
LANGUAGE SCAFFOLDING AS A CONDITION FOR GROWTH IN
LINGUISTIC COMPLEXITY

KIRAN LAKKARAJU 1, LES GASSER1,2, AND SAMARTH SWARUP1

1Computer Science Department
2Graduate School of Library and Information Science

University of Illinois at Urbana-Champaign
{klakkara| gasser| swarup}@uiuc.edu

Over their evolutionary history, languages most likely increased in complexity from simple sig-
nals to protolanguages to complex syntactic structures. This paper investigates processes for
increasing linguistic complexity while maintaining communicability across a population. We
assume that higher linguistic communicability (more accurate information exchange) increases
participants’ effectiveness in coordination-based tasks. Interaction, needed for learning others’
languages and for converging to communicability, bears a cost. There is a threshold of inter-
action (learning) effort beyond which (the coordination payoff of) linguistic convergence either
doesn’t pay or is pragmatically impossible. Our central findings, established mainly through
simulation, are: 1) There is an effort-dependent “frontierof tractability” for agreement on a lan-
guage that balances linguistic complexity against linguistic diversity in a population. To remain
below some specific bound on collective convergence effort,either a) languages must be sim-
pler, or b) their initial average communicability must be higher. To stay below such a pragmatic
effort limit, even agents who have the ultimate capability for complex languages must not in-
vent them from the start or they won’t be able to communicate;they must start simple and grow
complexity in a staged process. 2) Such a staged approach to increasing complexity, in which
agents initially converge on simple languages and then use these to “scaffold” greater complex-
ity, can outperform initially-complex languages in terms of overall effort to convergence. This
performance gain improves with more complex final languages.

1. Introduction

Language evolution studies generally assume that the developmental trajectory
for human languages followed stages from simple signaling systems to holistic
protolanguages to simple compositional languages, and finally to the lexically and
syntactically complex languages known today. If languagesindeed grew from the
simple to the complex, several questions need answering; two of these are:

• Could complex languages ever emerge early? Why or why not?

• Local, individual innovations that increase linguistic complexity also cre-
ate linguistic diversity and, at least temporarily, reducecommunicability.
How can a population maintain the communicability of its language while
accommodating the diversity of innovation?



While inspired by the enduring issues of human language evolution, we are
primarily interested adesign stance: evolving artificial languages for artificial
agents. We need to discovergeneralprinciples of language emergence that also
cover automated agents with different sensorimotor, cognitive, and/or interac-
tional possibilities from humans, their evolutionary predecessors, or animals. We
believe, in fact, that language evolution is amodel problemfor issues that arise in
many kinds of distributed semantic systems, including Web semantics, resource
description-discovery (metadata) systems, cartographicsystems, and biological
systems. One case in point is the intentional creation and ongoing revision of
XML-based semantic web languages. These can vary in complexity (number of
terms, syntactic categories, etc.), and they exhibit frequency-dependent “network
effects”: any single language in the space has little value until a large popula-
tion of agents can apply and interpret it. In this situation also, the two questions
above are important: communities must converge on shared languages quickly,
and ongoing linguistic innovations should only minimally disrupt the use of the
language.

1.1. Assumptions

We are interested in artificial agents that operate continuously over long periods of
time in complex worlds, performing tasks that require coordination. The value of
(reward from) successful coordination drives informationexchange, which in turn
drives agents to create and share languages. While rewards actually come from
doing things with shared information, we can usefully attribute at least part of
the reward to the language itself. Thus a language that allows agents to exchange
more critical information or to coordinate better has a higher value.

We assume that agents need to talk to each other about conditions and events
in their worlds, and this talk is valuable in the sense above.The ability tode-
scribeanddistinguishobjects and actions are the fundamental kinds of informa-
tion needed for coordination and increased fitness.

We consider task complexity to be information-theoretic. That is, tasks differ
in complexity on the basis of how many different objects, situations, and actions
they involve, and how much information is needed to reliablydistinguish these
objects, situations, and actions. This becomes important later when we discuss
how to measure complexity of language. The ability to handlegreater task diver-
sity and task complexity increases agents’ fitness; greaterlinguistic complexity
helps enables this (as greater cognitive and motor complexity, etc. also would).

Since tasks of interest here require successful communication, and since what
needs to be communicated for unsophisticated tasks is different (“simpler”) than
what needs to be communicated for complex tasks, agent communication lan-
guages have to vary with task complexity. For agents to become competent at
more complex tasks, they need more complex languages. This means that lan-
guages have to change in complexity over time.



2. The complexity-diversity-effort frontier

Since collective activity is ongoing and must remain so while complexity grows,
we have a difficult problem:how do agents change their languages from simple
to complex while maintaining communicability? Language variation must orig-
inate at the individual level (Croft, 2001). If this is so, then as an agent orig-
inates a change from a fully communicative language, the agent will become
less communicative with others, thus less effective in coordinated tasks. For
language to grow in complexity this means there is a trajectory through which
agents must somehow innovate (increasing complexity and decreasing communi-
cability), then then build up communicability again by learning and propagating
the innovations. This disruptive shift characterizes eachincrease in complexity.

Figure 1. Conjectured tractability frontiers.

Computational tractability is
an issue for this complexity
growth. We hypothesize that
given any set of agents with
a fixed cognitive structure and
a set of tasks (need for lan-
guage), there exists afrontier of
tractability for convergence to a
common language. Informally,
for a set of languagesL of a
given complexityC, greater ini-
tial diversity in the subsetl of L

spoken in the population will im-
ply greater learning effort (e.g.
time) to converge the population to full communicability. Similarly, for a given
degree of initial linguistic diversityD, higher linguistic complexity implies greater
effort to converge the population to full communicability.

Let us limit the available convergence time (i.e., effort toconverge) to some
amountE and plotc = f(d, E), wheref means “given a set of agents whose
set of languages exhibits diversityd, let f(d, E) equal the maximum linguistic
complexity for which the population will converge withinE units”.

Then we will see a curve with the following property: Any complexity-
diversity point “under” the curve limited byE (i.e. where for any point(c, d),
c < f(d, E)) will converge in time bounded byE while any point “above” the
curve (i.e.c > f(d, E)) will take longer than timeE. (See Figure 1.)

E establishes a tractability frontier of complexity and diversity. Higher lin-
guistic complexitylowers the degree of diversity the population can sustain and
still converge withinE. As a result, for languages that are higher in complexity,
agents must make fewer, smaller innovations (introduce less diversity) if they are



to converge withinE.
Similarly, for a population to exhibit greater linguistic diversity and still have

the possibility of converging tractably, its linguisticcomplexitymust be lower.
If a population is going to be highly innovative linguistically, introducing great
diversity, then its language must be simple enough that the effort to converge from
more widely varying linguistic “starting points” remains belowE.

Throughout this discussion we focus on languages as lexicalmatrices. A study
of convergence frontiers for structured, compositional languages (languages with
a grammar) is left for future work.

3. Implementation and experiments

We demonstrate the existence of tractability frontiers through an experiment. Each
agent represents its language as aForm-Meaning Association Matrix, which is a
likelihood matrix that explicitly stores the joint likelihood of the forms and mean-
ings. Forms are symbols in the language and meanings are concepts that can be
talked about. For the present, we assume the simplest possible setup: the num-
ber of forms and meanings is equal, and the set of forms and meanings is shared
among all the agents, so they are only tasked with achieving consensus on the
associations between forms and meanings.

The language game proceeds through random interactions between agents. We
assume a “full information” scenario, where agents provideform-meaning pairs
to hearers. A speaker generates a form for a given meaning,j, by finding the
element in columnj of its form-meaning matrix, that has maximum value. This
is a maximum likelihood rule for language production.

If σij is the current value of the hearer’s form-meaning matrix forthe given
symbol-meaning pair, it gets updated as follows:σij = η · σij + (1 − η). Addi-
tionally, all the values in rowi are updated asσic = η · σic ∀c 6= j, and all values
in columnj are updated in the same way,σrj = η · σrj ∀r 6= i. This “lateral
inhibition” is meant to discourage synonymy and polysemy (Vogt & Coumans,
2003).

3.1. Measuring linguistic diversity

In order to understand the limits of this process, it is necessary to understand how
much diversity can be introduced in a population such that the population can still
return to (or maintain an adequate degree of) communicability to be successful in
the ongoing tasks they face.

There are several principled ways to measure linguistic diversity. Greenberg’s
index (Greenberg, 1956) measures diversity as the probability that a pair of ran-
domly selected individuals from the population do not speakthe same language.

A = 1 −
∑

i

p2

i , (1)



wherepi is the probability of encountering a speaker of languagei. Greenberg
also suggests modifying this formula to take into account the similarity between
languages, thus,

B = 1 −
∑

ij

pipjrij , (2)

whererij is a measure of the overlap between languagesi andj. A andB are
both measuring communicability (or rather, the lack of it) in the population. We
say a population isconvergedif the communicability is 1, i.e. diversity is 0.

Another measure, more popular in genetics, is known as the Jensen-Shannon
diversity (see, e.g., Grosse et al., 2002), given by,

J = H(λ1P1 + λ2P2 + . . . + λnPn) −
∑

i

λiH(Pi), (3)

where
∑

i λi = 1, and thePi are the probability distributions describing the lan-
guages (form-meaning associations).H is the Shannon entropy function. Since
languages for our agents are defined as the joint likelihood matrices for forms and
meanings,J measures the diversity in the corresponding probability distributions
which are obtained by normalizing the form-meaning matrix.When all distribu-
tions are identical,J = 0.

The difference between Greenberg’s index and Jensen-Shannon diversity is
analogous to the difference between phenotype and genotypein biology. J is a
measure based on the underlying probability distribution,andA andB are more
“behavioral” measures as they directly evaluate communicability. When J = 0,
A andB are also 0, andJ attains its maximal value,A andB equal 1. However,
it is possible to have perfect communicability even if the underlying distributions
are not identical, since communicability depends on the maximum likelihood in-
terpretation.

3.2. Generating diversity

To evaluate the tractability frontier we need tocreatea population with a specified
diversity, notmeasurethe diversity of a given linguistic population. To do this
we initialize the agents with identity matrices for their form-meaning mappings.
Then wedevolvethis perfectly converged state by adding a uniform random vari-
able, drawn from a range[0, ε], to each value in the matrix. It turns out that the
noise level,ε, is very strongly correlated with Greenberg’s index and theJensen-
Shannon diversity. In other words, by increasingε, we can smoothly and (nearly)
linearly increase the diversity of the population according to these two measures.
We have confirmed this fact through careful simulation (not presented here for
lack of space).



3.3. Linguistic Complexity

Complexity is determined by both form and meaning complexity. McWhorter
has defined four criteria for the evaluation of the complexity of a language
(McWhorter, 2001), based on phonology, syntax, grammaticalization, and mor-
phology. However, only his grammaticalization criterion makes reference to
meanings. It says that a language is more complex if it makes finer semantic
and pragmatic distinctions.

The language of an agent also reflects its cognitive capabilities, and an agent
capable of making greater cognitive distinctions will havea more complex lan-
guage simply by virtue of being able to express more meanings. This is an
information-theoretic notion of complexity, as discussedearlier, and should be
included in a measure of linguistic complexity. This is understandably hard to
do for natural languages, but is the criterion we use in our simulations because
artificial agents, in particular, can differ widely in theircognitive capabilities and
characterizing this distinction is essential in a discussion of language evolution.

3.4. Experimental result

Figure 2. Time to convergence vs. complexity and diversity.

We measure effort as num-
ber of iterations required to
converge. We initialize a
population of ten agents with
varying levels of diversity
as described above. We
also vary the complexity of
the language by varying the
number of meanings. Then
we run the language game
for each initial condition and
evaluate the number of iter-
ations necessary to converge
to a communicability level greater than 0.9. This gives us a three-dimensional
graph, shown in two dimensions in Figure 2, with time to convergence color-
coded. We see a clear emergence of frontiers, demarcated by regions of different
colors, confirming our hypothesis from Fig. 1.

4. Scaffolding and staged learning

“Scaffolding” is one means of overcoming the diversity/complexity frontier estab-
lished byE. Scaffolding is a general human learning strategy, and its existence
and efficacy has been reported for language learning both in the psychological lit-
erature (Iverson & Goldin-Meadow, 2005) and in simulation work (Elman, 1993).

Lee, Meng, and Chao (2007) provide a model of “staged learning” that cap-



tures the idea of scaffolding. Agents a) constrain choices,b) act within those
constraints until c) no novelty appears, then d) lift some constraints, and re-
peat. Constraints temporarily reduce the agents’ decisionspace. When qui-
escence occurs at one stage, strategically-chosen constraints are lifted. (Thus
staged learning is order-dependent and there are likely more and less effective
developmental trajectories.) Learning commences again inan extended deci-
sion space, now biased by the structures and generalities learned in prior stages.

Figure 3. Moving from Stage 3 to Stage 4 uncovers a row and
column of the matrix. The grey areas are hidden to the agent
until it reaches that stage.δ = 1

We created such a staged ver-
sion of our experiments as
follows. We choose a max-
imum number of meanings,
n, that the population has to
converge upon. However, the
agents do not consider all of
these meanings initially.

They start at Stage 1.
The number ofactivemean-
ings (= “used in language
games”) is a function of the
stage number. Thecomplex-
ity step sizeδ represents how
many new meanings to make
active per stage. Thus the
number of meanings active at
Stagei is δi. If the system
is in Stage 4 andδ = 4 there are 16 active meanings. Each agent is initial-
ized with am × n lexical matrix. However at each stagei, an agent only sees
part of its full lexical matrix, of sizeiδ × iδ. As the stages progress more
of the agents’ lexical matrix is revealed, as illustrated infigure 3. The system
changes stages based on the communicability of the population. Let θ be the
stage transition communicability threshold. When the population has commu-
nicability ≥ θ in stagei, it has converged to withinθ on iδ × iδ forms and
meanings. It then moves to the next stage and uncovers new meanings for each
agenta. At this transition point,(i − 1)δ meanings have already been converged
upon (to withinθ), andδ meanings are new. These earlier convergence deci-
sions bias agents’ learning choices for the new, larger matrix. This is scaffolding.
To confirm the value of staging, we repeated the earlier experiment with staging
added, evaluating the new tractability frontier for varying complexity and diversity
levels. Note the axes of this plot go much farther than the axes in Figure 2. In

aCollective ordering of meanings is an issue, with several possible efficient approaches, e.g. com-
mon environment structure. We leave to future work a more detailed model exploring this topic.



fact we began each simulation with 10 meanings and 10 forms because smaller
matrices converge very quickly. Even with higher initial noise levels and number
of meanings going up to 30, we see that the population converges in a fairly short
amount of time. Staging has pushed out the tractability frontier greatly.

5. Conclusions

Figure 4. Tractability for staged learning.

We have shown the need
for scaffolding in language
learning to be a fundamental
requirement arising from the
tradeoff between complexity
and diversity. The interaction
between complexity and di-
versity leads to the existence
of a tractability frontier that
prevents convergence in rea-
sonable time if the initial di-
versity is too high for a given
complexity of language (or
vice versa). However, by learning in stages, it is possible to attain convergence
even on complex languages that would otherwise be beyond thetractability fron-
tier.
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