too small to
classify them into two different types of complex network.
Our study also shows that while the network analysis

focuses on the global organization of a language, it
may not reflect the subtle syntactic differences of the
sentence structure. If we disregard the agency of the vertex
(word) in a language network, it is difficult to study
micro syntactic problems by macro means as a complex
network.
Further planned studies include: using a greater

treebank to dig the role of syntax in a complex network;
building a closer link between a complex network and
syntax about the word; combining other micro quan-
titative findings as in [22] with network analysis. We
hope that these planned studies are useful for finding
more fitting networks indicators to distinguish syntactic
networks from non-syntactic networks and to explore the
role of syntax in a language network.
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