& ;
L. SEVIER

Available online at www.sciencedirect.com

sc.ENCE@D.nECT.

Journal of Theoretical Biology 235 (2005) 566—582

Journal of
Theoretical
Biology

www.elsevier.com/locate/yjtbi

The evolutionary language game: An orthogonal approach

Tom Lenaerts™*, Bart Jansen®, Karl Tuyls®, Bart De Vylder®

Anstitut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle, Université Libre de Bruxelles,
Avenue Franklin Roosevelt 50,1050 Brussels, Belgium
bArti/‘icial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
“Theoretical Computer Science Group, Limburgs Universitair Centrum, Universitaire Campus, Building D, 3590 Diepenbeek, Belgium

Received 24 April 2004; received in revised form 9 February 2005; accepted 9 February 2005
Available online 23 March 2005
Communicated by Martin Nowak

Abstract

Evolutionary game dynamics have been proposed as a mathematical framework for the cultural evolution of language and more
specifically the evolution of vocabulary. This article discusses a model that is mutually exclusive in its underlying principals with
some previously suggested models. The model describes how individuals in a population culturally acquire a vocabulary by actively
participating in the acquisition process instead of passively observing and communicate through peer-to-peer interactions instead of
vertical parent—offspring relations. Concretely, a notion of social/cultural learning called the naming game is first abstracted using
learning theory. This abstraction defines the required cultural transmission mechanism for an evolutionary process. Second, the
derived transmission system is expressed in terms of the well-known selection—mutation model defined in the context of evolutionary
dynamics. In this way, the analogy between social learning and evolution at the level of meaning-word associations is made explicit.
Although only horizontal and oblique transmission structures will be considered, extensions to vertical structures over different

genetic generations can easily be incorporated. We provide a number of simplified experiments to clarify our reasoning.

© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Words form the basic unit of a language. Humans use
these words to identify things or actions in their
environment. Using a word implies that the user also
associates a particular meaning with that word. Wrong
associations between words and meanings leads to
misinterpretations which require corrections. These
associations do not stand on their own. Vocabulary
and more generally language are population-level
phenomena which spread through cultural transmission
systems. Questions concerning the minimal require-
ments of these transmission schemes in order to acquire
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a language are pertinent to the better understanding of
the actual dynamics. In order to answer these, and
other, questions, we need well-founded models which
examine the cultural evolution of language.

It is established that social learning plays a crucial
role in the acquisition of language. Although, there is
not a real consensus on the actual social learning
mechanisms. Boyd and Richerson (1985) generally
define social learning as the transmission of stable
dispositions by teaching or imitation. Yet, the actual
mechanics of the latter processes can differ. Two well-
known models are the observational learning model and
the operant conditioning model (Rosenthal and Zim-
merman, 1978). The first model assumes that learning
occurs by pure observations and that properties are
acquired through statistical sampling of these observa-
tions. The second stresses the importance of a stimulus
and the response when acting upon this stimulus. In the
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context of language acquisition observational learning
has been examined in numerous situations. Our view on
language acquisition belongs to the second type of
models. The primary motivation for choosing this
perspective is that we consider language learning to be
functional, i.e. directed toward the communication of
meaning.

The social learning scheme defines the general layout of
the cultural evolutionary system, yet different transmission
structures exist. Three alternative forms are often cited:
vertical , oblique (role-model) and horizontal transmission
(Cavalli-Sforza and Feldman, 1981; Boyd and Richerson,
1985). The work here focuses on the latter and some small
comments will be made about oblique transmission.
Horizontal transmission refers to the transmission between
peers instead of parents and children (as in vertical
transmission). Hence, there is no primary role, individuals
can be either antagonist or protagonist in the social
interaction. In oblique transmission, the roles are explicitly
defined. An individual is either teacher or student.
Moreover, oblique transmission implicitly assumes that
among the teachers their is some degree of coherence in the
language. The major difference with vertical transmission
is that in both horizontal and oblique structures, the
transmission can occur within one ‘genetic’ generation.
Hence, there is a difference between ‘genetic’ and ‘cultural’
time. Boyd and Richerson (1985) refer to this situation as
an asymmetric inheritance system. This difference may
lead to conflicts since cultural transmission may favor
other trait variants than genetic transmission. We will not
explicitly discuss such conflicts here.

The previous discussion provides a combination of
two underlying principals which are orthogonal with
those used for previously designed models (Hurford,
1989; Oliphant and Batali, 1997; Nowak et al., 1999;
Nowak and Komarova, 2001; Kirby and Hurford,
2002). Yet, as far as we are aware, none of them
actually considers the suggested perspective. Never-
theless, large amount of evidence exists that both
cornerstones have played a crucial rule in the origin
and evolution of language. To clarify the major
differences, take for instance the mathematical frame-
work discussed by Nowak et al. (1999). First, as
indicated earlier, the vocabulary in their model is
acquired through observational learning, i.c. learning
how to associate a word and a meaning without
experiencing it oneself (Rosenthal and Zimmerman,
1978; Boyd and Richerson, 1985). In this approach,
imitation of observed behaviors between communicat-
ing population members forms the primary mechanism
for the student/child to acquire the language. Hence, the
role of cognitive processes is restricted to an almost
literal imitation of the shared lexicon. Second, the
authors apply a cultural evolutionary model with
vertical transmission between ‘genetic’ generations.
The dynamics describe how through a process of

blending inheritance the lexicon of the different popula-
tion members converges toward a shared one. In their
context, the communication between the (cultural or
genetical) parents of the same genetic generation was
examined. Our aim is to provide an alternative
mathematical framework that incorporates those fea-
tures of cultural evolutionary system which are ortho-
gonal to their model.

In Section 2 we will outline the basic model. After-
ward, in Section 3 the cultural transmission scheme
which describes how the associations between words and
meanings are transmitted between peers is discussed.
The dynamics of the transmission scheme will be
analysed in Section 4. In Section 5, the dynamics of
the evolutionary language game will be outlined and
discussed. In this section, it will be shown that the
cultural transmission scheme is equivalent to selection—
mutation models discussed in the context of evolution-
ary game dynamics. Finally, the paper will be concluded
in Section 6.

2. The model
2.1. The complete picture

The complete model consists of a population of
individuals which posses a number of capabilities to
acquire and communicate meaning. Here, it is assumed
that each individual can perform a number of tasks:
direct the others attention toward some objects in an
environment, perceive these objects and assign meaning
to them (Steels, 1995, 1999; Tomasello, 2003). The most
primitive way to perform this first task is by pointing or
some other gesture to manipulate the attention of the
individual with whom one wants to communicate. The
second and third task require that an individual
maintains a set of meanings which are associated with
different objects in the environment and a lexicon which
collects the associations between the different words and
meanings. Hence, the functional process consists of a
combination of individual learning to discriminate
objects in the environment and cultural transmission
to communicate this meaning towards others. The
current discussion we will only consider the latter since
it captures the elements of the evolutionary process
which we want to investigate.

Two final assumptions are made. First, we will, at
each step of the discussion, always consider the
communicative effects between two individuals first.
Second, all individuals have homogeneous language
skills. The initial simplification is introduced to capture
the actual social learning process before making any
generalisations towards populations. Yet, the extension
towards populations is crucial due to the population-
level consequences of cultural transmission. The latter
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assumption is introduced as a simplification. All
individuals use the same mechanisms to acquire the
lexical information. Plasticity of the phenotype in terms
of the social learning scheme and its actual parameters
will be introduced, yet not within the same population.
Such an extension towards heterogeneous populations
will be made in future work where the combination of
cultural and genetic transmission in one model is
discussed.

2.2. The abstraction

Given these assumptions, we can define the popula-
tion members. The state of the ith individual ¢’ consists,
on one hand, of a set of associations D between objects
from the environment (o;) and features that discriminate
an object from the other objects in the environment d}

D' = {(01,d}), (01, db), ..., (02, ), ..., (0}, d}), ...

The set D' allows ambiguous pairing of discriminating
features and objects. A possible example of these
features could be the differences in color and shape of
a set of cars. On the other hand, the state contains a
lexicon L which is again a set of associations between
particular meanings (d;) and words (w))

L' = {(d, w’i), (d, wé), o (d, wé), o (d, w}), )

Again the set L' allows ambiguous pairing between
meanings and words. Since the origin of the relation
between objects and meanings is not investigated here, it
will be assumed that each individual uses the same
associations between objects and meanings. Hence, D' =
D for all individuals i and moreover, the association set
D is finite and contains d elements.

Next, each individual has an initial finite collection of
words W of size w which will be shared between all
individuals. In other words, all words are given and
none will be created. Although in practice unrealistic,
this is introduced here to keep things simple. The
number of word—-meaning associations will be n = w x
d. Convention specifies that these associations between
words and meanings are represented by dynamic
lexicons. These lexicons are dynamic since their con-
tents, i.c. associations between words and meanings,
changes over time according to the use of the different
words for different meanings during communication.
Hence, words which are used infrequently may dis-
appear over time.

To simulate this adaptive behavior, each entry (d}'{.w}')
in lexicon L' is associated with a value v;,;. This value
specifies a strength of the association between a
particular meaning and word. It is assumed that each
value v}, is in the range [0 1]. Hence, values v}, close to 1
specify a strong relation and values v}, close to 0 specify
a weak relation. Hence, the lexicon L' can be defined as

a matrix with rows and columns specifying the strength
of the associations between meanings and words:

i i
Uit Uiz e Uy
i i i
Li— o V2 eee Uy
i i i
a1 gz - Ugy

Note that it is not assumed that L’ is a probability
matrix. In summary, the dynamically sufficient state of a
language individual 7 is defined as
¢' = (D,L).

Given this definition, a framework for language
evolution of an individual should express how the state
changes using some transformation laws T, producing a

trajectory in the state—space defined by the lexical
matrices.

2.3. Transformation of the lexical matrix

As argued in the introduction, the transformation of
the lexical matrix is determined by the social learning
process and the cultural transmission structure. The
social learning mechanism will determine which values
will change and with what amount and the cultural
transmission structure will determine whose values will
change, i.e. both speaker and hearer or some other
configuration.

The social learning process will be the (pointing-and-)
naming game (Steels, 1996, 1999; Tomasello, 2003). The
game occurs between two individuals in a shared
environment. The goal is to learn a shared lexicon. In
the game, each individual can play either of two roles:
speaker or hearer. The actual role will influence the
learning progress of each individual. Although the
naming game itself is an extreme simplification of the
actual process of language acquisition, it highlights the
mechanics of the cultural transmission process which we
try to understand. The cultural transmission structure is
peer-to-peer interaction or horizontal transmission.
Each individual participates as an equal partner in the
interaction and they will learn from each other. To
understand the dynamics of this cultural evolution
system we need a well-founded mathematical frame-
work. The following sections will describe how we derive
the mathematical framework and relate it to standard
evolutionary models.

3. The cultural transmission scheme

In this section we will first describe the game itself. We
will always refer to the speaker with the subscript i and
the hearer with subscript j. The naming game will either
end in success or failure and based on this outcome, the
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lexicon is updated. In Section 3.2 we will describe the
updating scheme. A few simple examples will be given in
Section 3.3.

3.1. The naming game

Assume, first, two individuals. The game occurs as
follows: we know from Section 2.1 that both individuals
are capable of determining a discriminative meaning (df(
and d), respectively) for the specific object in an
environment. Yet, it is assumed that in the game only
the speaker will perform this step (Steels, 1999). Assume
further that each individual, speaker and hearer,
repsectively, has a lexical matrix L’ and I/. The speaker
utters a word w!, that is associated with the meaning d,
with the highest value v},

This word is received by the hearer who in turn
collects the different meanings associated with the word
w!. Given this collection of meanings, the hearer
determines the meaning & which has the highest
strength in relation to the received word, i.e. v},. If both
meanings are the same, the game is a success. If not, the
game fails. To inform the speaker about the success or
failure of the game, the hearer utters the word (w}) it
associates with the specific object. As a result both
individuals know whether or not the game succeeded
and can act accordingly. This action is an update scheme
that alters the different values in the lexical matrices of
both speaker and hearer. The next section, describes the
rules.

3.2. The updating scheme

Upon success or failure, both individuals update the
values in their lexical matrices. Remember that w is the
number of words in the set of words of each individual
and d is the number of meanings in the set of meanings
of each individual. Moreover, 0 is a value in the interval
[0,1] and specifies the amount of change used for
updating the lexical matrices. Typically the value of 6 =
0.1. Given these parameters, the rules are:

® When the game is a success, the values v}, and v},
associated with the specific meaning-word combina-
tion in both individuals are reinforced with J.
Simultaneously, the speaker decreases the values
corresponding to the associations between different
words and the same meaning with a penalty value
0/(w—1). While the hearer decreases the values
corresponding to the associations between different
meanings and the same word with a penalty value
o/(d—1).

® When the game fails, the opposite changes are
performed, i.e. the values v}, and v), are decreased
with 0, the speaker increases the values corresponding
to associations between different words with the same

meaning using the value 6/(w— 1) and the hearer
increases the values corresponding to the associations
between different meanings with the same word using
the value 6/(d — 1).

In both cases, the updating scheme will ensure that
the values v, remain in the range [0 1] (this is ensured by
reducing the value vj; back to 1 when it exceeds 1 or
increasing the value v}, back to 0 when it is less than 0
after the update).

3.3. Simple examples

In order to assess the success of communication
between two individuals, some measure is required. In
the naming game, success occurs when the individuals
can understand each other. Hence, one can count the
number of successes and failures during a certain period
of time over all the individuals. We define this success
rate as the communicative coherence between indivi-
duals or within a population.

In the following examples, listed in Fig. 1, this success
is used to assess the performance of two individuals.
Depending on the settings of the parameters different
things can be observed. Here, we observe the rate of
convergence and whether the absorbing states of the
game correspond to a state of optimal communicative
coherence. Moreover, we examine whether these ab-
sorbing states are attained when w is not equal to d, i.e.
homonymy and synonymy scenarios. The role of
speaker or hearer is assigned randomly. As one can
see when comparing the top-left and top-right plots in
Fig. 1, the reinforcement value é will determine the rate
of convergence toward a shared lexicon.

In order for the naming game to be close to reality, the
outcome of the game will need to show that homonymy is
common and synonymy is rare. Homonyms are words
which have different meanings yet the same form. The
collection of homonyms consists of two major classes;
coincidental and polysemic homonyms. The first kind are
the result of chance and there is usually no relation
between the different meanings. An example is ‘bark’
which can either refer to the skin of a tree or the sound of a
dog. The second kind results from the historical develop-
ment of different meanings for the same word. There
usually is some semantic link between the two meanings.
An example is the leg of either a table or a person.

In the context of the reduced naming game discussed
here it is difficult to examine these issues since the
number of words and meanings are fixed. Yet, one can
observe whether the learning dynamics would allow for
homonyms to maintain themselves. As one can see in the
lower-left plot in Fig. 1, when w<d the game will not
converge to a maximal communicative coherence and
will remain oscillating somewhere below this maximum.
When one inspects the lexical matrices of the two
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Fig. 1. Communicative coherence between two individuals: Plotting the communicative coherence of a two-individual naming game for the first 1000
iterations. The coherence is recorded for an interval of 20 iterations. The setup of the game consists of a set W of seven words and a set D of seven
meanings. The learning occurs between two individuals whose role is determined randomly. Each plot shows the communicative coherence which
measures how well two individuals understand each other. On each plot, 10 runs are shown. Other parameter settings are: 6 = 0.1 for all the figures
expect for the top-right one where 6 = 0.05. The two figures in the lower-left and lower-right show the performance of the naming game when the
number of meanings differs from the number of words. In the figure in the lower-left, there are more meanings than words. This setup allows for one
word to refer to different meanings (coincidental and polysemic homonyms). In the figure in the lower-right, there are more words than meanings. In

this setup we allow different words with similar meaning (synonyms).

individuals there will always be multiple interpretations
for some words. Moreover, these interpretations will
differ between individuals resulting in lower commu-
nicative coherence.

Synonyms are words with similar meanings. As for
the homonyms, one can verify whether under the
learning dynamics of the naming game, synonyms
survive. The general expectation is that they disappear.
To validate this expectation a situation is constructed
where synonyms can be created. This is the case when
there are more words than meanings. In this experi-
mental setup, the naming game will always converge to
binary matrices where some words will not be used, i.e.
some columns in the lexical matrices will contain all
zeros. These results can be observed in the lower-right
plot in Fig. 1. Hence, the experiments seem to show that
synonyms disappear, yet polysemic words remain for-
ever as long as no new words are introduced.

In Fig. 2, the same experiments are shown for a
population of 10 individuals. At each iteration two
individuals are selected randomly. It can be observed
that similar observations apply. Homonyms remain in
the population and synonyms disappear. Moreover, an
initial observation can be made on the rate of
convergence in relation to the number of individuals in

the population: the more individuals in the system, the
more time it will take. This difference in convergence
rate can be observed when comparing the two top-
panels in Fig. 2. A more extensive analysis is required to
provide a concrete proof on the relation between the
parameters and the convergence behavior. Some pre-
vious work conducted by Kaplan (2000) can illuminate
already some issues.

In general, the naming game belongs to the class of
operant conditioning models of social learning. The
stimulus that is provided here is determined by, on one
hand, the manipulation of the individuals toward a joint
attentional space and, on the other hand, the utterance
of a word which the speaker associates with the word.
The response is triggered by the hearer when it does not
understand the speaker and can be either success or
failure. From this response, both speaker and hearer
derive the necessary information to alter their internal
lexical beliefs. Rosenthal and Zimmerman (1978) discuss
at length different situations where language is acquired
through this approach. In that context the naming game
provides a computational model that shows that
language can indeed be learned in this way. Now in
order to understand the dynamics, a mathematical
framework is derived from the naming game.
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Fig. 2. Communicative coherence between 10 individuals: Plotting the average communicative coherence of a naming game with 10 individuals
averaged over 10 runs. The coherence measure was recorded every 20 iterations, We performed 5000 iterations in total for each experiment except the
one in the top-right panel where 30000 were performed with 30 individuals. The setup of the game consists of a set I of seven words and a set D of
seven meanings. Each plot shows the communicative coherence which measures how well two individuals understand each other. On each plot, the
average of 10 runs is shown. For all plots, we assumed ¢ = 0.1. The two figures in the lower-left and lower-right show the performance of the naming
game when the number of meanings differs from the number of words. In the figure in the lower-left, there are more meanings than words. This setup
allows for one word to refer to different meanings (coincidental and polysemic homonyms). In the figure in the lower-right, there are more words
than meanings. In this setup we allow different words with similar meaning (synonyms).

4. Learning dynamics of the naming game

Given the naming game algorithm, one would like to
express it in terms of some well-founded mathematical
framework so it could give rise to theories on the
dynamic behavior of such a system. The current
discussion is limited to the explanation of the model.
Theories on the kinds of absorbing states, whether they
can be reached and whether they are stable are left for
future work. In this section, we will use some concepts
and models from learning automata theory (Narendra
and Thathachar, 1989) to set up a mathematical model
of the naming game.

To reach the final model some steps need to be taken:
in Section 4.1, two normalized matrices will be
introduced to facilitate the analysis. The normalization
is introduced for reasons of mathematical simplicity,
understandibility and to make the relation to learning
automata theory explicit. Moreover, normalization
makes it possible to compare different lexicons when
there is no upper limit on the strength value, i.e. when
vi, €0,00] . How the matrix is normalized, depends on
the role of the individual in the game. Furthermore, to
evaluate the success of each normalized matrix, a
measurement is required. In Section 4.2 this issue will
be discusses briefly. Afterward, the updating rules from

Section 3.2 will be expressed in terms of linear
reinforcement schemes (Narendra and Thathachar,
1989). This immediately introduces a generalization of
the naming game since different rules might be used.
Using this formalization of the naming game, a number
of simple experiments with different learning schemes
are performed in Section 4.4. Finally, in Section 4.5 an
example is provided on the use of a different transmis-
sion structure.

4.1. Normalization of the lexical matrix

In order to analyse the learning dynamics described in
the previous discussion, the lexical matrix of an
individual is normalised. At this point, the importance
of the role in a cultural transmission process is made
explicit. Depending on the role different normalizations
can be performed. Remember that an individual can be
either speaker or hearer in the naming game. When the
individual is a speaker, L’ will be normalized according
to the rows. This normalization transforms each row
into a normalized vector where the sum of the value in a
particular row equals one.

The values in each row might be interpreted as
probabilities, yet this confuses things since, in the
naming game, the speaker does not select some word
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according to a probability distribution. One might
change the naming game and select a word in a row
according to the distribution defined by the normalized
values. Yet, in initial experiments, which will not be
discussed here, we have observed that this would result
in bad behavior. Thus, the only meaning assigned to
each value in a normalized row (or column) is that of
strength. Moreover, the semantics of this strength is
determined by its relation to the other strength values in
the particular row or column, i.e. its order. Further
experiments will be conducted to examine the difference
between these interpretations in a more general frame-
work.

When the individual plays the role of hearer, L will be
normalized according to the columns. This normal-
ization transforms each column into a normalized vector
associating one word with different meanings. The same
reasoning as with the columns can be applied here. In
summary, since there are two roles, two normalization
matrices can be defined: P’ and Q'. These matrices are
derived from L’ by normalizing, respectively, the

columns or rows (assume that ke {l,...,d} and
le{l,...,w}
‘ vl . vl
Pl = +l, or ¢ = %' ()
=1Vt 2 k=1 Vi

Producing the normalized matrices:

plil pl12 pliw
c P P Py
P = or
i i i
Pan Pax -+ Paw
qlil q112 qliw
i i i
o 1 9 - Dy
In Do - Do
where
w
0<ply<1l and > pj,=1
=1
-
L(t-1)
FalRYEb (AR

/

v
Q(t-1) ----- > QY
U

NS @+

for normalized matrix P’ or where

d
0<gjy;<1 and > g =1
k=1
for normalized matrix Q'.

The normalized matrices can be restored to their
original format by performing the inverse operation of
Eq. (1), i.e. ((1)7!). Note that the previous sum of the
row (or column) or some value has to be remembered to
perform that operation otherwise different inverse
calculations are possible. Given the transformation rule
specified by Eq. (1) and its inverse, a general scheme for
the stochastic language learning process can be for-
mulated as can be seen in Fig. 3.

In Fig. 3 a lexical matrix L’ is assumed at time step
(t — 1), This matrix is transformed into a normalized
matrix according to the role of the individual. This role
is randomly assigned. At time step (¢ — 1), the role of the
individual is hearer and hence the matrix Q' is derived
using Eq. (1). Next, Q'(¢ + 1) is determined through one
(or more) iteration(s) of the naming game which is
defined by the updating scheme %. This matrix is in turn
transformed back into a new lexical matrix at the next
time step. The transformation laws 7', briefly mentioned
at the end of Section 2, hence consist of three steps. As
in Nowak et al. (1999), the laws of transformation 7,
assuming no noise, will lead toward absorbing states.
This can be observed in the examples discussed later.
Before discussing the central transformation rule, i.e. the
updating scheme %, we first provide a short motivation
for our coherence measure that reflects the progress of
the stochastical learning process.

4.2. Measuring the language success

In order to assess the success of communication
between two individuals, a measure is required. In
general, two approaches can be taken. First, one
could use the actual communicative success between
individuals as it occurs within a certain time interval.
The success is determined by the procedure that selects
two individuals to communicate and about what they
will communicate. Such a measure, called language

! \

() ------ > P+l

Fig. 3. Stochastic learning process defined for naming game: L refers to the lexical matrix and Q' (P’) refers to the normalized hearer (speaker) matrix.
Eq. (1) and its inverse are used to determine the normalized matrices and U is the updating scheme that changes the normalized values in a particular

row or column.
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coherence, was used in the experiments shown in Figs. 1
and 2. Second, one could introduce a measure which
determines the expected communicative success for the
next game. This value would be completely determined
by the current state of the individuals.! In the current
work, language coherence will be used to observe the
dynamics of the language game.

4.3. Acquiring the vocabulary

The naming game describes an update scheme that
stipulates how the lexical matrix is updated when the game
succeeds or fails. Given the stochastic process defined in
Fig. 3, this updating scheme % (defined by the naming
game) can also be formalized. The rules which are
constructed here differ in correlation to the role of the
individual and whether or not the game was a success.

Assume two individuals with state ¢’ = (D,L’) and
¢ = (D,I/). The number of meanings and words are
fixed, finite and given, i.c. the set of words W contains w
elements and the set of meanings D contains d elements.
Moreover, each individual has an update (or reinforce-
ment) mechanism % that updates the probabilities of
either the speaker matrix P’ (or PY) or the hearer matrix
Q' (or Q/) depending on the roles of both individuals.

As specified in the naming game in Section 3, if
individual ¢’ is the speaker it selects randomly a
meaning and selects the associated word relative to the
assigned strengths. This word is transmitted to the
hearer ¢/ who determines which meanings are associated
with the received word. From this collection of mean-
ings the one with the highest strength is chosen. If both
meanings from the individuals are the same the game
succeeds, otherwise it fails. Success or failure at iteration
t is represented by the binary variable f(¢). Thus f(¢) is
considered to be the response of the environment when a
particular word is uttered. In principle, this response
does not have to be binary, yet the current work will be
restricted to binary values for pf(¢): success after ¢
iterations is () = 0 and failure is f(¢) = 1.

Upon success, the association between that particular
meaning and the word is reinforced and the other
associations are decreased. When the game fails the
opposite occurs. Hence a reward is assigned for success
and a penalty for failure. Here, we assume that upon
success the reinforcement value 6, is used. Likewise,
when the game fails, the value J, is used.

Given this information, a general reinforcement
scheme can be defined for the speaker ¢’. When the
role is speaker, a row in P’ is updated. This means that
the relation between a particular meaning and a set of

'An example of such a measure was introduced in Nowak et al.
(1999): F(¢', ) =131 cp S iewPiud)y + Plydly- This measure is mean-
ingless here since it assumes a different interpretation of the normal-
ized matrices P and Q, i.e. probability distributions.

words is changed. The following equations provide the
general algorithm which consists of two update rules for
the speaker; one to update the probabilities of the
selected word / (Eq. (2)) and one to update all the other
words h#/ (Eq. (3)):

Pt + 1) = p(0) + 05(1 = PO — pjy () — o7 B(0)pj (1)
2)
when the word used to communicate was w} for meaning
dfc. Eq. (2) specifies that the normalized value p of the
selected word—meaning association k,/ is increased with
d5(1 — pi,(1)) when the association was successful and is
decreased with é,p;,(¢) when the association fails.

Pt 4+ 1) = p (1) = 35(1 — B(0)pj ()
+ 0B = 17 = ply(1) A3)

for all the other words wZ, with /[#h € W, who might also
be associated with the meaning dfc, yet who are not used.
Eq. (3) specifies that the normalized value p of all the other
word-meaning associations k, i are decreased with d,p}, (1)
when the association &,/ was successful and are increased
with 6,((w — H!— P, (1) when the association k, / fails.
A careful reader can observe that the value of o,((w —
[ Ppi;, (1) can become negative. This is indeed the case
when (w — 1)< P}, (). The reasoning behind this effect is
the following. The configuration where all p-values in a
particular row have the same value is interpreted as the
situation where, given a certain meaning, one does not
know which word should be selected. Hence every word
has equal chance. Only when the environment provides
useful positive feedbacks can certain associations be
preferred over others. Hence upon negative feedback, the
state of the row is moved closer to a state where one does
not know which word to select, i.e. all normalized
strengths have the same value (w— 1)~'. This move
toward this state of total uninformedness allows the
system to explore alternative associations.

The same definitions can be specified for the hearer ¢/.
In this case a column in the normalized matrix Q' is
updated. This means that an association between a word
and a collection of meanings is altered: the selected
meaning is reinforced while the other meanings are
degraded:

Gt + 1) = gy (1) + 8,(1 = BN — g} (1) — 37 B(D)} (8)
(4)

when the word received during communication was w/
for meaning ;.

0t + 1) = q,() = 5,(1 = B)g), ()

+0rBO((d — 1) = ¢ (1) (5)
for all the other meanings d{,, with k#r € D, who might
also be associated with the word w), yet who are not

used. The interpretation of Eq. (4) and (5) is equivalent
to that of the speakers update scheme.
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Egs. (2)—(5) describe how the vocabulary is learned by
each individual from both perspectives of hearer and
speaker. The reinforcement scheme designed here for the
naming game has been discussed and analysed before in
the context of learning automata and more specifically
variable structure stochastic automata (Bush and
Mosteller, 1951, 1955; Narendra and Thathachar,
1989). This type of learning automata form a class of
more general stochastic systems wherein state transition
and action probabilities are updated by a reinforcement
scheme at every time step. The specific scheme captured
by the equations here is called a linear reinforcement
scheme. Variations of this scheme are constructed by
constraining the reinforcement values 6, and ¢, in
particular ways, e.g. when 6, = dy = 6 and 0<d <1, the
equations become a [linear reward-penalty scheme.
Another variation assumes for instance that d,>d, > 0.
This update scheme is called a linear reward-e-penalty
scheme and this will be used in the following sections.

4.4. Simple examples and different learning schemes

Given the normalized matrices, the linear schemes and
the success function discussed in Section 4.2, a collection
of experiments can be discussed. The mathematical
framework should produce the same effects as those
observed in Fig. 1. Again, we assume two individuals
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with similar specification as in the naming game
examples. In Fig. 4 the experiments were conducted
using the linear reward—penalty scheme. In Fig. 5 the
same experiments were repeated using the linear reward-
e-penalty scheme. The exact settings of the reward o, and
penalty é; can be found below the figures. When
comparing the results form each scheme to the results
obtained in Fig. 1, one can observe that both the
reward—penalty and the reward-e-penalty scheme have a
similar qualitative behavior as the original naming-game.

In all experiments, both J, and 6, determine the rate
at which a lexicon is learned. This can easily be observed
in the different figures when comparing the plots in the
top row. For a high J; value, the shared lexicon is
achieved faster than for low values. Moreover, in the
homonymy scenarios in the different figures (lower-left
plot) it can be observed that the learning scheme
maintains homonyms in the vocabulary of the indivi-
dual. Yet, in the context where synonyms are possible
(lower-right), the learning dynamics will converge
toward a binary matrix where some words will not be
used. Hence, one can see that linear schemes from
learning automata theory have a qualitative behavior
which is equivalent to the standard naming game.

In Fig. 6, the same population experiment as in Fig. 2
was repeated using a linear reward-e-penalty update
scheme. As the number of individuals increases, so will
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Fig. 4. Communicative coherence using linear reward-penalty reinforcement scheme (two individuals): Plotting the communicative coherence of the
formalized naming game with the linear reward—penalty reinforcement scheme. Again, the game consists of a set W of seven words and a set D of
seven meanings (w = d). The learning occurs between two individuals whose role was determined randomly. The figure in the top-left corner shows
10 runs of the formal framework with 6, = d; = 0.1. The same experiment with d; = §; = 0.05 is shown in the top-right figure. In both cases the game
results in a binary matrix associating a particular meaning with a particular word. The only difference is the number of iterations required to reach
the solution. The two figures in the lower-left and lower-right corner are homonymy (w<d) and synonymy (w>d) scenarios.
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Fig. 5. Communicative coherence using linear reward-e-penalty reinforcement scheme (2 individuals): Plotting the communicative coherence of the
formalized naming game with the linear reward-¢-penalty reinforcement scheme. Again, we use a set W of seven words and a set D of seven meanings
(w = d). The figure in the top-left corner shows 10 runs of the formal framework with §; = 0.1 and 6y = 0.01. The same experiment with §, = 0.05 is
shown in the top-right figure. In both cases the game results in a binary matrix associating a particular meaning with a particular word. The only
difference is the number of iterations required to reach the solution. The two figures in the lower-left and lower-right corner are homonymy (w <d)

and synonymy (w>d) scenarios.

the time to converge to a shared language. Moreover, the
learning rate will play a crucial role on how easily this
shared lexicon is attained (Narendra and Thathachar,
1989). Hence, a good balance between reward and penalty
is necessary.

Remember from Section 4.1 that the actual learning
dynamics of the naming game corresponds to a
stochastic learning process whose general scheme is
illustrated in Fig. 3. This general scheme consists of
three steps. Firstly, the lexical matrix is transformed into
a normalized matrix whose normalization depends on
role of the individual, i.e. either speaker or hearer.
Secondly, the update scheme % changes the normalized
matrix according to the outcome of the naming game.
Finally, the normalized matrix is transformed back into
the lexical matrix. In the previous sections, the updating
scheme % was formalized and some examples were
provided to visualize the relation with the naming game
experiments. The next logical step is to specify how all
things fit together in the cultural transmission scheme 7'
that connects two lexical matrices (see Fig. 3).

4.5. Transmission structure
In Section 2.3, we briefly highlighted that the goal of a

mathematical framework is to understand the cultural
transmission system 7" which determines how the strengths

in the individual’s lexicon change over time. From Section
4.3, we have learned that the effect of social learning on the
lexicon is determined by the role of the individual in the
interaction and whether the interaction was successful or
not. So far, it was assumed the individuals interacted
through peer-to-peer interaction. This form of interaction
assumes a horizontal transmission structure in the cultural
inheritance system. As a consequence of this transmission
structure, both speaker and hearer update their lexicons.

The current model does not have to be limited to
horizontal inheritance structures. Other cultural inheri-
tance system like oblique and vertical transmission
structures can easily be incorporated. For instance,
assume that a certain amount of individuals of the
population will be assigned the role of teacher and the
remaining set will be the students. It will be assumed
that the teachers have acquired some coherence among
themselves in their language. Since we assume that the
teachers have coherence in their communication, they
will not update their lexical matrices. Yet, alternative
modes could add the fact that even the teachers still need
to improve their communication skills among each
other. The students will acquire the language from the
teachers using the social learning scheme defined by the
naming game. In other words, the students will always
be hearer and use the updating rules associated the
normalized matrix Q.
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Fig. 6. Communicative coherence using linear reward-g-penalty reinforcement scheme (10 individuals): Plotting the average communicative coherence of
a naming game with 10 individuals averaged over 10 runs. In this example, the reward-¢-penalty scheme was used. The success measure was recorded
every 20 iterations, hence we performed 20 000 iterations in total except for the plot in the upper-right corner where the experiment was performed
using 30 individuals and 30000 iterations. The setup of the game consists of a set I of seven words and a set D of seven meanings. Each plot shows
the communicative coherence which measures how well two individuals understand each other. On each plot, 10 runs are shown. For all plots, we
assumed J; = 0.2 and dy = 0.1. The two figures in the lower-left and lower-right are again homonymy (w<d) and synonymy (w>d) scenarios.

In Fig. 7 an experiment using this simplified oblique
transmission scheme is shown. Each plot in the figure
shows the communicative coherence between the teacher
and the students where the teachers are speakers and the
students are hearers. Moreover, the communicative
coherence among the students themselves is also
measured. The general idea is that it is not enough to
understand the teachers, each student should also
understand his or her peers. In the top row of Fig. 7,
one can see that communicative coherence is reached in
all circumstances. Yet when the teachers have a
vocabulary which contains either homonyms or syno-
nyms the dynamics change. In the bottom-left, the
teachers posses two words which can be used for
different meanings. It can be observed that although
students are able to understand their teacher, they are
not capable of understanding each other. Moreover,
they initially could until iteration 1200 where the
language coherence starts to decrease. When examining
the lexical matrix, this reason is that from there on, each
student starts to use one of the homonyms exclusively
for one of their meanings. Yet all possible configurations
remain present in the entire population. Hence, differ-
ences in individual frequency can be observed where
individuals of type 4 use one word for a particular
meaning and individuals of type B use another word for
that meaning. As a result, these two groups do not
understand each other anymore.

A synonym scenario is visualized in the bottom-right
plot of Fig. 7. Again the teachers are configured in such a
way that they each posses the same two synonyms. As one
can observe, the social learning process converges to a
situation where the students understand their teachers
completely. Yet, the communication among themselves is
not optimal. This results from the fact that certain
meanings cannot be learned. These results show some
remarkable issues which require further investigations on
themselves.

The experiments from Fig. 7 are just one way of
examining oblique transmission. Again, extensions to this
basic framework can be introduced by relaxing previous
assumptions. Moreover, simulations can be performed
using combinations of both horizontal and oblique
transmission. Such a framework combining would allow
teachers (or students) to communicate among themselves.
In summary, each individual can have different roles
depending on the interaction taking place. One can be
parent or child, teacher or student, and peers all at the
same time. All these roles will influence the actual
vocabulary produced by the interactions.

Vertical transmission between genetic generations can
also be introduced. In this context, a genotype could be
introduced that specifies the genetically heritable prop-
erties of the individuals language capabilities. The
offspring can then inherit these capabilities in their
original or mutated form. This would produce a model
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Fig. 7. Communicative coherence using oblique transmission: Plotting the average communicative coherence of a student population playing the
naming game with a population of teachers averaged over 10 runs. In this example, the reward-e-penalty scheme was used to learn the language using
ds =0.2 and 6, = 0.1. Both the teacher and student populations consists of five individuals each. Yet, in the top-right figure, 20 students were used
instead of five. Moreover, the game was played over 30 000 generations. Initially, all the parents have the same vocabulary, i.e. a randomly generated
binary matrix. For the experiments in the top row, the matrices consist of seven words and seven meanings. The two figures in the lower-left and
lower-right are again homonymy (w<d) and synonymy (w>d) scenarios. In all plots, the top line shows the language coherence between teachers
and students and the lower line visualizes the language coherence among the students.

where both genetic and cultural transmission mechan-
isms can be studied as in for instance (Smith, 2004). For
now, we limit ourselves to horizontal and oblique
transmission schemes.

5. The evolutionary dynamics of language

In the previous section, an interpretation of the
naming game in terms of learning automata theory
was provided. Here, we discuss the relation between this
learning theory and evolutionary dynamics. By drawing
this relation, the evolutionary interpretation of cultural
evolution of language is made explicit.

There has always existed an intuitive relation between
learning and biological evolution. The origin of this
relation stems from the fact that in both cases evolution
is generally described as the gradual movement from
mediocre or even bad solutions to better ones.

In the naming game, at the individual level, each
individual constructs associations between meanings and
words and vice versa. Which associations are considered
highly relevant by the individual depend on the interaction
experience of the individual with the other individuals it
encounters. The learning process slowly changes the internal
probabilities that associate words and meanings until some
shared solution is found. From a biological perspective, the

lexicon can be considered to be a collection of ‘populations
of word-meaning associations’ in the individual’s mind.
These populations are formed each time step according to
the role the individual is playing in the interaction. Hence a
constant migration into subpopulations and regrouping in
the complete population occurs. Learning corresponds to
small incremental changes inside these subpopulations. It is
this idea of small adaptive changes that corresponds to
people’s perception of simple biological evolutionary
processes. We referred to the processes at this level as an
instance of social or cultural learning (Boyd and Richerson,
1985; Tomasello et al., 1993).

The analogy between learning and biological evolu-
tion can be made explicit through models of evolu-
tionary game theory. The idea of defining this relation is
not new. Bergers and Sarin (1997) specify a relation
between the Cross learning model and replicator
dynamics. They show that in the continuous time limit
the learning model converges to the asymmetric version
of the replicator dynamics from evolutionary game
theory. By specifying this relation, the authors provide a
non-biological interpretation of evolutionary game
theory. It is this interpretation which explicitly links
learning and evolutionary dynamics.

This result is not limited to the Cross learning model.
Due to the relation of this model with the general theory of
Learning automata (Tuyls et al., 2002) and with the Q-
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learning model from Reinforcement Learning (Tuyls et al.,
2003), these results are generally applicable. In the context
of the models discussed here, the Cross learning model is a
model similar to a learning process where no penalties are
given when wrong associations are made.

Given these previous models of the relation between
learning and evolution, the same thing can be done for
the social learning scheme defined for the naming game.
We will show that social learning scheme corresponds to
a linear selection—mutation model as defined in the
context of evolutionary game theory and evolutionary
dynamics (Hofbauer and Sigmund, 1988).

5.1. Specification of the evolutionary model

Egs. (2)—(5) can be used to derive the replicator
dynamics for the speaker. A similar set of equations is
required for the hearer and can in turn be used to derive
the replicator dynamics of the hearer. To perform the
task for the speaker, the expected change (E[Ap},|p}.(?),
q’,(t)]) of a particular meaning—word association needs to
be calculated. This expected change specifies how the
strength of a word—meaning association changes from
one generation to the next given a particular state
description for both the speaker strengths and hearer
strengths. Using the formula of the conditional expected
value, the expected change in strength for the normalized
value p of player i when choosing the association between
meaning k and word / is determined by a combination of
Egs. (2), (3) and the conditional probability function that
specifies that at time ¢ the speaker i selects meaning k and
the hearer j selects word /:

w d

E[ApIpi (0, 401 = pigt + 1) x > > pia(0d),(0).
h=1 r=1

After substitution of certain parts with Egs. (2) and (3)
and a number of derivation steps the following equation
is obtained:

. . d .
EM%MH&%@F#%@(E:&U—Nm%N)

r=1

w d )
—meZMumMm>

w

— 3 B(0)pjy(1) Z Pia(0) Z qlz(f)

h= r=1

5f/3(l) Z h(t) qur/(t)

h’;&l

where k refers to the rows and / to the columns and w is
the amount of words and d the amount of meanings. In
order to provide a mapping of this equation to the
replicator equation a number of substitutions need to be

made. These substitutions are merely syntactic sugar to
clarify the relation with the replicator equation.

® 0,(1 — B(1)) = A;: The update amount in case of
success is considered to be the payoff that is received
by the words and meanings upon successful interac-
tion. The collection of all the A; values defines the
payoff matrix A:

0 0 . 0
0 0 . 0

T a0 =B) 61— ) o5(1 = B())
0 0 . 0

The resulting matrix A is w x d-dimensional and we
will refer to this matrix as the payoff matrix. Each
entry in this matrix represents the payoff that certain
word—meaning combination gets. Note that only the
row is used which corresponds to the meaning selected
by the speaker. All other entries are in this case
irrelevant since they refer to other meanings which
were not selected by the speaker. Furthermore, each
value d4(1 — f(¢)) is only assigned when the commu-
nication is a success. This makes the payoff matrix an
unusual one since all entries will become zero when the
game fails. Yet it is required due to the distinction in
how the update is performed between successful and
unsuccessful interactions in the naming game.

® J/p(1) = w;: The update amount in case of failure is
considered to be the mutation rate from one type to
another. The collection of all these rates corresponds
to the mutation matrix U:

orP(e) o P(t) 57 B(1)
| 9B orB@) S B(t)
o) orB(1) S B(t)

As with the payoff matrix, the matrix U becomes
zero when the communication was successful.

Given these syntactic substitutions, the following
equation is now obtained:

E[AP P (1), 4)(D)]

d ) w ) d )
= pi(0) (Z Ak (1) — Z Pin(D) Z Ahrqi/(l))
§ r=1

— LD (D) Z Pien(0) Z 7, (1)

““ZMmZ¢m

W #l
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The different sums in this equation can be further
simplified by writing them as matrix multiplication.

E[APLIPL(0), 4)(0)] = pli(0)(exAd)(t) — pL(DAG(D)  (6)
— WP (D) (7
+ (1= pjy (0. ®)

This rewriting produces a replicator equation that
describes the dynamics of meaning—word associations
within the speakers mind. The symbol ¢, refers to a row
vector that contains all zeros except for a one at the kth
position. The equation consists clearly of three parts:

Part (6) corresponds to a standard replicator equation
as discussed in the context of evolutionary game theory.
It describes the effects of selection on the frequency of a
particular meaning-word combination relative to the
average performance in that population. Note that the
population here corresponds to a particular row from
the lexicon when the individual’s role is speaker.

Parts (7) and (8) correspond to the effect that
mutation has on the frequency of a particular mean-
ing—word association. Concretely Part (7) of the
equation expresses the fact that meaning—word combi-
nations can decrease in number and hence disappear.
Part (8) of the equation expresses an increase in the
frequency due to mutations of other meaning—word
associations to this particular, one i.e. the association
between meaning k and word /.

It can be observed further that the mutation part will
only be active when the interaction, or better the
communication, failed. Hence selection is active when
the interaction succeeded. This separation is very logical
since good associations should be exploited and bad
associations require further exploration.

A similar equation can be derived for the hearer.
Instead of using a payoff matrix A, we use the payoff
matrix B.

0 0 s(1—B@) ... 0
S5(1 —

B 0 0 s(1 = B(0)) 0

0 0 s(1—B@) ... 0

in this matrix a certain column is filled with the value
0s(1 — B(2)). A similar derivation then produces:

E[AGIpi(0), ¢/(0] = gy ()pi(0Ber — pi(0Bgj())  (9)
— W (1) (10)
U j

+ 7 (1= gjy(0). (n

Here, the symbol ¢; refers to a column vector that
contains all zeroes except for a one at the /th position.
This derivation describes for each probability q,, of a
certain column in the hearer matrix  how these values
change over time. Again, one can observe a clear

separation into selection to exploit the use of good
associations and mutation to explore for better associa-
tions between meanings and words.

Thus in general, both discrete replicator equations
show how the frequency of each meaning—word
association in the mind of each individual gradually
changes over time. As can be observed, if the success of
a specific association between a word and a meaning is
higher than the average success of all associations
between a particular meaning and the corresponding
words of the speaker (or between a particular word and
all applicable meanings in the hearer), then the
frequency of this association will increase. Otherwise it
will decrease. Hence, acquiring the vocabulary through
a usage-based interaction as described by the naming
game is equivalent to a multipopulation game theore-
tical model (Weibull, 1996) where, depending on the
role, each individual’s internal state corresponds to a set
of populations of meaning—word associations. At each
interaction, one of these subpopulations for each
individual is used and will be updated according to the
dynamics defined by both replicator equations.

Now what happens in the naming game? We know
that the feedback from the environment () can only
have the values zero in case of success and one in case of
failure. These feedback values determine when selection
or mutation are applied. On one hand, if the commu-
nication was successful (f(z) =0), the data currently
present in the lexicon is exploited through the selection
equation (defined by Egs. (6) and (9)). On the other
hand, when the communication was unsuccessful
(B(t) = 1), alternative meaning—word associations are
introduced through some mechanism analogous to
mutation (defined by the other equations). Furthermore,
the specific values of the reward J, and the penalty 6y
determine the kind of linear reinforcement scheme.
These values will have an effect on the qualitative
behavior of the replicator equation. Note that it is not
necessary for both individuals to have the same values
for 6, and 6.

When 6y =0, we see that both selection-mutation
models are reduced to a selection model. Since no
variation is introduced when the interaction fails, the
selection dynamics only act on the given data and can
converge to local optima. Hence, whether or not it will
find the lexicon which is shared with other individuals
depends on the initial state of the lexicon. In other
words, there is only exploitation of the known lexicon
data when the interaction was successful and no
exploration towards lexicons which are shared between
all the individuals.

When ;>0 the mutation parts of the model become
active but not at the same time as selection. As a
consequence a better exploration of the space of lexicons
becomes possible and it will be easier to find a shared
lexicon. In Fig. 8, one can observe the evolutionary



580

dynamics of a linear reward-¢-penalty scheme. Other
variations were tried but not shown here.

In summary, Both selection—mutation equations
express the biological interpretation of the learning
dynamics in the naming game. The evolutionary
dynamics defined by the selection—mutation process,
describe explicitly that the cultural evolution of lan-
guage is a consequence of selecting those meaning—word
combinations which are used most often and that over
time, words can change their meaning.

In respect to the brief discussion on a vertical
transmission structure in Section 4.5, one could assume
that A and U are genetically determined for each
individual and that offspring inherit this kind of
information. Moreover, this would also mean that the
values used in this matrices would not have to be the
same. Then the genetic evolutionary system could
produce both matrices which perform best given in the
context of a particular social learning system.

5.2. Population-level consequences

As argued extensively by Boyd and Richerson (1985),
since social learning causes phenotypic traits to be
exchanged between individuals, social learning has
population-level consequences. Thus, since language is
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acquired, by individuals through actual communication,
language is a population-level phenomenon.

Here, the population consist of individuals which are
completely defined by their lexical matrix L. Given the
laws of transformation 7, these matrices change and
these changes define a trajectory in the state space
defined by the matrices. Hence a population of
individuals is described as a distribution over the
possible lexical matrices. Moreover, the dynamics
visualized in Fig. 3, describe how this distribution
changes over time. In other words, how the average
lexical configuration and the corresponding variance
change over time.

As argued by Boyd and Richerson (1985) in their
model, learning has two opposing effects on the variance
of distribution of cultural variants in the population:
first, it causes the individuals to change their cultural
variants toward a common goal. Consequently, the
variance in the population decreases. Second, errors
made during learning increase the variance. Since we do
not discuss the extensions here where the exchange of
lexical information is noisy, this fact cannot be observed
here. We leave this for later exploration. Nevertheless,
the first effect is observable in the experiments. The
cultural variants correspond to the lexical matrices of
the different population members. The naming game
causes the different individuals to modify their lexical
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Fig. 8. Communicative coherence of the replicator-dynamics (two individuals): Again, we use a set W of seven words and a set D of seven meanings
(w = d). The figure in the top-left corner shows 10 runs of the formal framework with d; = 0.1 and ¢, = 0.01. The same experiment with J, = 0.2 and
6y = 0.05 is shown in all other plots. In both figures at the top, the game converges to a solution with binary matrices. There is only a difference in the
convergence rate. The two figures in the lower-left and lower-right corner are homonymy (w<d) and synonymy (w > d) scenarios. Again, homonomy

remains while synonymy disappears.
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variants toward a shared lexicon. Hence the variation in
lexical information decreases. Moreover, it will disap-
pear since the cultural inheritance process here is avoid
of noise.

6. Conclusion

In this work, a mathematical framework for the
cultural evolution of language was designed and
examined. Starting from the cultural inheritance me-
chanism, i.e. the naming game, a formalization of this
process was defined. We demonstrated that variations of
this formalization could easily be made. These varia-
tions can be expressed in terms of parameters and the
kind of inheritance mechanism used. For the different
steps in the discussion we provided simple experiments
which showed the actual effects between individuals and
in populations of individuals. Moreover, the evolution-
ary dynamics of the cultural inheritance system was
made explicit using a linear selection—mutation model.
This model showed that change in the cultural variants
in a population is due to a process of selection in favor
of the most frequently used word—meaning associations
and that new associations emerge through mutations
between combinations.

Thus we can summarize that the contribution of this
work is three-fold. First it provided a model of
evolutionary language evolution which is orthogonal
to previously defined ones. A combination of these
models with this one would allow for a more meaningful
exploration of mathematical models and the role of each
social learning process. Second, this model highlights
the crucial nature of the role, active or passive and
speaker or hearer, of the individual in an interaction.
Third, we explicitly relate existing evolutionary dyna-
mical models with the research in the origin and
evolution of language. In this way, we provide the
necessary mechanisms to language researchers to con-
struct meaningful models to reach their personal
research goals.

The presented model provides an alternative perspec-
tive on the dynamics of language evolution without
going into detail on the genetic inheritance mechanism.
Although, a simplification in different aspects we think
that this base model provides a first step toward a more
complete picture of the entire process. For instance,
other social learning mechanisms can be introduced or
further examinations can be made of the incorporation
of vertical transmission. Moreover, one can consider the
phenotypic plasticity of each individual and how the
actual parameters of the language acquisition device are
genetically inherited in this mechanism. Apart from
these obvious extensions, we feel that the next crucial
step is to extend the current evolutionary model toward

a system where both meaning and language is culturally
acquired.
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