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Abstract

     Much animal communication takes place via symbolic codes, where each sym-

bol’s meaning is fixed by convention only and not by intrinsic meaning. It is un-

clear how understanding can arise among individuals utilizing such arbitrary

codes, and specifically, whether evolution unaided by individual learning is suffi-

cient to produce such understanding. Using a genetic algorithm implemented on a

computer, I demonstrate that a significant though imperfect level of understanding

can be achieved by organisms through evolution alone. The population as a whole

settles on one particular scheme of coding/decoding information (there are no

separate dialects). Several features of such evolving systems are explored and it is

shown that the system as a whole is stable against perturbation along many differ-

ent kinds of ecological parameters.
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Introduction

     An act of communication on the part of one system can be defined as one

which changes the probability pattern of behavior of another; it is the functional

relationship between signal and response (Wilson, 1975).  Communication in ani-

mals is a very important part of their ecological profile (e.g., Wilson, 1971 and

1975, Halliday and Slater, 1983, Alcock, 1989). Whether social or solitary, ani-

mals often encounter members of their own or another species and exchange in-

formation. Ethologists analyze such communication along three aspects: (1) the

physical channel for the information transfer (such as emitters and detectors of

light, sound, or chemicals), (2) the present-day function of the message (such as

alarms, advertising or requesting resources, individual or class recognition, and

assembly or recruitment), and (3) the evolutionary or cultural derivation of the

communication (plausible models of how the behavior evolved from other simpler

behaviors and became established within the population).

     Dawkins (1982) expounds one popular and very fruitful view of communica-

tion: that sending signals is a way of manipulating one’s environment to one’s ad-

vantage (via the actions of other living things). This suggests that selection should

favor those signals which maximally increases the likelihood of a particular be-

havior by another animal, relative to the amount of effort it takes to signal1. This

also illustrates another general property of communication (pointed out by J. B. S.

Haldane): that it often involves great energetic amplification, because the rela-

tively small amount of energy expended in producing a signal is magnified (at the

expense of the perceiver) into potentially great consequences.

     Thus, one approach is to study the evolution and ecology of signal emitters - to

discover how such signals arise and how they benefit the animal and increase its

1Redundancy, conspicuousness, small signal repertoires, memorability, and alerting features are commonly used
to achieve this (Wiley and Richards, 1983; Guilford and Dawkins, 1991).
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fitness (Dawkins and Krebs, 1978). The complementary approach focuses on the

receiver, and asks what discriminatory faculties enable another organism to per-

ceive signals and act upon them in such a way as to maximize its fitness, and to

minimize being detrimentally manipulated by others. This involves issues of clas-

sification and thresholds, optimal allocation of resources (such as time and en-

ergy) for processing various signals, etc.

     A third, and somewhat orthogonal approach, involves the theory of games, and

allows analysis of general behavioral strategies with respect to conflicts (Rapaport

and Chammah, 1965; Axelrod, 1984). The paradigms of arms races, the Pris-

oner’s Dilemma, ESS’s (evolutionarily stable strategies), and other such models

can be used to shed light on why certain animals behave as they do.

     Communication usually takes the form of energy or chemical emissions, or

body postures and displays, and as with any information exchange, is

supervenient upon a coding system. A symbolic or arbitrary code is one in which

the symbols have only a contingent relationship to what they represent. Thus, in

English (an arbitrary-coded language), the symbol "dog" (whether written or vo-

calized) has nothing dog-like about it. It is a symbol the meaning of which is fixed

by convention only; it could just as easily have been assigned another meaning.

This is in contrast to codes like pictographs and hieroglyphics, where the symbol

for dog would actually resemble a little dog, and would of necessity carry that

meaning. These kinds of codes are said to be self-grounded, because they carry

their meaning (or some part thereof) within the symbols themselves.

     Much animal communication takes place via a symbolic code, since things like

"wagging the tail" or elaborate dancing rituals do not in and of themselves mean

anything; their meaning (if any) is fixed by mutual understanding. A dog’s wag-

ging its tail could just as easily mean "I am happy" as "I am very angry" (in con-

trast to behavior such as displaying sharp teeth or claws, inflating or expanding to

seem larger, or spraying with a physiologically noxious chemical, all of which of
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necessity mean "go away or suffer the consequences" because of their obvious

and unambiguous physical meanings).

     When human beings design communications systems (like computer networks,

telegraphs, etc.), the engineers can agree (using a meta-language) on meanings for

the various symbols of the language, so that everyone can understand each other.

Clearly, most animals have no opportunity for such a means of fixing referents to

symbols (although Wilson, 1975, pp. 191-193, discusses several interesting exam-

ples of primate meta-communication, such as contextualization and play). Thus,

the problem arises: how are the meanings for completely arbitrary symbolic ges-

tures fixed in a large population, when no one has the opportunity to discuss their

meanings with anyone else (no meta-language is available for discussion, and

meanings must be assigned de novo)? This is also one feature of the problems

which would arise on a successful SETI (Search for Extra-Terrestrial Intelli-

gence).

     Clearly, most codes used in nature have some self-grounded components (for

example, a lengthy and physically-strenuous display may directly indicate the

stamina and agility of a prospective mate). Information-bearing behaviors exist on

a continuum between purely arbitrary-coded ones and purely self-grounded ones,

and it is often difficult for observers to know where a given behavior might lie on

such a scale. Ethologists are often concerned with issues of semanticization and

ritualization of behaviors as they evolve into formal communication. Thus, it is

interesting to ask how much understanding can be achieved within a population of

organisms which is subject to evolution only (no individual learning), and which

utilizes only arbitrary codes. Unlike the general field of the biology of animal

communication (Sebeok, 1977; Guilford and Dawkins, 1991, etc.), very little

work currently exists on this issue (see Seyfarth and Cheney, 1980, for one exam-

ple).

     In order to investigate in a controlled context the idea that meanings are fixed
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by interaction with others (as opposed to denotational theories of meaning),

MacLennan (1991) showed that communication can arise when cooperation is re-

warded. Werner and Dyer (1991) likewise investigated the evolution of communi-

cation in a population of artificial neural networks. Both of these approaches fo-

cused on simulating real-world interactions (i.e., simulating pursuit of mates,

etc.), and thus provided some level of ecological detail. 

     In this study, I abstract from such detail (in the spirit of Kanevsky et al., 1991,

Kaneko and Suzuki, 1994, and Balescu, 1975), and simulate a system where

agents evolve under a selection which rewards mutual understanding, to study

how the members of an initially non-communicating population can all converge

on particular (and identical) meanings for arbitrary symbols. Once defined, this

kind of system can be studied under a variety of perturbations to yield information

applicable to all classes of evolving communicators. The experiments described

below were designed to answer questions such as: what are the dynamics of such

a population? Is there any increase of understanding over time? If so, does the

population converge on a single "dialect" or do groups form which can understand

each other but not members of other groups? How much mutual understanding

can be achieved by these means?

Implementation

     In functionalist terms, this problem concerns a population of agents, where

each agent has a set of internal states (hunger, anger, closeness to its nest or terri-

tory, strength, etc.) and a set of external observables (position of tail, posture of

body, display of teeth, manipulation of external objects such as food, etc.). Only

these external observables are directly perceived by other creatures. The internal

states, while not observable, are what determines the future behavior of the crea-

ture.

     If chaos is not to ensue (it is here assumed that a population of creatures which
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all understand each other does better than one where misunderstandings are the

norm), each agent is driven (in an evolutionary sense) to attempt to guess or de-

rive the internal states of whatever other agent it interacts with, by observing its

external features. There is also usually pressure for each agent to make the map-

ping of internal states to observables as simple and direct as possible, so that other

agents will be able to understand it more easily (though there are cases, such as

birds acting as if they were injured to lead predators away from the nest, which

exemplify misrepresentation of one’s internal states). The fitness of an agent is

defined as the average level of understanding of an agent’s internal states by other

members of the population. 

     The mapping of a given agent’s internal states to observable states, as well as a

reverse mapping which the agent uses to guess others’ internal states from their

observables, is defined by the agent’s genome. In this model I neglect individual

learning and socialization (i.e., an agent’s behavior is assumed to be hardwired

from birth), as well as "necessary" codings (the codes are assumed to be truly ar-

bitrary - that all possible mappings between internal states and observables are in

themselves indistinguishable with respect to fitness; all that matters in determin-

ing fitness is to be understood by other agents).

     In interaction, each agent performs a coding on a string of internal state values

(the "input" string). The exact nature of the coding is governed by one piece of the

agent’s genotype, and represents the physiologically-defined mapping between a

creature’s internal states and what it portrays by behavior and body signals. The

other agents directly observe this coded string as observables, and decode it (us-

ing the complementary piece of their genotype, representing the neural mecha-

nisms by which creatures estimate others’ intent from observed data). Thus, each

organism’s genome consists of two "genes," one governing how it maps its inter-

nal states for display to others, and the other which governs how it in turn inter-

prets its observations of others. This scheme is illustrated in Figure 1.
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     The fitness of an organism is highest when others’ decodings most closely

match the original string (the internal states of the agent). Specifically, the internal

states and observables of each individual are represented by vectors of integers;

the genomes consist of matrices bearing weights (coefficients) for polynomials

which map one vector into another. Thus, for a given vector I representing some

set of internal states of agent X (for example, a hungry animal which is moder-

ately strong, and not close to its home territory), the observables vector O is ob-

tained by O = I·C, where C is a matrix whose elements are contained in the

genome of agent X. In an interaction, another agent observes the vector O, applies

its own matrix D, and arrives at its guess as to what agent X’s internal states

might be (I
�
 = O·D). The fitness of individual X is given as the average under-

standing of its internal states by others:
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�
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where R is a randomly-chosen individual, popsize is the size of the population,

and g is a number between 0.0 and 1.0 which indicates gregariousness (i.e., how

many of the other members of the population each individual interacts with, in de-

termining its fitness). This is important because the level of sociality varies very

widely among species. Values of g close to 1.0 make this algorithm very

computationally intensive because of the combinatorial nature of the fitness func-

tion (each member has to interact with every other member). For larger popula-

tion sizes, this will be impractical (on a single-processor machine). 

     U(a,b) determines how well agent A is understood by agent B. It is defined as

the average error individuals make in attempting to guess one another’s internal
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states by applying their decoding function to the encoded vector: 

*
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In this expression, interactions determines how many interactions with each indi-

vidual a given agent has (i.e., how many messages they exchange when comput-

ing how well they understand each other). This is important because in "dove-

like" (non-violent) species, fitness is determined over a large number of interac-

tions (i.e., no one or few interactions determine fitness because none leads to cata-

strophic results).  In very violent species, a single misunderstanding may lead to

death, so fitness needs to be determined over a smaller number of messages. M is

a random message over the space of valid internal state sets, and G(F(M)) is agent

B’s decoding of agent A’s coding of that message. The maximum understanding

occurs when the distance between them is minimal (i.e., the decoding is maxi-

mally similar to an inverse of the coding). The distance (simple Pythagorean

hypervolume distance) between two vectors is computed as follows:
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     A genetic algorithm (GA, pseudocode is given in Figure 2) is used to simulate

evolution of this system, with fitness being determined through some number of

interactions (on randomly-chosen sets of internal states) with some number of

other (randomly-chosen) members of the population. The numbers used in the al-
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gorithm are parameters which may be changed to study various properties of this

evolving system.

     The vector/matrix representation was chosen for this model instead of other

possibilities like finite state automata and neural networks because they provided

a computationally non-intensive algorithm for coding and decoding (important

because of the combinatorial nature of the fitness measure), covered a large area

of possible mappings (because every output element can be a function of every

input element), supported mutation and crossover operators which were closed

with respect to the space of legal genotypes, and provided an obvious (but not

unique) optimal solution (the identity matrix In,m which corresponds to the sim-

plest mapping between inputs and outputs).

     Note that there is a fundamental difference between this GA and usual GA

applications. In the normal genetic search, each candidate solution has a fitness;

this fitness is a measure of how well that solution fits a given problem, and is thus

independent of any other solutions which may exist at the time. In this GA simu-

lation however, all fitnesses are relative, since the fitness of an individual is de-

fined by how well others understand it. This has been termed "competitive fit-

ness" (Axelrod 1984, Axelrod, 1987), and has several important consequences:

(1) there can be no true elitist selection, since the "best" individuals can easily be-

come poor when others are mutated, and (2) there will be very complex dynamics

as the population evolves. Of course, this is much closer to true biological evolu-

tion since most characteristics’ fitness values are very much dependent on the

other members of the ecology. Thus, this is the logical extension of Hillis (1991)

which showed that coevolving two separate populations can be beneficial, since in

this case, every single individual potentially deforms the others’ landscapes.

Results

     In order to study the properties of an evolving system of agents seeking to
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understand each other, several experiments were performed in which various key

parameters of the simulation were changed. In all of these experiments, the top

fitness (defined as the scaled log10 of the fitness of the most-fit individual) and the

population convergence (defined as the scaled average difference of each individ-

ual’s matrix from the population’s matrix average) were plotted as a function of

generation number.

     In the first series, the natural (unperturbed) variability of the system was ex-

plored, in order to make meaningful analyses of its behavior under alterations of

its parameters. Fifty sample runs were performed with the parameters set to the

values in column 1 of Table 1. In all of the experiments which follow, all parame-

ters except the one being investigated are set to these values. The results for the

50 preliminary runs are summarized in the schematic of Figure 3. This will be re-

ferred to as the "base population." 

     In general, an evolution of this system consists of three phases, labeled with

Roman numerals I through III in Figure 3. A sample plot of one actual run ap-

pears in Figure 4. 

     All repetitions of this experiment gave approximately the same result. The best

individual of a randomly-chosen population has a fitness value of about 0.3 ±

0.01. The top fitness rises sharply to a value of about 0.5 until about generation

300 (phase I), then slowly reaches a maximum of 0.6 ± 0.05 by generation 1000

(phase II), and then meanders about that value from then on (phase III). This

phase is stable, and no further major increases occur; the population continues to

cycle about the value of 0.6 (equivalent to a two orders of magnitude reduction of

error in guessing another agent’s internal state vector). The population converges

quickly (at around generation 100). Thus, it is seen that a population of such

agents is able to arrive at a significant though imperfect level of understanding by

virtue of evolution alone. Interestingly, the understanding level is not perfect, and

never becomes so, even if the evolution is carried out to 106 generations. It was
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also found (data not shown) that the population converges upon one coding, not

sub-populations which each utilize a different "language." In all of the experi-

ments described below, the results given represent the average of 5 runs with the

same parameters (this represents a balance between getting statistics which are

truly representative of the system and having a computationally-feasible set of ex-

periments).

     The next series of experiments was designed to study the effect that population

size has upon the population dynamics as it evolves understanding. It is difficult

to make a hypothesis as to what size is optimal, because while larger populations

in GAs tend to locate solutions quicker than small ones, it may well be that it is

more difficult for a large population to achieve mutual understanding (due to the

larger range of individual codings available). For this experiment, the parameters

were those in column 2 of Table 1. For population sizes of 100 or more (up to

5000, data not shown), the results were all like those of the base trials summarized

in Figure 3 (data not shown). For a population of size 30, the improvement in fit-

ness from 0.3 to 0.6 occurred in 1500 generations, in an almost linear fashion

(Figure 5). For a population of size 10 there was no net improvement whatsoever

in 2000 generations (Figure 6). Thus, there is a critical population size (some-

where between 10 and 30) such that smaller populations are unable to achieve ef-

fective communication. There is also a critical population size (between 30 and

100) at which the manner in which the population converges on the maximum at-

tainable level of understanding changes. 

     The next experiments were designed to test the effects of various survival rates

upon the rate of the evolution of understanding. For all runs, the parameters were

set as in column III of table I. The percentage of top individuals which were al-

lowed to survive between generations varied from 5% to 95%. It was found (data

not shown) that survival rates of 5% to 60% are all equivalent in terms of the be-

havior of the population, and are very similar to that of the base population de-

scribed in Figure 3. For survival rates of more than 60%, the initial rise in top fit-
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ness was slow, and on average the population only reached a fitness of 0.5 in

3000 generations. This implies that the evolution of understanding in animal

populations is not very sensitive to the fraction of individuals which survive to

breed at each generation, as long as that fraction is small enough to allow effec-

tive selection to take place. This transition appears to lie at around 60%.

     The next variable to be tested was mutation rate (all other parameters were set

to the values in column IV of Table 1). The mutation rate is defined as the number

of times a given individual is mutated (values less than 1.0 indicate a probability

of being mutated). For mutation rates of 0.1 to 32, the population’s behavior is not

significantly different from the base population. For rates above 32 the initial rise

is slow and the population requires 1500 generations to reach a fitness value of

0.6. 

     It was also interesting to determine the effect that crossover (rather than pure

mutation) had on the population’s behavior. When all other parameters are set as

in column V of Table 1, crossover was seen to achieve the maximum at around

generation 100, and the maximum fitness achieved was somewhat higher (0.65).

This is as expected, since crossover tends to lead to more rapid convergence,

which here (unlike in most GA applications) is a benefit.

     The next series of experiments studied the population behavior under various

numbers of internal states and observables. In all experiments the number of inter-

nal states and external observables (referred to as N) was equal, and the other

variables were set to the values in column VI of Table 1. It was seen that as ex-

pected, for smaller values of N understanding was achieved more easily than for

large values. For N=3, the population was able to achieve top fitness values of

0.7, whereas when N=5 there was a very slow rise to a fitness value of 0.6. For

N=6, the rise was also very slow and achieved a fitness of only about 0.53 (shown

in Figure 7). 

     The next series of experiments studied the importance of the values for
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gregariousness (i.e., what percent of the population each individual gets to interact

with in determining its fitness), and interaction duration (i.e., how many messages

are exchanged in an interaction). It was found that when all other parameters are

held as in columns VII and VIII respectively, gregariousness levels of 0.05-0.9,

and interaction levels of 1-10 all result in the same behavior as the base popula-

tion. There seems to be an optimal level of gregariousness around 0.4 which gives

a maximal fitness of 0.7. 

     The final series of experiments was designed to explore the stability of an opti-

mal genotype (the Im,n matrix which corresponds to a null coding transformation)

under an influx of randomly-coding individuals, and the effect of an in-migration

of Im,n individuals on a normally-evolving population. The values for all parame-

ters were set as in column I of Table 1. In the first experiment, a population was

allowed to evolve normally, and then various numbers (percentages of the popula-

tion size from 0 to 90) of individuals bearing the Im,n genotype were artificially

inserted into the population. It was seen that injection of 2% or more of Im,n indi-

viduals causes the entire population to achieve a fitness level of 0.7 within 50

generations of when the insertion was performed. The state of the population at

the time does not matter. Likewise, a population of Im,n individuals is stable

against an influx of 99% or fewer random individuals. 

Discussion

     The major finding of this series of experiments is that a significant level of

understanding among units utilizing purely symbolic codes can be achieved

through evolution alone. The evolution profile consists of three stages, and is very

consistent between runs, suggesting that it is a real feature of such systems. Fur-

thermore, the fitness profile of such a population as a function of time is very sta-

ble against perturbations of various parameters. Surprisingly, gregariousness level

and interaction duration do not seem to have a large effect on the evolution of un-

derstanding. The same is true for a fairly wide range of selection stringencies, and
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population size. Use of the crossover operator is seen to accelerate convergence

on understanding.

     The major factors influencing the rate of evolution are the number of internal

states and external observables involved in the communication. The results sug-

gest that misunderstandings should be more common in species which utilize

larger numbers of signals to represent larger numbers of internal states. It is also

seen that once achieved, a good genotype is very stable and as few as 2% of such

individuals are able to catalyze optimal understanding among the whole popula-

tion within 50 generations.  

Future Directions

     This paper presented only preliminary data on this complex system. Work is

currently in progress to investigate several important features of such a model.

Firstly, it is important to determine what can be said about the characteristics of

the codes upon which such populations converge (such as their complexity and

other measures from information theory). It would also be interesting to determine

the effects of the following modifications on the rate of convergence: (1) making

some portion of the code non-arbitrary (i.e., some mappings of inputs to outputs

are physiologically constrained), (2) rewarding simplicity of genome (parsimony)

along with understanding, (3) providing loci on the chromosome (meta-GA)

which control GA parameters (such as locations of mutation hotspots, whether an

individual uses cross-over or mutation, the value for gregariousness, etc.), and (4)

keeping a constant ratio of observables to internal states. 

     Likewise, it is possible to determine whether the system’s self-organizing be-

havior is robust enough to be able to handle additional uncontrollable or very

noisy outputs (which simulate external environmental factors unrelated to the in-

ternal state of an agent). Finally, a more complex form of this model is also

planned which will utilize steady state GAs, as opposed to discrete generational
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GAs, and include non-genetic (cultural) information storage, as well as the ability

to misrepresent one’s internal state in certain circumstances (lying, as in Dawkins

and Krebs, 1978; Dawkins, 1982), and other complexities such as eavesdropping

and withholding information. 
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Figure Legend

1) "Functional diagram of a single agent"

2) "Flow-chart of the algorithm used for the simulation"

3) "Schematic of evolution of base population runs"

4) "Course of evolution of a base population run"

5) "Course of evolution of a population of size 30"

6) "Course of evolution of a population of size 10"

7) "Course of evolution of agents with 6 internal states and 6 observables"

Table Legend

1) "Parameter values for evolution runs in figures 1-7"



-18-

Figure 1: 
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Initialize a population of agents
with random matrices on genomes

For each agent A, 

     Interact with I others: B1 - Bi

          Over G interactions,

V  = a random vector of internal states

V’ = V encoded by individual A

V
�%�

 = V
�
 decoded by individual Bn

Fitness of A = average distance for each (V,V
�%�

)

Pick the top S% of the population
as determined by fitness

Replace the remainder of the population
with mutated forms of the top S%

Plot statistics such as convergence
and fitness of top individual
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Figure 2:
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Figure 4:
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Figure 5:
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I II III IV V VI VII VIII

Internal states: 4 4 4 4 4 varied 4 4

Observables: 4 4 4 4 4 varied 4 4

Population size 300 varied 300 300 300 300 300 300

% survivors
at each generation

33% 33% varied 33% 33% 33% 33% 33%

crossover? no no no no yes no no no

Mutation rate 5 5 5 varied 5 5 5 5

Gregariousness 10% 10% 10% 10% 10% 10% varied 10%

Interactions 2 2 2 2 2 2 2 2

Table 1:


