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Abstract. An important problem for societies of natural and artificial
animals is to converge upon a similar language in order to communicate.
We call this the language convergence problem. In this paper we study
the complexity of finding the optimal (in terms of time to convergence)
algorithm for language convergence. We map the language convergence
problem to instances of a Decentralized Partially Observable Markov
Decision Process to show that the complexity can vary from P-complete
to NEXP-complete based on the scenario being studied.

1 Introduction

Language is a collective property of the society. A language is inherently a com-
municative system (although it has some non-communicative interactions with
agents, Clark ([1]) suggests that in addition to a communicative function, lan-
guage can serve as a tool to reshape the computational space that our brains
must handle), that allows agents to interchange information.

In this work we study how a set of initially diverse (in terms of languages)
agents can come to an agreement upon a single language. We refer to this as the
language convergence problem.

Previous work in this area has focused on the convergence rate of a particu-
lar algorithm. Each agent has a learning algorithm which will learn a language
based on examples of sentences from other agents. The algorithm for conver-
gence usually specifies a set of agents that each agent can interact with, and the
parameters of the learning algorithm.

In this paper we want to explore the question, how hard is it for an agent to
learn how to converge? We do not want to know how to converge in a specific
setting, but rather how to converge in a whole set of situations. For instance,
we want a policy for the agent that will tell it whom to interact with in order
for the agent to be able to communicate with the entire society after a period of
time.

Other work has focused on evaluating single algorithms to determine if, when
an agent follows a specific policy, will the entire society converge. For instance,
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Cucker, Smale and Zhou give bounds on how many other agents each agent must
interact with in order for the entire population to converge, given a policy where
each agent is to learn from the sentences it gathers of other agents languages
([2]). Steels creates a simulation and empirically shows the convergence of a
population of agents in [3]

Our work differs from the above because we want to study the higher order
problem of how hard it is to learn an algorithm for convergence, not how long
it takes to converge using a particular algorithm. We want to find the opti-
mal algorithm for convergence. The optimal algorithm, when implemented by
an agent, will result in the quickest convergence. To study the complexity of
finding an optimal algorithm for convergence we show how to map instances
of language convergence problems to instances of a Decentralized Partially Ob-
servable Markov Decision Process (Dec-POMDP ) [4]. The optimal algorithms
for convergence correspond to the optimal joint policies of a Dec-POMDP . We
make use of previous complexity results for finding the optimal joint policy for
a Dec-POMDP ([4], [5])

By mapping language convergence scenarios to the Dec-POMDP model we
can gain insight on the computational complexity of finding an optimal solu-
tion. This provides us with insight on the worst-case complexity of solving these
language convergence scenarios.

In this paper, four language convergence scenarios are examined, single goal
oriented, multiple goal oriented, teacher-student, and teacher-student with pop-
ulation observation. Each scenario can be modeled as a type of Dec-POMDP .

In Section 2 we go over the Dec-POMDP model and the mapping to the lan-
guage convergence situation. Next, we examine four different language conver-
gence scenarios mapped to the Dec-POMDP . Section 3 examines the complexity
of the four different language convergence scenarios. Finally we talk about some
related work, future work, and conclusions.

2 Language Convergence as a Dec-POMDP

In this section we describe the language convergence problem as a Dec-POMDP .
A Dec-POMDP is very similar to a POMDP except that in a Dec-POMDP

the state changes based on the actions of multiple agents. In a Dec-POMDP ,
we have a set of agents embedded in an environment, modeled as a global state.
The agents can execute actions that produce a change in the environment and
possibly a reward. Each agent makes its own observation about the environment
at each time step. In a POMDP there is only a single entity controlling the
system. While the process is controlled by multiple agents, there is only one
reward which is based on the single global state.

The structure of the behavior of the agents is:

1. Each agent, in parallel, observes the environment. This generates an obser-
vation for each agent.

2. Each agent, in parallel, chooses an action by using their policies and the
observation they have just perceived.
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3. The global state changes, based on the current global state, and the actions
of every agent.

4. One reward is generated for all the agents based on the previous state, the
actions executed, and the resulting state.

Formally, a Dec-POMDP is a tuple:

M =< S, A, P, R, Ω, O, T >

where (assuming the number of agents is n):

– S is a finite set of states, with initial state s0. The state at the current time
will be called the global state.

– A = {Ai|Ai is a finite set of actions for agent i.}
– P is a transition function, giving the probability

P (s′|s, a1, . . . , an) of moving from state s to state s′, given actions a1, . . . , an,
where ai is the action executed by agent i.

– R is a global reward function, giving the system-wide reward R(s, a1, . . . ,
an, s′) when actions a1, . . . , an cause the state-transition from s to s′.

– Ω = {Ωi|Ωi is a finite set of observations for agent i }
– O is an observation function, giving the probability O(o1, . . . , on|s, a1, . . . ,

an, s′) that each agent i observes oi when actions a1, . . . , an cause the state
transition from s to s′. Where oi is the observation of agent i.

– T is the time-horizon (finite or infinite) of the problem.

A joint policy < δ1, . . . , δn >, is a set of local policies, δi where

δi : Ω∗
i → Ai (1)

The joint policy specifies a policy for each agent that will determine the action
an agent should take at each time step based on the sequence of observations it
has made. Figure 1 is an illustration of the Dec-POMDP model.

See [5] for a full description of various classes of the Dec-POMDP . Roughly,
we can characterize the various sub-classes of Dec-POMDP by how much of the
global state each agent can observe (from each agent fully observing the global
state, to each agent only observing its own “local” state) and the accuracy to
which they can view the states (from viewing the state itself to viewing an
observation of it). Different combinations of these properties induce different
complexities when solving the Dec-POMDP .

A Dec-POMDP has independent transitions if the global state can be fac-
tored into n components such that the actions of an agent affects only its com-
ponent. An independent transition Dec-POMDP will be referred to as an IT,
Dec-POMDP

A Dec-POMDP has independent observations if the state can be factored
into n components such that the observations of an agent depend only upon its
component and the actions it has executed. An independent observation Dec-
POMDP will be referred to as an IO,Dec-POMDP
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Fig. 1. Illustration of a Dec-POMDP . St represents the state of the environment at
time t. A1

t and A2
t represent the actions that agents 1 and 2 executed at time t. Rt is

the reward at time t, and O1
t and O2

t are the observations at time t. The dotted arrows
between the observations and actions indicate that these observations were known when
making the decision on which action to execute at the next time step.

Following [5], we assume that the same decomposition of the state holds for
the independent transition and independent observations. We will refer to an
agents component of the state as its partial view or its local state. The partial
view of an agent will be denoted by Si.

An example of an IO, IT Dec-POMDP is a simple gridworld situation. Sup-
pose multiple agents are wandering around a 2-d gridworld. The state of the
system would be the aggregate locations of each agent. The partial view of each
agent would be its location. It is easy to see that any action an agent does (for
instance “Move North”) will only affect its own state, thus satisfying the inde-
pendent transition property. We can further have each agent observe only its
own location, thus satisfying the independent observation property.

If each agent can determine the global state based only on its sequence of
observations, we say the Dec-POMDP is Fully-Observable. In our gridworld ex-
ample, this would be like each agent knowing the locations of every other agent
based only on its own observations.

If there is a mapping from the aggregate observations of every agent to the
current state, then we say the Dec-POMDP is Jointly Fully-observable A jointly
fully-observable Dec-POMDP is called a Dec-MDP . The gridworld example
above is actually a Dec-MDP . The aggregation of each agents observations is,
by definition, the state of the system.

If each agent can determine its local state from its sequence of observations,
then we say the Dec-POMDP is Locally Fully-observable.

A finite horizon Goal-oriented Dec-MDP is a Dec-MDP with the following
conditions (taken from [5]):

1. There exist a set of states G ⊂ S of global goal states. At least one state of
G must be reachable by some joint policy

2. The process ends at time T
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3. All actions in A incur a cost, C(ai) < 0. For simplicity we assume the cost
is dependent only upon the action.

4. The global reward is R(s, < a1, . . . , an >, s′) =
∑n

i=1 C(ai)
5. If at time T the system is in a state s ∈ G there is an additional reward

JR(s) ∈ � that is awarded to the system for reaching a global goal state.

A GO-Dec-MDP has uniform cost when the cost of all the actions are the same.
There is also a NOP action that an agent can perform which has cost 0 and does
not change the state.

2.1 Finding the Optimal Policy

The main question is, how hard is it to find a joint policy that maximizes the
expected total return over the finite horizon? Bernstein et. al. in ([4]) have shown
that deciding whether there exists a joint policy with at least a certain value,
via an off-line algorithm, is NEXP-Complete for Dec-POMDP and Dec-MDP
where n ≥ 2.

The work in Dec-POMDP s has looked at finding a joint policy offline. This
means that the model is known, and as many simulations as needed can be run.
While during the search for the policy the model is known, during the execution
of the policy the agents will not know the entire model. The joint policy that is to
be found must take into account the constraints of the agents during execution
of the policy.

Goldman et. al. study the complexity of various subclasses of the Dec-POMDP
problem in [5]. Table 1 summarizes the results from [5]

Table 1. Complexity of Dec-POMDP and related models. The third column indicates
where this result was obtained. The lemmas and section 3 refer to [5]. The NBCLG
property will be examined in Section 2.3.

Model Complexity
Dec-POMDP NEXP-C [4]
Dec-MDP NEXP-C [4]
IO,IT Dec-MDP NP-C Lemma 4
IO, IT Dec-POMDP NEXP Section 3
GO-Dec-MDP NEXP-C Lemma 3
IO, IT, GO-Dec-MDP, 1 goal P-C Lemma 5
IO, IT, GO-Dec-MDP, NBCLG P-C Lemma 6

2.2 Mapping the Language Convergence Problem to a Dec-POMDP

The Dec-POMDP is an appropriate model to use to study the language conver-
gence problem because the Dec-POMDP explicitly models decentralized control.
There is a global goal - that of the entire population having the same language,
but only local control - each agent independently decides what action to take. A
Dec-POMDP explicitly models this situation, as there is a global reward based
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on the state of the system, yet the dynamics of the system are based on the
aggregate decisions of each agent.

The first issue when mapping language convergence scenarios to Dec-POMDP
is how to represent a language. We look at a simple type of language, represented
as an association matrix. A language is considered as a mapping from meanings
(objects, actions) to signals (words). There are many ways this mapping could be
represented (for instance the mapping is a continuos function from the space of
meanings to the space of objects in[2]) but one popular way is as an association
matrix. The rows of an association matrix correspond to meanings, and the
columns to words. An entry at row i and column j denotes the association
between meaning i and word j. In this work we do not constrain languages to
be represented as association matrices. We do, however, require that the number
of different languages be finite. An association matrix can represent synonyms
(multiple entries in a row) and homonyms (multiple entries in a column).

When representing a language as an association matrix, agents can change
their language by modifying the association values in the matrix. In this work
we assume that each agent has a finite set of actions that can modify its language.

In the language convergence case we want to reward the population when all
the agents have the same language. We can do this by setting the state space
to reflect the languages used by the agents. Let α be a set of n agents. Each
agent can use a language from the finite set L of languages. At each point in
time, every agent will be using a particular language from L. Let li denote the
language of agent i. We set the state of the Dec-POMDP at time t to be the
aggregate of the languages for each agent: st =< l1, l2, . . . , ln >. Thus the state
set will be Ln.

An optimal joint-policy is a policy that, when the agents use it, will result in
quick convergence to a high value state. We can formally specify this by setting
the reward function to reward quick convergence. We constrain the reward func-
tion to be independent of the actions and the previous state, R(s, a1, . . . , an, s′) =
R(s′). Every state will have a small negative reward, except for the states where
every agent has the same language. These states will have a high positive reward.

R(s′ =
〈
lt+1
1 , . . . , lt+1

n

〉
) =

{
1 if lt+1

1 = lt+1
2 = . . . = lt+1

n

−ε otherwise

Where lt+1
i is the language used by agent i at time t+1 and ε is a small positive

constant.
Under this reward function the policy that maximizes reward will minimize

the number of states to get to a converged state from s0.
We can also model situations in which specific languages have different re-

wards. As a means of communicating information, a language must be effective
(allow agents to communicate all important meanings),efficient (computable,
tractable) and shared (each agent must be able to understand each other).

We can assign to each language an objective value based on its effectiveness
and efficiency. The reward function will give a higher reward to a state where
all the agents have converged on a more effective and efficient language.
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The set of actions that each agent can execute will depend on the type of
languages that each agent can use. In this paper we will assume that each agent
has the same action set, A. The transition probability function P will define the
effects of executing an action.

The observations possible to an agent also have a large effect on the compu-
tational complexity of finding a solution. In this paper we will assume that each
agent has the same set of observations, Ω.

2.3 Four Language Convergence Scenarios

In this section we go over four different language convergence scenarios. They
differ from each other in terms of how much information each agent has about
itself and the other agents in the population.

Single Goal Oriented. One of the simplest cases of a convergence problem
occurs when there is only one language that has a positive reward. In this simple
case, each agent can only observe its own language. In addition, let us assume
that the action the agents can execute will change their language in some form,
but the effect of the action does not depend upon the language of the other
agents. In this situation each agent is moving in the state space trying to find
the language that every agent will converge upon. This can be mapped to a
uniform cost IO, IT GO-Dec-MDP .

An example of this situation would be where a language is represented as an
association matrix where each row can only have a single entry. This means that
each language does not contain any synonyms or homonyms. The set of actions
would be the set of row swaps - that is we swap the meanings for two words.

Assume that sg is the single global goal state that the agents want to converge
to. Then since we are using an uniform cost GO-Dec-MDP , every state except
sg will have a negative reward.

Since the effect of the actions will only change the language of the agent that
executed the action; and since the effect is determined only by the agents lan-
guage and not on the other agents languages, the system satisfies the independent
transition property.

Since the observations of a single agent depend only upon its own language
the system satisfies the independent observation property.

Thus, we have a uniform cost, independent transition, independent observa-
tion, jointly-fully observable GO-Dec-POMDP . By Lemma 5 of [5] deciding this
problem is P-Complete.

Intuitively this result makes sense, even though each agent only observes its
own language. The policy for each agent can be determined independently of the
policies for every other agent. Since it is known that all the agents will eventually
reach the single goal state (since that is the only state that provides a positive
reward), we can decompose this problem into n separate MDP’s (assuming that
the Dec-POMDP is locally fully observable).
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Many Goal-Oriented. We can extend the Single Goal-Oriented case to involve
multiple languages that the population can converge upon. This is more realistic
since there are often multiple languages that a population can converge upon.

This situation is difficult because each agent might choose to pursue a different
goal. Each agent will have to coordinate with the other agents to choose the same
goal, which will lead to a very complex space of policies to search in.

Goldman and Zilberstein outline the No Benefit to Change Local Goals
(NBCLG) property, which, if satisfied, will allow the system to be decomposed
into a set of MDP. If a system satisfies the NBCLG property, it is P-Complete
(Lemma 6 of [5]

The NBCLG property basically makes sure that it never is beneficial for an
agent, while executing the optimal joint policy, to switch which goal state to go
to. For instance, suppose that there is an optimal joint policy to one of the goal
states. This can be computed for each agent by constructing a MDP for each
agent to its component of the joint goal state. While executing the optimal joint
policy an agent might veer from the optimal route (since the effects of actions are
probabilistic, there is a chance that this might happen). If the NBCLG property
is satisfied then even when an agent veers off the optimal route, it is guaranteed
that the agent will not switch to another goal state.

Satisfying the NBCLG property depends upon the structure of the transition
probability function. Verifying that a system satisfies this property would be
quite difficult as well, since we would have to compute the value of changing
goals at every intermediate step.

Teacher-Student. In many situations agents change their language via a lan-
guage game ([6]). In a language game, a speaker and a hearer agent are drawn
from the pool of agents. The agents interact with each other, exchanging words
or sentences from their language. After the agents interact, either the hearer or
both the speaker and hearer change their language based on the communicative
success of the interaction.

What makes this situation different is that the language of an agent changes
based on the language of another agent. In our previous examples, each agent
modified its language independent of the languages of the other agents.

We can model this situation in a Dec-POMDP by having the actions corre-
spond to the execution of a language game with a particular agent. There will
be n actions, one for initiating a language game with each agent. The effects of
these actions are to change the language based upon the language of the agent
executing the action as well as the agent that is chosen to talk with.

In this case the independent transition property does not hold. The prob-
ability of an agents state at time t + 1 depends on both participants of the
language game. The Dec-MDP still has independent observations though. Thus
this situation can be modeled as an IO, Dec-MDP .

The complexity of an IO, Dec-MDP has not been studied yet. The complex-
ity of an IO, Dec-MDP is bounded by the complexity of an IO,IT Dec-MDP
(NP-Complete by Lemma 4 of [5]) and the complexity of a Dec-MDP (NEXP-
Complete)
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Teacher-Student with Population Observation. We can extend the previ-
ous Teacher-Student case by having each agent observe not just its own language,
but the languages of the whole population. This situation will be mapped to a
Dec-MDP .

Instead of having each agent observe its own language, we can allow the
agents to sample the languages of the the entire population. In this case, the
observations are dependent upon the state of the entire population and not just
on the state of the current agent.

For instance, the observation of an agent might be of the language that is
the most used. Or else, altering Ω to be the set of natural numbers the obser-
vation can be the number of agent using the same language as the observing
agent. In either of these situations the observations depend upon the state of
the population and not the partial view of the agent.

In this case, the language convergence problem is mapped to a Dec-MDP . The
complexity of finding an optimal solution to a Dec-MDP is NEXP-Complete.

3 Complexity of Language Convergence

The four situations outlined above varied widely in terms of complexity. What
makes the different situations easy or difficult to solve? The key is the level of
uncertainty present in the system. There are two levels of uncertainty present,
the first is the agents uncertainty of its own state, and the second is the agents
uncertainty about the state of the other agents. Both of these factors affect the
complexity of finding an optimal solution. Uncertainty about the agents state
means that there will be an exponential number of possible policies that must
be searched. Uncertainty about the state of other agents affects the size of the
joint policy space that must be searched through.

In the general case the local policy of each agent will be a mapping from
sequences of observations to actions. The policy must be from sequences of ob-
servations to actions because the agent is uncertain about the state that it is in.
This means that there are |A|ΩT

possible policies for the agent (where T is the
finite horizon).

On the other hand, when the agent has knowledge of its state, the size of the
policy can be substantially reduced. See [5] for more details.

While uncertainty about the local state of an agent affects the size of a policy,
uncertainty about the state of other agents affects the number of policies that
must be searched. If each agent knew the state of all the other agents then
we could just model this as a MDP or POMDP and solve it. But since each
agent does not know the state of the other agents we have to search through the
combinations of policies.

In the single goal oriented case, each agent knew with certainty its current
state. Lemma 1 of [5] proves that an IO,IT Dec-MDP is locally fully observable.
This means that the size of the space of policies that need to be searched can be
reduced because we don’t have to consider all possible sequences of observations.
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Rather, a policy for an agent will be a mapping from the local states of the agent
to actions. This significantly decreases the size of the space of policies to search
through.

In addition, there is no need to search through a joint policy space in the
single goal oriented case. Since there is only one state with a positive reward,
and each agent is striving to maximize reward, it is unnecessary to consider the
policies of the other agents. It is guaranteed that at some point all the agents
will reach the single goal state. Because of this assumption, finding an optimal
joint policy reduces to finding n different policies, one for each agent. This is
much less complex than searching for a single joint policy.

We can see that in the single goal oriented case there is no uncertainty about
the local state of the agent and no uncertainty about the behavior of the other
agent. Thus finding a solution is P − Complete.

The second situation, multiple goal oriented, is very close to the first situation
except that we have added uncertainty about the state of the other agents. In
the multiple goal case, the agents might converge upon different goal states, thus
we cannot simplify the situation to finding n different policies.

If the Dec-POMDP satisfies the NBCLG property, though, it is like the single
goal oriented case. Finding a policy for an NBCLG satisfying GO-Dec-MDP is
similar to finding a policy for a single goal oriented GO-Dec-MDP . Since we
know that once a goal is chosen no agent will veer from that goal, we are free to
look at each goal state, and find the optimal policy for each agent to get to its
partial view of the goal state. The goal state chosen will be the one which has
the highest reward. Since we know the agents will never veer from going towards
this goal state, we have found the optimal policy.

The third situation is another case where the agent does not know the state
of the other agents, it is similar to the multiple goal oriented case.

The fourth situation, teacher-student with population observation, provides
the most complex case. In this situation each agent does not know its own
state, nor does it know the state of the other agents. Thus finding a policy is
computationally expensive, since each policy will have to take into account all
the possible sequences of observations, and all combinations of local policies will
have to be considered.

4 Related Work

A good review of many Multi-Agent System models to the language convergence
problem is given in [7]. There has been some work in studying the theoretical
underpinnings of MAS models. Cucker, Smale, and Zhou [2] provide a mathe-
matical formulation for a MAS simulation. In their work, each agent gets a set
of example sentences from every other agent based on a pre-specified level of
interaction between the agents. They investigate the number of examples each
agent must be exposed to in order for the population of agents to converge.

[4] introduces and studies the complexity of finding optimal policies for the
Dec-MDP and Dec-POMDP models. In this paper they show that deciding
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these problems is NEXP-Complete. In other papers they present algorithms for
constrained versions of these problems.

[5] studies various modifications of the Dec-MDP and Dec-POMDP mod-
els. These variations include goal directedness, communication, and indepen-
dent transitions/observations. They showed the complexity of these problems
as well as specified two algorithms for the goal directedness cases. In some
cases, for instance when there is a single goal state and the transitions and
observations of each agent are independent of each other, the problem becomes
P-Complete.

5 Future Work

While the work here focuses on theoretical bounds for finding the optimal pol-
icy off-line, it would be very interesting to see if we can use some multi-agent
reinforcement learning algorithms to learn an optimal policy.

This work shows that finding the optimal policy can be quite computationally
expensive. This is because the specificity of the model is quite high - all actions
every agent takes must be analyzed. On the other hand population based models
like the Language Dynamical Equation ([8]) are much more tractable while giving
up knowledge of the specifics of agents actions.

We are investigating approaches that incorporate the best of both worlds. The
creation of a model that has the generalization and tractability of the LDE but
also the fine-grained control and information that a MAS model can give us.

The crucial parameter in deciding the complexity of the language conver-
gence problem is the amount of information that an agent has about the rest
of the population. In the case of a fully observable Dec-POMDP , each agent
can know the state of every other agent, and thus the problem can decompose
into n independent MDP’s. Direct communication is a possible way for agents
to achieve full observability, but communication usually incurs a cost. This cost
might be managed by specifying an interaction topology that limits the interac-
tion between agents. Delgado, in ([9]), shows that a set of agents can agree on
the same convention even when each agent might not interact with all the other
agents. This work could provide a starting point for studying how limiting the
interaction of agents could still result in language convergence.

A interesting avenue for future work would study how different interaction
topologies for message passing affect the rate of convergence, and the complexity
of finding optimal joint policies.

6 Conclusion

In this work we have investigated the complexity of finding an optimal policy for
language convergence problems. Our main contribution is in mapping instances
of language convergence problems to Dec-POMDP ’s

Four examples of language convergence problems, and their associated Dec-
POMDP ’s were shown. In the simplest case, when there is only one language
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that all the agents can converge upon, deciding whether an optimal policy exists
is P-Complete.

At the other extreme we have a situation where the agents are playing lan-
guage games and each agent must decide who to interact with at every time
step. In this case, when the agents cannot fully observe what language they are
currently using, deciding upon an optimal policy is NEXP-Complete.

We have argued that the increase in complexity of finding an optimal policy
is based on 2 levels of uncertainty, uncertainty over an agents local state and
uncertainty over the state of the other agents in the population.

By mapping instances of the language convergence problem to instances of
Dec-POMDP ’s we have been able to study the worst case complexity of finding
an optimal algorithm for the agents. This provides us with an intuition on what
makes the language convergence problem complex. In future work we plan on
adding communication between agents thus allowing them to gain knowledge of
the languages used by other agents.
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