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Abstract

The question of language evolution is of interest to
linguistics, biology and recently, engineering commu-
nicating networks. Previous work on these problems
has focused mostly on a fully-connected population.
We are extending this study to structured populations,
which are generally more realistic and offer rich oppor-
tunities for linguistic diversification. Our work focuses
on the convergence properties of a spatially structured
population of learners acquiring a language from one
another. We investigate several metrics, including
mean language coherence and the critical learning fi-
delity threshold.

1 Introduction

The question of linguistic divergence is of inter-
est to linguistics[1, 2, 3, 4, 5], biology[6, 7],and en-
gineering communicating networks[8, 9, 10, 11]. For
linguists the question is: “What causes languages to
change[12, 13, 14], and why do humans have so many
different languages?[15, 16, 17]”. From an engineering
point of view, how to achieve convergence to a sin-
gle language in a distributed adaptive system[18, 19]
is an important issue, as in adversarial conditions,
where we would like to maintain high coherency among
“friendlies” with minimal understanding from the ad-
versary.

More generally, the dynamics of language evolution
provides insight into convergence to a common under-
standing where distributed learning is a goal. At a the-
oretical level, these issues are fundamentally similar.
The evolution of language takes on special importance
for robotics and artificial life because it provides a su-
perb platform for studying the emergence of united
behavior from distributed, separate agents.

Previous work on these problems has focused
mostly on a fully-connected population where all in-
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dividuals have an equal probability of learning from
each other and the fitness contribution of language
is evaluated using the frequency among the entire
population[20, 21]. We are extending this study to
structured populations, which are generally more re-
alistic and offer rich opportunities for diversification.
Our work focuses on the convergence properties of
a population of learners acquiring a language from
one another under different connectivity connectivity
conditions, called topologies. This approach is moti-
vated in part by studies indicating that whom a per-
son learns language from can heavily influence one’s
language [22, 23, 24, 25].

Breaking the symmetry that a fully-connected pop-
ulation provided makes finding an analytical solutions
much more difficult, though perhaps not impossible.
Therefore, we are using simulations to explore the
convergence properties of variety of distinct topolo-
gies. We compare the topologies on several metrics,
including mean language coherence and critical error-
threshold. Our results show that topology has a large
effect on overall convergence and can create stable
multi-language solutions.

The multi-language solutions are a third distinct
phase of local convergence between no-convergence
(“Tower of Babel”) on the one hand, where all lan-
guages are represented in roughly equal frequencies,
and global convergence (“Lingua Franca”), where a
single language and its close variants predominate. In
a multi-language solution, the average individual be-
longs to a neighborhood predominated by a single lan-
guage, but no single language dominates across the
entire population.

In our paper these simulations are described and
discussed. Among our conclusions is that local conver-
gence has important implications for developing sys-
tems such as sensor networks where adaptive commu-
nication between agents in a heterogeneous environ-
ment is desirable.



2 Methods

Our system is constructed with each individual pos-
sessing a parameterized grammar, in the principles
and parameters tradition, which can be encoded as
a sequence of symbols. However, for the baseline tests
we report here, each grammar consists of a single sym-
bol and all grammars have the same expressive power
and equal distance from each other. This is a neces-
sary simplification to make our results comparable to
the analytic results from Komarova et. al.[20].
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Figure 1: Topologies: (A) Fully-connected, denoted FC. The

number of connection for each individual nc is N − 1. (B) Lin-

ear, nc = 2. (C) A von Neumann lattice with r = 1, denoted

VN, nc = 4. (D) Bridge, which has multiple fully-connected

subpopulations and a fixed number of connections between sub-

populations.

Each individual exists within a topology defining a
set of neighboring individuals. We explore four differ-
ent topologies: fully-connected (FC), linear, von Neu-
mann lattice (VN), and bridge, illustrated in Figure
1.

The fitness of an individual has two parts: the base
fitness, denoted as f0, and a linguistic merit propor-
tional to the probability that the individual could suc-
cessfully communicate with its neighbors. In the sim-
plified system, linguistic merit is proportional to the
number of neighbors which share the same grammar.
In the fully-connected topology, each individual of a
given grammar will have the same fitness, but this
does not hold for other topologies.

Specifically, the fitness of individual i, fi, is f0 plus
the sum over each neighbor j of the similarity between
i’s grammar and j’s grammar.

fi = f0 +
1

2

nc
∑

j=1

(aij + aji) (1)

Each time step, an individual is chosen propor-
tional to its fitness to reproduce. Reproduction can
be thought of as the chosen individual producing an
offspring which inherits the parent’s grammar and re-
places one of the parent’s neighbors. The offspring
learns the parent’s grammar with a certain learning

fidelity, q. This learning fidelity is properly a function
of the specifics of the learning method the child uses

and the complexity of the grammar, but in the simpli-
fied system the learning fidelity is reducible to a tran-
sition probability function between grammar Gi and
grammar Gj equal to q for i = j, and (1 − q)/(n − 1)
for i 6= j.

The algorithm of our program is as follows:

for each individual i in a population P

set a random language Li of i

end for

for each individual i ∈ P

compute fitness fi of i

end for

do until number of updates is met
select an individual k ∈ P

select a random neighbor j of individual k

replace the neighbor j with an offspring of individual k

the offspring becomes an individual j

if the offspring is mutant( mutation rate = µ)
get a random language for Lj

else
Lj = Lk

end if

update fitness of the individual j

end do

One important metric is the dominant grammar
frequency. We measure this directly each time step
by counting the abundance of each grammar. Which
grammar is the dominant one may change each time
it is measured; in other words, the dominant grammar
is whichever grammar happens to be at the highest
frequency at the time.

The linguistic coherence, denoted as φ, is measured
using the following equation:

φ =
1

N

N
∑

i=1

1

2

nc
∑

j=1

(aij + aji) (2)

Various different “levels” of coherence exist as de-
fined by the set of individuals in nc the second sum-
mation occurs over. Local coherence, φ0, only sums
over the neighbors of each individual and is propor-
tional to mean fitness (equal if f0 = 0). φ1 is the
coherence measured over the set of neighbor’s neigh-
bors, and generally, φi is measured using the set of
(neighbor’s)i neighbors. Global coherence, φ∞, corre-
sponds to summation is over the entire population. In
the fully-connected topology, all of these convergence
levels reduce to the same value.

For the experiments, we used a population size N
of 500, except for the von Neumann lattice which was
a 22×22 torus giving a population size of 484. The
similarity of between languages a was set at .5, the
base fitness f0 was 0, and the number of different pos-
sible grammars n was 10. All relevant parameters are
summarized in Table 1.



Topologies

Parameter FC Linear VN Bridge

a 0.5

f0 0

n (# grammars) 10

N (pop size) 500 500 484 500

# subpops 2

subpopsize 250

# connections 10

# time steps 105 106 5 × 105 105

Table 1: Parameters. Note that 10 connections of bridge topol-

ogy are randomly selected from each subpopulation.

The experiments, or runs, are done for a set number
of time steps that varies with topology. The goal is
to make each run long enough that the system will
very probably reach an equilibrium. A set of 5 replica
runs, varying only the random number generator seed,
were done at each q value between 0.65 and 1 at 0.01
intervals.

3 Analytic Model

For the fully-connected topology given a uniform
similarity a between n different grammars, and the
learning fidelity of q, three equilibrium solutions for
grammar frequency were derived by Komarova et.

al.[20]:

X0 = 1/n (3)

X± =
(a − 1)(1 + (n − 2)q) ∓

√
D

2(a − 1)(n − 1)
(4)

where

D = 4[1 + a(n − 2) + f0(n − 1)](1 − q)(n − 1)(a − 1)

+(1 − a)2[1 + (n − 2)q]2

Below a specific learning fidelity q1, D is negative
and there is no real solution for X±. Therefore, for
q < q1, only the symmetric solution X0 exists and
no grammar dominates. Solving for q when D = 0
determines the critical leaning fidelity threshold q1,
which corresponds to the error threshold in molecular
evolution.

q1 =
4 − 2f0(n − 1)2 − 3n − a(2n2 − 7n + 6)

(1 − a)(n − 2)2

+
2(n − 1)

3

2

√

1 + f0[1 + a(n − 2) + f0(n − 1)]

(1 − a)(n − 2)2
(5)
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Figure 2: The dominant(◦) and average(×) grammar fre-

quency at the last time step of a set of fully-connected

runs, overlaid with symmetric (horizontal line) and asymmetric

(curved line) analytic solutions for a = 0.5, n = 10, f0 = 0.

When q1 < q < q2 for a specific q2, both the sym-
metric X± and asymmetric X0 solutions exist and are
stable. For q > q2 however, only the asymmetric so-
lution where one grammar dominates the population
is stable. This q2 value is the point where X0 = X−,
giving:

q2 =
n2(f0 + a) + (n + 1)(1 − a)

n2(f0 + a) + 2n(1 − a)
(6)

Komarova et. al. provide much more detail and
proofs[20]. We plot these solutions and compare them
to experimental results in Figure 2.

4 Results

The empirical results for the fully-connected topol-
ogy well match the expectation from the analytic re-
sults arrived at by Komarova et. al.[20], as shown in
Figure 2. In the region where only the symmetric so-
lution is stable (q < q1), the average grammar fre-
quency is 1/n. The dominant grammar frequency ap-
pears high because it is the upper end of a distribution
of grammar frequencies which has a non-zero variance
due to the finite population size.

In the bi-stability region (q1 < q < q2), a discrep-
ancy between the analytic and empirical results pre-
sumably derives from a lack of runs settling at the sym-
metric solution. With a finite population, the basin of
attraction of the symmetric solution in this region is
very weak. Choosing which individual reproduces each
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Figure 3: Time-series of fully-connected single runs. The dash

line(--) is X+ for q = 0.9, the upper dot-dash line(·-) is X+ for

q = 0.85, the lower dot-dash line is X0. When q = 0.8, only the

X0 is stable.

time step is stochastic. This combined with stochastic
learning errors appear to be sufficient perturbation to
make the symmetric solution unstable empirically in
this region.

The time series of single runs with three different
learning fidelities in the fully-connected topology are
shown in Figure 3. These learning fidelities correspond
to the three different regions of stable solutions. The
run in the region where symmetric and asymmetric
solutions are possible shows the very weak attraction
of the symmetric solution. Even starting with every
individual in the population being initialized to the
same grammar, a dominant frequency of 1, runs at
this learning fidelity settle into a similar pattern (data
not shown).

For topologies other than fully-connected, conver-
gence provides a more clear picture of system dynam-
ics than dominant frequency. Global coherence φ∞

correlates very closely with dominant frequency, but
local coherence φ0 corresponds directly to the linguis-
tic contribution to fitness and is directly operated on
by the evolutionary process.

Figure 4 shows the coherence values by taking the
average values at the end-points of the 5 replica runs at
each q value. The learning fidelity threshold, or error-
threshold, for the emergence of a dominant grammar
is where indicated by the inflection point in the coher-
ence curve. The emergence of a dominant universal
grammar among the entire population is reflected in
the global coherence curve.

The bridge topology with 2 subpopulations of size
250 and 10 random connections between subpopula-
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Figure 4: Linguistic coherence. The solid line(–) for φ0, the

dash line(--) for φ1, and the dot-dashed line(·-) for global co-

herence φ∞.

tions (Figure 4 B) is indistinguishable from two iso-
lated fully connected populations. It demonstrates a
very similar learning fidelity threshold, q1 ≈ 0.84, as
the fully-connected run shown in panel A. However,
global convergence is never achieved reliably in excess
to the probability that both subpopulations individ-
ually converge to the same grammar by chance. The
up-tick in the φ∞ line at q = 0 is not statistically
significant due to this effect. Additionally, φ1 is ex-
tremely close to φ0 while φ∞ only rises to approxi-
mately 0.5, indicating that there is a large degree of
separation between many individuals.

For the linear topology shown in Figure 4 C, φ0 and
φ1 slowly rise over the entire range shown, and the
trend extends all the way from q ≈ 0.2 where learning
error makes each offspring essentially random (data
not shown). Since φ1 trends upward along with φ0,
we can conclude that extended “patches” of individ-
uals with the same grammar form. Near q ≈ 0.99,
φ1 begins to approach φ0, and φ∞ shows a slight up-
tick. However, even with perfect learning fidelity, φ∞

is only slightly different from the symmetric solution



1/n. There appears to be no possible global conver-
gence learning fidelity threshold for this topology.

In contrast to the linear topology, the toroidal von
Neumann lattice topology (VN) shows a clear learn-
ing fidelity threshold for all three coherence metrics
at q ≈ 0.96. Below this threshold, the VN topology
behaves similarly to the linear topology with an ex-
pected decrease in φ0 and φ1 due to the doubling of
neighbors.

5 Discussion

Empirical results using agent-based simulations
closely match the analytic results produced by Ko-
marova, Nowak, and others for the fully-connected
topology. However, a relatively small population size
combined with stochastic scheduling and learning er-
rors lead to sufficient perturbations that empirical re-
sults show less stability than the pure math would sug-
gest.

The instability of the fully-connected model at
learning fidelities just above the critical threshold q1

tempts the conclusion that human languages exist in
this “edge of chaos” region. Humans exist in com-
plex social connectivity networks, which are probably
closer to the bridge topology. The instability of human
language is more probably related to changing connec-
tivity and topology than a specific learning fidelity.

Topologies other than fully-connected can behave
quite differently. The bridge topology for the param-
eters we have tested quickly and stably converges to
two independent grammars, one for each subpopula-
tion, above a critical learning fidelity. A linear topol-
ogy fails to converge to a single dominant grammar,
but does converge to many “patches” that increase in
size as q increases. Both of these cases correspond to
stable multi-language solutions which do not exist in
the fully-connected topology.

Additionally, the bridge topology has parameters
that quite likely change its dynamics. At a higher
number of connections between subpopulation and/or
a higher number of smaller subpopulations, there is
probably a global coherence threshold.

The lack of apparent learning fidelity threshold for
the linear topology and similarity to the behavior of
the VC topology below its threshold suggests that
there is a critical connectivity value that a regular lat-
tice must exceed before global convergence is possible.
This result, while only hinted at here, would fit very
well with percolation theory. Percolation theory may
also provide insight into what parameterized random
graph topologies a learning threshold exists for.

The fully-connected topology provides the scenario
with the lowest critical learning fidelity, but it also
requires the most intensive communication. A topol-
ogy with much more limited connectivity such as a
lattice or clustered graph may still globally converge
with much more limited communication. For many en-
gineering situations such as adaptive sensor networks,
this is an important consideration.

Language in this study is sufficiently abstract that
these results apply to many situations where agents
adapt by learning from one another and convergence
is desirable. In an adaptive sensor network setting, it
may be beneficial for sensor nodes to adapt their com-
municative coding and recognition/detection systems
based on the specific topology of deployment and the
actual inputs to the network. An evolutionary strat-
egy where nodes adopt successful schemes from their
neighbors with a fitness bonus for agreement is a gen-
eral option with great promise. Such a system maps
directly onto the linguistic systems we present.

6 Summary

We demonstrated the role of topology is critical
in determining the degree of linguistic coherence and
the learning fidelity threshold through empirical stud-
ies informed by the theoretical results for an ideal-
ized population. The reality of complex population
structure makes evident the importance of topology
in studying the dynamics of language acquisition and
language evolution. Further investigation on various
topologies with different parameter settings may pro-
vide a more in depth understanding of language evo-
lution and diversification.
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[3] G. Jäger. Evolutionary game theory and linguistic typol-
ogy: a case study. In Proceedings of the 14th Amsterdam

Colloquium. ILLC, 2003.

[4] M. A. Nowak, D. C. Krakauer, and A. Dress. An error
limit for the evolution of language. Proc. Roy. Soc. Lond.

B., pages 2131–2136, 1999.

[5] N. Grassly, A. von Haesler, and D. C. Krakauer. Error,
population structure and the origin of diverse sign systems.
J. theor. Biol., 206:369–378, 2000.

[6] S. Nowicki, W. A. Searcy, M. Hughes, and J. Podos. The
evolution of birdsong: male and female response to song in-
novation in swamp sparrows. Animal Behaviour, 62:1189–
1195, 2001.

[7] W. J. Sutherland. Parallel extinction risk and global dis-
tribution of languages and species. Nature, 423:276–279,
2003.

[8] T. C. Collier and C. E. Taylor. Self-organization in sensor
networks. Journal of Parallel and Distributed Computing,
64(7), 2004.

[9] D. Livingstone and C. Fyfe. Modelling the evolution of
linguistic diversity. In J. N. D. Floreano and F. Mondada,
editors, ECAL99, pages 704–708, Berlin, 1999. Springer-
Verlag.

[10] L. Steels and F. Kaplan. Stochasticity as a source of inno-
vation in language games. In C. Adami, R. Belew, H. Ki-
tano, and C. Taylor, editors, Proceedings of Artificial Life

VI, pages 368–376, Cambridge, MA, June 1998. The MIT
Press.

[11] T. Arita and C. E. Taylor. A simple model for the evo-
lution of communication. In L. Fogel, P. J. Angeline, and
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