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Abstract. The complexity, variation, and change of languages make
evident the importance of representation and learning in the acquisi-
tion and evolution of language. For example, analytic studies of simple
language in unstructured populations have shown complex dynamics, de-
pending on the fidelity of language transmission. In this study we extend
these analysis of evolutionary dynamics to include grammars inspired
by the principles and parameters paradigm. In particular, the space of
languages is structured so that some pairs of languages are more similar
than others, and mutations tend to change languages to nearby vari-
ants. We found that coherence emerges with lower learning fidelity than
predicted by earlier work with an unstructured language space.

1 Introduction

The evolutionary dynamics of language provides insight into the factors allowing
subpopulations to converge on common or similar languages. The problem has a
more general significance for robotics and artificial life as a clear and empirically
supported platform for the study of how coherent behavior can emerge in a
population of distributed adaptive agents.

Of particular interest from the perspective of evolutionary dynamics are in-
sights into the means and value of conserving linguistic diversity. The practical
importance of linguistic diversity has attracted some attention [23, 21], though
perhaps not as much as biological diversity. Recent studies that have applied
a biological perspective to the evolution of linguistic convergence and diversity
have shown promising results [7, 8, 22, 17, 11, 20, 15]. Most such studies that ap-
ply a biological perspective to language evolution have been based on very simple
languages arbitrarily related to each one another. We believe these studies may
be enriched by a more realistic description of language.

Language models based on the Chomskian paradigm [1, 2] view language as
an aspect of individual psychology. There has been some debate about the extent
to which the underlying representation of languages are inherited or learned and
how language impacts fitness. Pinker and Bloom, for example, suggest that a



language instinct constrained by universal grammar sets the stage for language
acquisition which then contributes to individual fitness [19, 18]. Hauser, Chomsky
and Fitch argue more recently that while certain perceptual and articulatory
abilities may have been selected for, it remains unclear how the most fundamental
aspects of human language emerged [9, 6]. All parties agree that linguistically
relevant properties are to some extent learned through cultural transmission
and change through time. How this might occur has been the subject of many
analytic and simulation studies [15, 16, 20, 11, 22].

As an organism is determined in part by its genome, language is determined
in part by a lexicon of generators which in turn determine its phonology, se-
mantics, morphology and syntax; these properties may evolve [10, 13]. Both the
genome and at least part of language is inherited with variation, and therefore
potentially a target for natural selection. These similarities have lead some re-
searchers to adopt a quasi-species model [5, 4] for describing the dynamics of
language evolution [17, 12]. In their model, grammars are mutationally equidis-
tant from each other with arbitrarily assigned similarity. It seems, however, that
the kind of changes language actually undergoes is much smaller than what this
model seems to predict – the language of a child is, more or less, the same as that
of its linguistic community. This suggests an approach where the similarity be-
tween languages is correlated with their distance from each other in mutational
space.

In this paper, we study how certain properties of the space of possible lan-
guages and learning mechanisms impact language change. We introduce a reg-
ularity in the language space by viewing the locus of language transmission as
a series of learned parameters and calculating the similarity between languages
as the proportion of parameters that agree. We explore the effect of this simple
regularity on the dynamics of language evolution primarily through simulations.
These simulations go beyond previous analytic studies of simple models, and we
find that structure has a significant impact on stability results.

2 Methods

Consider a fully-connected finite population of N individuals, each of whom
possesses a language which is encoded as a sequence of l linguistic ‘components’

Symbol Parameters value(s)

N population size 500
f0 base fitness 10−3

l Number of language parameters 1, 2, 3, or 6
d Number of values per each parameter 64, 8, 4, or 2

n Number of possible grammars 64(= dl)
Number of time steps 100,000

Table 1. Parameters used in the simulations.



or ‘parameters’. Each parameter can take only a limited number d of values. For
example, a language L with 10 parameters each taking 3 values (A,B,C) can be
represented by a linear sequence like AABABCBABA. (This string is not an example
of a statement from the language, but rather a represents the language itself.)
Such a representation is in the spirit of Chomsky’s “principles and parameters”
approach to language[15]. To allay a potential source of confusion: parameters,
as we use them here, correspond to whatever the relevant differences are between
language at the level of description relevant to transmission. This will correspond
to parameters in the Chomskian sense just in case these latter parameters are
appropriately relevant to linguistic transmission. We are throughout assuming
that whatever is being transmitted can be usefully viewed (at least to a first
approximation) as a finite sequence of finite-valued parameters.

Representing a language as a sequence, we define the language similarity
between individual i and j, denoted aij , as the proportion of parameters on
which the two individuals agree. For example, the language similarity between
an individual i whose language is represented as AAA and an individual j whose
language is represented as ABA is 2/3 and aij = aji.

The fitness of an individual has two parts: the base fitness, denoted f0, and
a linguistic merit proportional to the probability that the individual is able to
successfully communicate with another, selected at random from his neighbors.
The linguistic merit of an individual is proportional to the sum of language
similarity between the individual and others it is in linguistic contact with (which
is the entire population for this model). The overall fitness of an individual, fi,
is described as the following, as in [16]:

fi = f0 +
1

2

N
∑

j=1

(aij + aji) = f0 +

N
∑

j=1

aij (1)

noting that aij = aji according to our definition of similarity.
At each time step, an individual is chosen to reproduce randomly and in-

dependently with a probability according to relative fitness. Reproduction can
be thought of either as the individual producing an offspring which inherits the
parent’s language and replaces another in the population, or another individual
changing its language to match the “teacher’s” language. We will use the former
terminology.

The offspring learns the parent’s language with a certain learning fidelity,
q. This learning fidelity is properly a function of the specifics of the learning
method the child uses and the complexity of the language, often modeled with
a probability distribution over the possible transition from each language Li to
each other (possibly different) Lj . But in the present setting we use the first order
approximation that the only incorrect/imperfect learning is a single parameter
change per reproductive event. We refer to this constraint as gradual learning.
The rationale behind this approach is that learning errors do not typically result
in the learner acquiring a radically different language. This single parameter
change constraint on incorrect/incomplete learning is analogous to only allowing
single point mutations to the linear sequence representation of the language. As



such, it defines the “sequence space”[4] through which the population moves
during the evolutionary process.

We study language change in an ideal population using a simulation, using
the following algorithm. Initially each individual in the population P starts with
a randomly chosen language from set of all possible languages.

for each individual i ∈ P

compute fitness fi of i

end for

do until number of updates is met
select an individual i ∈ P with a probability proportional to fitness
select a second random individual j from the population
replace individual j with an offspring k of individual i

if the offspring is mutant( mutation rate = µ)
change a random parameter of Lk

else

Lk = Li

end if

update fitness of the individual j

end do

We measure the dominant language frequency directly at each time step
by counting the number of individuals speaking each language. The dominant
language at any given time is simply the language that is most frequent at that
time, and will typically change over time unless the population has strongly
converged.

The linguistic coherence of the population, denoted φ, is defined as follows:

φ =
1

N

N
∑

i=1

N
∑

j=1

aij (2)

Counting the actual number of languages that exist in the population may
disguise the degree of variation when some of the languages disproportionately
dominate. Consequently, we used an analogue to the effective number of alleles
in a population, which we will refer to as the effective number of languages in
the population, ne [3]:

ne =

(

N
∑

i=1

p2

i

)−1

(3)

where pi is the frequency of each language.
Table 1 shows the parameter settings for the experimental setup. We used a

population size N of 500, a base fitness f0 of 0.001, and we let the number of
different possible languages n be 64. Each language in a set can be represented
as a linear sequence of length l with elements drawn from a set of d possible
values. For set A, the similarity between languages that are not the same is set
to a constant value a equal to 0.5. For all other sets, aij is the Hamming distance
divided by sequence length as described above. The reproduction cycle repeated



for 100,000 times to make each run long enough to reach an equilibrium. Twenty
replica runs, varying only the random number generator seed, were done at each
q between 0.5 and 1 at 0.02 intervals.

3 Analytic Model

Given a uniform similarity a between n different languages, and the learning
fidelity of q, three equilibrium solutions, X0 and X±, for language frequency
were derived by Komarova et. al.[12] for a family of single-component languages:

X0 = 1/n (4)

X± = ((a − 1)(1 + (n − 2)q) ∓
√

D)(2(a − 1)(n − 1))−1 (5)

where

D = 4[1 + a(n − 2) + f0(n − 1)](1 − q)(n − 1)(a − 1) + (1 − a)2[1 + (n − 2)q]2

Below a certain learning fidelity of q1, only the symmetric solution X0 exists
and no single language dominates. Solving for q when D = 0 determines the
critical leaning fidelity threshold q1, which corresponds to the error threshold in
molecular evolution.

q1 =
1

(1 − a)(n − 2)2

[

4 + 2(n − 1)
3

2

√

(1 + f0) [1 + a(n − 2) + f0(n − 1)]

−2f0(n − 1)2 − 3n − a(2n2 − 7n + 6)
]

(6)

When q1 < q < q2 for a specific q2, both the symmetric X± and asymmetric
X0 solutions exist and are stable. For q > q2 however, only the asymmetric
solution where one language dominates the population is stable. This q2 value
is the point where X0 = X−, giving:

q2 =
(

n2(f0 + a) + (n + 1)(1 − a)
) (

n2(f0 + a) + 2n(1 − a)
)−1

(7)

Komarova et. al. provide much more detail and proofs[12].
By introducing a regularity in language, we effectively change the transition

matrix of aij . To compare our findings with the analytical result, we use the
average language similarity ā for calculating q1 and q2, where ā is calculated
using the equation below:

ā =
1

n − 1

(

l−1
∑

k=1

l − k

l
(d − 1)

k

(

n

k

)

)

(8)

We consider 4 settings A-D, varying in the “amount of structure.” The four
cases are listed in Table 2 together with the calculated ā for each case.



4 Results

We plot the experimental and analytic results for comparison in Figure 1. The
empirical results for the uniform similarity of a = 0.5 between two different
languages closely follows the expectation from the analytic results arrived at by
Komarova et. al.[12] as shown in Figure 1 A, which we have previously described
in detail[14].

The results of the multi-component languages (Figure 1 B, C and D) do not
show the clear transition from symmetric to asymmetric solution. The trend
is considerably smoother, with nothing but an increased variance in results at
the point of the phase transition for parameter sets C and D. Parameter set B
shows a region where both symmetric and asymmetric solutions appear stable
for q values between 0.6 and 0.7, but it is notable that the empirical asymmetric
dominant abundance is significantly below the analytical expectation for this set
as well as C and D.

Since the setup A and D have similar ā values (āA ' āD), they provide a
better example of what difference the multi-parameter language brings to the
language evolution scenario. Figure 2 compares the number of languages and
the effective number of languages (ne), calculated using the equation (3). In
the single-parameter language case A, all the possible languages exist in the
population in the region where q < q1A. On the other hand, the 6-parameter
case D has only half of the all possible languages at q = q1D.

Figure 1 A shows that if the learning fidelity is greater than 0.9, one language
dominates in the population. That trend is illustrated clearly by the average
effective number of languages in Figure 2 A. There are still over half of all possible
languages remaining in the population at q = 0.9. This number overestimates
the true variation in the population when some languages disproportionately
dominate while most are at very low frequency. Incomplete/incorrect learning
provides a constant influx of variants, but these variants do not propagate to
any appreciable frequency due to their inferior fitness. The effective number of
languages ne for the set A at q = 0.9 is close to 1 (ne = 1.68), which indicates
that the population has converged to one language, and the rest of languages
exist a very low frequency .

Setting l d n(= dl) ā q1 q2

A 1 64 64 0.500 0.830 0.985
B 2 8 64 0.111 0.516 0.902
C 3 4 64 0.238 0.662 0.955
D 6 2 64 0.492 0.826 0.985

Table 2. System settings, average language similarity (ā), q1 and q2. When l = 1, we
use a = 0.5. A: one component with 64 options, B: two components with 8 options,
C: three components with 4 options, D: 6 components with 2 options. Each setup has
exactly the same number of possible languages.
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Fig. 1. The dominant(×) language frequency after 100,000 time steps overlaid with
symmetric (horizontal line) and asymmetric (curved line) solutions for a(or ā), n = 64,
f0 = 0.001. Each point is an independent replica. dl shown at the top left corner of
each graph.

In contrast, Figure 2 D shows a gradual decline in number of languages as
learning fidelity increases. For this set, the number of languages in the population
starts decreasing noticeably for q values above 0.55, and the effective number of
languages ne decreases over the entire range. However, at q values above 0.9, set
D shows a higher ne value (3.75 at q = 0.9) than set A, indicating that there
are more relatively high abundance languages in set D despite the fact that the
total number of languages is lower.

In set A, all possible languages are a single step away in sequence space; in
other words, all possible languages are reachable by a single incorrect/incomplete
learning event. In set D, however, only a small subset of possible languages are
producible as single step variants from the dominant language. These single-step
variants of the dominant account for the majority of non-dominant languages in
the population. Additionally, these variants have a high fitness relative ā, and a
higher equilibrium frequency in mutation-selection balance.
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Fig. 2. The number of languages(×) and the average effective number of languages(—).

5 Discussion

For the set of single-component languages, our empirical results closely match
the analytic results produced by Komarova et al. In an unstructured language
space, high fidelity learner-driven change, such as the sort exhibited by human
languages, can only occur just above the critical error threshold q1, near the
bifurcation point.

These simulations show that substantial levels of linguistic coherence can be
achieved with lower learning fidelity if structure is introduced. All four settings
explored here have language spaces of exactly the same size, and yet the struc-
tured language sets allow fairly stable asymmetric solutions even with quite low
learning fidelity and show a much more gradual approach to coherence.

We conclude that a simple regularity combined with gradual learning can
dramatically reduce the number of languages that exist in the population, even
in regions where analytic results indicate that only symmetric solutions will be
stable. Gradual learning used in this experiment seems a more realistic approx-
imation to reality than the “memoryless” learning used in previous work. The
qualitatively different dynamics with respect to the critical learning fidelity sug-
gests that convergence to a set of closely related languages is significantly easier
than previously thought.

These results are in keeping with the expectations of a quasi-species interpre-
tation. Gradual learning maps the grammars into a sequence space where some
grammars have fewer mutational (incomplete/incorrect learning) steps from oth-
ers. Calculating the similarity between grammars which determines fitness as one
minus Hamming distance divided by sequence length ensures that grammars
that are close in the sequence space have similar fitness values. This produces a
smooth fitness landscape.

The upshot of this smooth fitness landscape is that selection operates on the
quasi-species formed by the dominant grammar and its close variants. At learn-
ing fidelity values below q1, the population converges not to a single dominant



grammar with all other grammars equally represented, but instead to a family
of similar grammars. The fidelity of this family is higher than the nominal learn-
ing fidelity because a sizable proportion of incomplete/incorrect learning events
among members of the quasi-species result in other members of the quasi-species.
At still lower q values, that family of grammars (the quasi-species) spreads far-
ther out in sequence space, until at some point it includes all possible grammars
and is identical to the symmetric analytical solution provided by Nowak and
Komarova’s model [17, 12].

For learning fidelity values higher than q1, we note that a structured grammar
space weakens the selection against the minor variants of the dominant grammar
in comparison to unstructured or single component grammar models. This effect
causes the population to display a dominant abundance below the analytical
model’s expectations because the close variants of the dominant have a higher
equilibrium abundance in mutation-selection balance.

We conjecture natural languages can be viewed as belonging to a highly
structured set at some level of description relevant to a theory of learning and
cultural transmission, even if this structure is not reducible to a simple sequence
representation. As such, the qualitatively different dynamics explored here are
important to understanding how human language evolves through time. Addi-
tionally, in technological applications where agents learn from each other and
it is desirable for the overall system to converge, these results may provide a
guide to designing properties of the language or state representation depending
on the degree of convergence desired. If it is sufficient that agents of the system
just mostly agree, i.e. converge to close variants of a dominant grammar, then
a structured state space may provide a way to achieve faster convergence at
higher mutation values. However, if absolute convergence is required, the state
space must be designed such that minor variants are strongly selected against,
producing a sharp fitness peak. This constraint also implies that a critical mu-
tation/learning fidelity threshold exists.
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