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Over their evolutionary history, languages most likelyr@ased in complexity from simple sig-
nals to protolanguages to complex syntactic structuress fiper investigates processes for
increasing linguistic complexity while maintaining comnicability across a population. We
assume that higher linguistic communicability (more aateiinformation exchange) increases
participants’ effectiveness in coordination-based tafikgraction, needed for learning others’
languages and for converging to communicability, bearssa cbhere is a threshold of inter-
action (learning) effort beyond which (the coordinatiory@if of) linguistic convergence either
doesn’t pay or is pragmatically impossible. Our central ifigd, established mainly through
simulation, are: 1) There is an effort-dependent “frontiEtractability” for agreement on a lan-
guage that balances linguistic complexity against linuiiversity in a population. To remain
below some specific bound on collective convergence efittier a) languages must be sim-
pler, or b) their initial average communicability must bgler. To stay below such a pragmatic
effort limit, even agents who have the ultimate capabilitly domplex languages must not in-
vent them from the start or they won't be able to communidéiey must start simple and grow
complexity in a staged process. 2) Such a staged approaohbraasing complexity, in which
agents initially converge on simple languages and thenhesetto “scaffold” greater complex-
ity, can outperform initially-complex languages in terniswerall effort to convergence. This
performance gain improves with more complex final languages

1. Introduction

Language evolution studies generally assume that the af@wental trajectory
for human languages followed stages from simple signalysgiesns to holistic
protolanguages to simple compositional languages, anityftoahe lexically and

syntactically complex languages known today. If languagésed grew from the
simple to the complex, several questions need answerimgotwhese are:

e Could complex languages ever emerge early? Why or why not?

e Local, individual innovations that increase linguistiongalexity also cre-
ate linguistic diversity and, at least temporarily, redgoenmunicability.
How can a population maintain the communicability of itsgaage while
accommodating the diversity of innovation?



While inspired by the enduring issues of human languageuéool, we are
primarily interested alesign stance evolving artificial languages for artificial
agents. We need to discovgeneralprinciples of language emergence that also
cover automated agents with different sensorimotor, dagniand/or interac-
tional possibilities from humans, their evolutionary peedssors, or animals. We
believe, in fact, that language evolution isnadel problernior issues that arise in
many kinds of distributed semantic systems, including Wehantics, resource
description-discovery (metadata) systems, cartogragpystems, and biological
systems. One case in point is the intentional creation amgbiag revision of
XML-based semantic web languages. These can vary in comtp(@eamber of
terms, syntactic categories, etc.), and they exhibit feegy-dependent “network
effects”. any single language in the space has little vahid a large popula-
tion of agents can apply and interpret it. In this situatitsoathe two questions
above are important: communities must converge on sharepigges quickly,
and ongoing linguistic innovations should only minimallgmipt the use of the
language.

1.1. Assumptions

We are interested in artificial agents that operate contislymver long periods of
time in complex worlds, performing tasks that require camaition. The value of
(reward from) successful coordination drives informatechange, which in turn
drives agents to create and share languages. While rewettds g come from
doing things with shared information, we can usefully htite at least part of
the reward to the language itself. Thus a language that sléments to exchange
more critical information or to coordinate better has a kiglalue.

We assume that agents need to talk to each other about corsditnd events
in their worlds, and this talk is valuable in the sense aboliee ability tode-
scribeanddistinguishobjects and actions are the fundamental kinds of informa-
tion needed for coordination and increased fitness.

We consider task complexity to be information-theoretibaflis, tasks differ
in complexity on the basis of how many different objectaaiitons, and actions
they involve, and how much information is needed to reliatistinguish these
objects, situations, and actions. This becomes impor&aet Wwhen we discuss
how to measure complexity of language. The ability to hagdéater task diver-
sity and task complexity increases agents’ fithess; grdiatguistic complexity
helps enables this (as greater cognitive and motor contplexc. also would).

Since tasks of interest here require successful commumicaind since what
needs to be communicated for unsophisticated tasks igetiff€‘simpler”) than
what needs to be communicated for complex tasks, agent coination lan-
guages have to vary with task complexity. For agents to becoompetent at
more complex tasks, they need more complex languages. Tdasisthat lan-
guages have to change in complexity over time.



2. The complexity-diversity-effort frontier

Since collective activity is ongoing and must remain so e/ebmplexity grows,
we have a difficult problemhow do agents change their languages from simple
to complex while maintaining communicabifttyLanguage variation must orig-
inate at the individual level (Croft, 2001). If this is soethas an agent orig-
inates a change from a fully communicative language, theitagédl become
less communicative with others, thus less effective in doated tasks. For
language to grow in complexity this means there is a trajgdiorough which
agents must somehow innovate (increasing complexity aogkdsing communi-
cability), then then build up communicability again by leisig and propagating
the innovations. This disruptive shift characterizes eachease in complexity.
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Let us limit the available convergence time (i.e., efforctmverge) to some
amountE and plotc = f(d, E), wheref means “given a set of agents whose
set of languages exhibits diversidy let f(d, E) equal the maximum linguistic
complexity for which the population will converge withia units”.

Then we will see a curve with the following property: Any colexity-
diversity point “under” the curve limited by (i.e. where for any poinfc, d),
¢ < f(d, E)) will converge in time bounded b¥ while any point “above” the
curve (i.e.c > f(d, E)) will take longer than time®. (See Figure 1.)

E establishes a tractability frontier of complexity and dgity. Higher lin-
guistic complexitylowersthe degree of diversity the population can sustain and
still converge withinE. As a result, for languages that are higher in complexity,
agents must make fewer, smaller innovations (introducedagrsity) if they are
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Figure 1. Conjectured tractability frontiers.



to converge withinE.

Similarly, for a population to exhibit greater linguistiovdrsity and still have
the possibility of converging tractably, its linguisttomplexitymust be lower.
If a population is going to be highly innovative linguistilya introducing great
diversity, then its language must be simple enough thatffbe & converge from
more widely varying linguistic “starting points” remainslow E.

Throughoutthis discussion we focus on languages as laxiatdces. A study
of convergence frontiers for structured, compositionaglaages (languages with
a grammar) is left for future work.

3. Implementation and experiments

We demonstrate the existence of tractability frontierstigh an experiment. Each
agent represents its language dan-Meaning Association Matrjxvhich is a
likelihood matrix that explicitly stores the joint likelidtod of the forms and mean-
ings. Forms are symbols in the language and meanings areptsrtbat can be
talked about. For the present, we assume the simplest possitup: the num-
ber of forms and meanings is equal, and the set of forms andingsais shared
among all the agents, so they are only tasked with achievimgensus on the
associations between forms and meanings.

The language game proceeds through random interactione®etgents. We
assume a “full information” scenario, where agents pro¥iden-meaning pairs
to hearers. A speaker generates a form for a given meapjrgy finding the
element in columpy of its form-meaning matrix, that has maximum value. This
is a maximum likelihood rule for language production.

If 045 is the current value of the hearer’'s form-meaning matrixtfear given
symbol-meaning pair, it gets updated as follows; = 7 - o;; + (1 — 1). Addi-
tionally, all the values in row are updated as;. = 7 - 0, Vc # j, and all values
in columnj are updated in the same way,; = 71 - 0,; Vr # 4. This “lateral
inhibition” is meant to discourage synonymy and polysemggfv& Coumans,
2003).

3.1. Measuring linguistic diversity

In order to understand the limits of this process, it is neassto understand how
much diversity can be introduced in a population such theptipulation can still
return to (or maintain an adequate degree of) communitatilbe successful in
the ongoing tasks they face.

There are several principled ways to measure linguistiergdity. Greenberg’s
index (Greenberg, 1956) measures diversity as the protyathiht a pair of ran-
domly selected individuals from the population do not spibaksame language.

A:l—pr, (1)



wherep; is the probability of encountering a speaker of languag&reenberg
also suggests modifying this formula to take into accouetdimilarity between
languages, thus,

B =1- Zpipjﬁ;j, (2)
j

wherer;; is a measure of the overlap between languagasdj. A andB are
both measuring communicability (or rather, the lack ofiitXie population. We
say a population isonvergedf the communicability is 1, i.e. diversity is O.

Another measure, more popular in genetics, is known as tieedeShannon
diversity (see, e.g., Grosse et al., 2002), given by,

J=HMPL+XMP+ ...+ X\ P) = > NH(P), (3)

where) . A\; = 1, and theP; are the probability distributions describing the lan-
guages (form-meaning associations).is the Shannon entropy function. Since
languages for our agents are defined as the joint likelihoaitioes for forms and
meanings,/ measures the diversity in the corresponding probabilgyritiutions
which are obtained by normalizing the form-meaning matwen all distribu-
tions are identical] = 0.

The difference between Greenberg’s index and Jensen-8Shativersity is
analogous to the difference between phenotype and genotypelogy. J is a
measure based on the underlying probability distributésrd A and B are more
“behavioral” measures as they directly evaluate comminilita When J = 0,

A andB are also 0, and attains its maximal valued and B equal 1. However,
it is possible to have perfect communicability even if thel@rtying distributions
are not identical, since communicability depends on theimap likelihood in-
terpretation.

3.2. Generating diversity

To evaluate the tractability frontier we neectreatea population with a specified
diversity, notmeasurethe diversity of a given linguistic population. To do this
we initialize the agents with identity matrices for theirfemeaning mappings.
Then wedevolvethis perfectly converged state by adding a uniform randoria va
able, drawn from a rang, ¢], to each value in the matrix. It turns out that the
noise levelg, is very strongly correlated with Greenberg’s index andXaesen-
Shannon diversity. In other words, by increasing/e can smoothly and (nearly)
linearly increase the diversity of the population accogdimthese two measures.
We have confirmed this fact through careful simulation (n@tspnted here for
lack of space).



3.3. Linguistic Complexity

Complexity is determined by both form and meaning compjexMcWhorter

has defined four criteria for the evaluation of the compiexif a language
(McWhorter, 2001), based on phonology, syntax, grammigation, and mor-

phology. However, only his grammaticalization criteriorakes reference to
meanings. It says that a language is more complex if it makes Semantic
and pragmatic distinctions.

The language of an agent also reflects its cognitive cagiabjliand an agent
capable of making greater cognitive distinctions will havenore complex lan-
guage simply by virtue of being able to express more meaningss is an
information-theoretic notion of complexity, as discussadlier, and should be
included in a measure of linguistic complexity. This is urgi@ndably hard to
do for natural languages, but is the criterion we use in omukitions because
artificial agents, in particular, can differ widely in theiognitive capabilities and
characterizing this distinction is essential in a disaussif language evolution.

3.4. Experimental result

We measure effort as num-
ber of iterations required to
converge. We initialize a
population of ten agents with g™
varying levels of diversity

as described above. We
also vary the complexity of

the language by varying the
number of meanings. Then
we run the language game
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ations necessary to convergeigure 2. Time to convergence vs. complexity and diversity.
to a communicability level greater than 0.9. This gives ubrad-dimensional
graph, shown in two dimensions in Figure 2, with time to cogeace color-
coded. We see a clear emergence of frontiers, demarcategjions of different
colors, confirming our hypothesis from Fig. 1.

4. Scaffolding and staged learning

“Scaffolding” is one means of overcoming the diversity/qdexity frontier estab-
lished by E. Scaffolding is a general human learning strategy, andxittence
and efficacy has been reported for language learning botteipgychological lit-
erature (Ilverson & Goldin-Meadow, 2005) and in simulaticorkvElman, 1993).

Lee, Meng, and Chao (2007) provide a model of “staged legfritrat cap-



tures the idea of scaffolding. Agents a) constrain choibg¢sact within those
constraints until ¢) no novelty appears, then d) lift someast@ints, and re-
peat. Constraints temporarily reduce the agents’ decisgate. When qui-
escence occurs at one stage, strategically-chosen dotstaae lifted. (Thus
staged learning is order-dependent and there are likelerand less effective
developmental trajectories.) Learning commences againirextended deci-
sion space, now biased by the structures and generaliiesele in prior stages.
We created such a staged ver-

sion of our experiments as
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. . until it reaches that stagé.= 1
number of meanings active at

Stagei is di. If the system

is in Stage 4 and = 4 there are 16 active meanings. Each agent is initial-
ized with am x n lexical matrix. However at each stagean agent only sees
part of its full lexical matrix, of sizeid x id. As the stages progress more
of the agents’ lexical matrix is revealed, as illustratedigure 3. The system
changes stages based on the communicability of the popolatiet § be the
stage transition communicability thresholdVhen the population has commu-
nicability > @ in stages, it has converged to withid@ on i x ¢§ forms and
meanings. It then moves to the next stage and uncovers newimgsgor each
agent. At this transition point(: — 1) meanings have already been converged
upon (to withing), andé meanings are new. These earlier convergence deci-
sions bias agents’ learning choices for the new, largerirathis is scaffolding.

To confirm the value of staging, we repeated the earlier éxyat with staging
added, evaluating the new tractability frontier for vagygomplexity and diversity
levels. Note the axes of this plot go much farther than thes &xd-igure 2. In

aCollective ordering of meanings is an issue, with severakite efficient approaches, e.g. com-
mon environment structure. We leave to future work a moraildet model exploring this topic.



fact we began each simulation with 10 meanings and 10 forrosuse smaller
matrices converge very quickly. Even with higher initiaiselevels and number
of meanings going up to 30, we see that the population coegenga fairly short

amount of time. Staging has pushed out the tractabilitytieogreatly.

5. Conclusions

We have shown the need
for scaffolding in language
learning to be a fundamental Somplssy . Poplaion iversty
requirement arising from the
tradeoff between complexity

and diversity. The interaction i
between complexity and di-
versity leads to the existences
of a tractability frontier that :
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vice versa). However, by learning in stages, it is possiblaettain convergence
even on complex languages that would otherwise be beyondatiability fron-
tier.
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