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ABSTRACT 

We use Monte Carlo simulations and assumptions from evolutionary game theory in 

order to study the evolution of words and the population dynamics of a system 

comprising two interacting species which initially speak two different languages. The 

species are characterized by their identity, vocabulary and have different initial 

fitness, i.e. reproduction capability. The questions we want to answer are: a. Will the 

different initial fitness lead to a permanent advantage? b. Will this advantage affect 

the vocabulary of the species or the population dynamics? c. How will the spatial 

distributions of the species be affected? Does the system exhibit pattern formation or 

segregation? We show that an initial fitness advantage, although is very quickly 

balanced, leads to better spatial arrangement and enhances survival probabilities of 

the species. In most cases the system will arrive at a final state where both languages 

coexist. However, in cases where one species greatly outnumbers the other in 

population and fitness, then only one species survives with its “final” language having 

a slightly richer vocabulary than its initial language. Thus, our results offer an 

explanation for the existence and origin of synonyms in all currently spoken 

languages. 

 

PACS: 05.10.Ln; 89.20.-a 
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INTRODUCTION 

Language is a human trait of considerable importance. Human language is not static. 

Understanding the way it changes and the way it affects the biological evolution of 

the human species is a very interesting task. The evolution of language is a subject of 

interdisciplinary interest and has attracted the attention of philosophers, linguists [1, 

2], physicists [3] and biologists [4]. Recently, mathematical and computational 

modeling [5, 6], has been applied to the language evolution of a system (i.e. a group 

of people) with one common language. This allowed the derivation, in very simple 

terms, of some important aspects of language. For example, transmission errors limit 

the number of words that can be reliably communicated and hence the lexicon size of 

an oral language, but the organization of the language into higher levels of syntax 

allows this limit to be transcended. This has a formal equivalence with Shannon’s 

information theory, where language becomes a kind of ‘noisy channel’ [7]. Even for 

indefinitely large populations not subject to transmission errors, the combined lexicon 

size cannot be infinite. Given finite learning-time and capacity, population-dynamic 

arguments demonstrate that only a finite set of words can survive [8]. However, the 

models that are used to describe this evolution are based on a homogenous 

distribution. Thus, the spatial arrangement of the system is not considered. In most 

cases, furthermore, the number of people comprising the system is also kept constant. 

Very recently, a particularly interesting attempt was made to study the competition 

between languages [9]. An extension of this simplified model considering spatial 

effects by means of reaction diffusion equations is already presented in [10]. In spite 

of their interesting results, both models depend on the assumption that from two 

competing languages an individual will adopt only one, based on the current “status” 

of the language [10].  Also, an individual may change from one language to the other 
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and forget his previous choice. Language adoption in reality is, however, a complex 

task done gradually by word learning. Moreover, the above models do not allow the 

possibility of an individual being bilingual, and they do not consider population 

dynamics since the number of individuals is constrained to be constant.  

 In this paper we use Monte Carlo Simulations to study the language evolution and the 

population dynamics of a system comprising two “species” A and B, which are 

initially randomly distributed in space. Initially the species speak two different 

languages. The first species speaks language A, which for the present study simply 

means that all such individuals initially have a common vocabulary of 10 words. The 

second species initially speak language B. These also have a common vocabulary of 

10 words but these words are different from the words of language A. There is no 

overlap between the words of the two languages. The species are allowed to move on 

the lattice performing random walks. They also interact with their neighbors as they 

are both able to learn words that are unknown to them or forget words that are in their 

vocabulary. Note that the vocabulary does not characterize the species identity. An A-

individual for example may learn or forget words from his/her language, resulting in 

speaking a different language, but his/her identity remains the same. He/She always 

belongs to the A-species. 

The individuals are also able to reproduce themselves leaving offspring at their 

neighborhood and they die at a constant rate. Interaction between species means 

communication. Following the basic assumption of the evolutionary game theory, we 

assume that correct communication conveys biological fitness. Individuals that 

communicate more successfully have increased survival probabilities as they leave 

more offspring. An alternative interpretation is that correct communication will 

increase the "social" status of the individual. Thus, he will leave more “followers” that 
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will adopt his terminology and his ideas. In a broader sense the same formalism can 

be used to study the propagation of ideas as well. Monte Carlo simulations based on 

the above simplified model reveal a surprisingly rich behavior which is difficult to 

predict a priori. There are three main groups of questions that arise while studying 

such a system of two species. 

First, there are questions concerning population dynamics: a. Will the different initial 

fitness lead to a permanent advantage? b. Is there a difference in considering a system 

of two species with the same population and different initial fitness and in considering 

a system of species with the different initial population and the same initial fitness? 

Or the two problems are connected and by finding the solution of the first we also 

solve the second. 

Then, there are questions concerning the language evolution: a. How does the 

vocabulary of the species evolve? Will an initial fitness advantage affect the 

vocabulary of the species and how? How many words survive from each language in 

an evolutionary stable system?  

And finally there are questions concerning the spatial arrangement of the species: a. 

how will the spatial distributions of the species be affected? b. Does the system 

exhibit pattern formation or segregation? c. If yes how can we quantify it?  

The present study is motivated by a real world situation. Namely, to estimate the 

impact on the vocabulary of a society that accepts a significant number of emigrants. 

  

METHODS 

We build a model to study the time evolution of a system of two species with different 

languages via Monte Carlo simulations. The space considered is a discrete lattice in 

two dimensions, even though our arguments can be independent of the particular 
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space used. The size of the system is 100x100 units (sites). Each site of the lattice can 

either be empty or it can be occupied with “individuals” A or with “individuals” B. 

Initially, each site of the grid is either empty or occupied by species A with a 

probability cA or by species B with a probability cB. Thus, each individual, i, is 

characterized by its species identity, by its fitness fi, which is a measure of the 

individual relative capability for reproduction, and by its vocabulary. The vocabulary 

V of an individual consists of an array of 20 elements. An element has a value of 1 if 

the corresponding word is known to the individual or 0 if the word is unknown. 

Initially, each A individual has a vocabulary that is 

1, 10
( )

0, 10A

i
V i

i
≤⎧ ⎫

= ⎨ ⎬>⎩ ⎭
     (1) 

 

and each B individual has initially a vocabulary 

0, 10
( )

1, 10B

i
V i

i
≤⎧ ⎫

= ⎨ ⎬>⎩ ⎭
     (2) 

 

Individuals belonging to each species are subject to the following activities: 

Movement, communication, reproduction and mortality. 

1) Movement. An individual i is randomly selected, by use of random numbers. 

One of the four nearest neighbor sites of this individual is also randomly 

selected. In case the neighboring site is empty then the individual moves to this 

site. If it is occupied by another individual j then the two communicate (interact) 

as described below. 

2) Communication by language. In the event that the destination site is occupied, 

communication occurs. This communication confers fitness to both individuals 
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according to the number of words individual-i has in common with the 

individual-j in the neighboring cell. Specifically:  

a) The payoff for the interaction is equal to the number of words i and j have in 

common. (e.g., three common words means a payoff of 3). This payoff value 

is added to the fitness of each individual, as a reward for successful 

communication.  

b) A learn-forget process follows. If individual i does not know a word which is 

known to j then there is a probability p that i will learn it from j. If this specific 

word is learned, then the corresponding array element of his vocabulary will 

turn from 0 to 1. However, there is also a probability q that j will forget this 

word not known to i. Similarly, for words which are known to i and unknown 

to j. Thus, words that are unknown to the majority of the population have 

increased probability of being lost from the language. 

3) Reproduction. At any instance after the motion of an individual, there is a 

probability pr that a reproduction event will take place. Thus, if a new individual 

is to be born, the selection of the individual to be reproduced is not random but 

proportional to the individual fitness. This means that individuals with large 

fitness have a higher probability for reproduction. 

We use two different models of selection according to fitness. The first model is to 

select individual k from the lattice with probability
∑

=

k
k

k
k f

f
p , where fk is the fitness 

of individual k and the sum is over all individuals. The fact that we normalize over the 

total fitness implies that there is information available to all individuals about the 

fitness status of their society. For this reason this model is referred as the "global" 



 8

model.  In the second model information about the individual fitness is limited to the 

Moore Neighborhood (eight nearest sites) as follows:  In case a reproduction event 

will take place one site of the lattice is selected at random. We check the site and its 

Moore neighborhood to verify that it contains at least one individual. If no individuals 

reside in any of the nine sites then a new random choice of a site is made, until there 

is at least one individual in this set of nine sites. From these nine sites an individual is 

selected for reproduction with probability
∑

=

k
k

k
k f

f
p , where fk is the fitness of the 

individual and the sum is over the fitness of the individuals located in the area 

comprised by the selected site and its Moore Neighborhood. We refer to this second 

model as the "local" model. The main conceptual difference between these two 

models is that in the "local" model an individual regulates his genetic activity based 

on information about his "social" status that comes only from his immediate 

neighborhood, while in the "global" model this information comes from the complete 

"society". In both models individuals with higher value of fitness have increased 

probability of being selected for reproduction. A single offspring is created and placed 

at a random in the Moore Neighborhood of the parent, if and only if this site is empty. 

If the selected site is occupied then the reproduction procedure is aborted. The 

offspring inherits his father’s identity (A or B), all his vocabulary and a certain 

percentage, r, of his fitness. Also, the father’s fitness is decreased to the same factor r 

of its previous value. Thus, there is a cost to reproduction.  

4) Mortality. At any instance, after checking for the reproduction process there is a 

probability pd that an individual will die, and if this happens he/she is removed 

from the lattice. The selection of the individual to die is completely random. 
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5)  After each selection for movement of an individual i the time is incremented by 

1/ns, where ns is the total number of individuals in the lattice. Thus, one time 

unit or Monte Carlo Step (MCS) statistically represents the time necessary for 

each individual to move once. The simulation continues until a prescribed total 

time is reached.  

For statistical purposes we average our results over a large number of realizations. 

In most cases the time evolution of the system is followed up to 6000 MCS. In all 

simulation results presented in the present manuscript we have used the values p=0.1, 

q=0.1, pr=0.1, pd=0.05, r=0.80 

Using the above parameters, the average lifetime of an individual in this system 

turns out to be equal to 19 MCS. (It is the mean of a negative binomial distribution 

with n=1 and pd=0.05). Thus, our study is limited to a time period of approximately 

320 generations, unless mentioned otherwise. 

 

RESULTS AND DISCUSSION 

a. Homogeneous system with constant number of individuals 

Initially we consider a model where the birth and death rates are always zero. In this 

case the population is kept constant. This system is similar to the one studied by 

Patriarca et al. in [10]. We start with a system comprised of two species with the same 

concentration and the same initial fitness, randomly distributed on a square lattice. 

The species move as described in the previous section. We monitor the average 

number of words that individuals of both species know, as a function of time. The 

species are allowed to gain fitness through successful communication. We monitor the 

average fitness per individual, f, as a function of time. 
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The language evolution for this case is presented in Figure 1a. We calculate 

the average number of words of each language that individuals of each species know 

and plot it as a function of time for a system with concentration c=0.15, for both A 

and B species. Thus, we sum the number of words of Language A that the A 

individuals know at time t and we divide it by the number of A-individuals. This is the 

"Species A -Language A" curve. We repeat the same procedure for 150 realizations 

and take the statistical average. From Figure 1 we see that the species start with a 

vocabulary of 10 words of their own language and they end up with a vocabulary of 

(on average) 10 words, five of their own language and five of the other species 

language. Thus, the population becomes homogeneous, its vocabulary and the number 

of words is maintained. This is anticipated, since a rich vocabulary is not in this case a 

competitive evolutionary advantage. The average fitness f is presented in Figure 1b. 

Note that the curves are almost straight lines in a linear plot (figure not shown) giving 

the impression that the fitness increase is linear but this is not correct. This is shown if 

we plot the same data using logarithmic axes as in Figure 1b. We may understand the 

form and slope of the curves as follows: The change df in time dt depends on the 

probability that the individual will meet another individual and on the payoff received 

by their interaction. Suppose that an individual moves for a time interval dt. The 

probability per unit time, C, that he/she meets another individual is proportional to the 

number of individuals, provided that the distribution of individuals is random. The 

average payoff gained is not constant in time because there is word learning. We 

denote it with p(t). Since the number of “collisions” in time dt is expected to be Cdt, 

the fitness increase df will be  

)(tpC
dt

fd
=        (3) 
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where C is expected to be constant, since the number of individuals is constant here 

and p(t) is expected to  increase with time as the learn-forget process described in the 

algorithm favors the preservation of common words. 

In order to understand why p(t) is increasing with time consider the following: 

Since in the simulation process one Monte Carlo step corresponds to the time where 

each individual moves once and since the number of words in the vocabulary of the 

species was set equal to 10, we expect that p(t)=10 for small t. At the very initial 

stage of the system, one individual might encounter an individual of the same species 

so that the total fitness of the system increases by 20 points (10+10), or an individual 

may encounter one of the opposite species so that the total fitness does not increase. 

The average fitness change per transaction is thus 10 points. At long times the species 

develop a common vocabulary of 10 words. Then, the average fitness increase per 

transaction is 20 points. Thus, we expect a gradual increase of the payoff with time 

and this is verified by the simulation. 

 

b. Homogenous System with variable number of individuals 

Next we consider the case of two species having exactly the same initial fitness but 

we allow reproduction and death processes as described in the Methods section. We 

expect that the language evolution of the system to reach a steady state when all 

individuals obtain a common vocabulary, as in that case the “learn – forget” process 

mentioned above stops. For all the simulations of a homogeneous system presented in 

the present paper we have used a 100x100 square lattice with initial concentration 

cA=cB=0.15 and initial fitness fA=fB=30. There are three important processes to 

consider, each with its own time-scale.  
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(i) Stabilization of the total population number. Figure 2a and b show plots of the 

number of individuals and fitness per individual vs. time for both species according to 

the “local” model. The population dynamics are characterized by a rapid initial 

increase followed by a steady state at a value of approximately 2600. This is less than 

the full capacity of the lattice (5000 for each individual). The initial increase of the 

population is due to the fact that the lattice is relatively empty and there is room for 

the individuals to place their offspring. The effective birth rate exceeds the death rate 

and there is a population increase until the point where the lattice becomes rather 

overcrowded. At this point there is no room for the individuals to reproduce. The 

steady state is reached when the effective birth rate is balanced by the death rate. In 

Appendix A we estimate that with the values of parameters used here the total 

coverage should be approximately 5000, which is in good agreement with the curves 

of Figure 2a. Figure 2c shows the population dynamics of a homogeneous system 

according to the "global" model.  Notice that a declining phase appears as a result of 

the fact that individuals regulate their reproduction rate based on information from the 

entire society. If the fittest parts of the society stop reproduction due to local 

overcrowding then the reproduction rate of all the society drops, although there may 

be empty space in several locations. 

 

 (ii) Extinction of one of the species. The second characteristic time is the time needed 

for the extinction of one of the two species. From the point of view of the population 

dynamics, we expect the coexistence of both species as they are identical in initial 

concentration and fitness and know the same number of words. However, when we 

allow the system to evolve for a long time we observe that usually by the end of the 

run only one of the two species survives. This is shown in Figure 3. Figure 3 gives the 
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2-species “survival” probability i.e. the proportion of runs (out of 150 runs) for which 

both species still survive at time t. From an initial value of 1.00 this probability drops 

exponentially. The rate is 3.7 x 10-6 (MCS)-1, using the typical 100×100 lattice. Note 

that when we used a smaller 50 × 50 lattice, then the rate was 1.95 x 10-5   (MCS)-1 

(figure not shown). Concerning the survival probability curve for the “global” model 

the exponential decline has a slope of 3.3 x 10-5 (MCS)-1. The measured time-

constants are 50200 MCS for the “local” model, and 10000 MCS for the “global” 

model. This behavior is reminiscent of the poisoning effects noticed in the A+B 0 

reactions associated with noise-induced kinetic phase transitions [11]. Another way of 

viewing this is in terms of demographic stochasticity [12]. Because the two species 

are identical in every way, given a constant total population, the only interaction is 

through the fact that any increase of NA must be matched by a decrease of NB. This is 

the “gamblers ruin” scenario, which constitutes a random walk to extinction [13]. 

Appendix B develops a model using this approach. Provided the number of states is 

large, then the probability associated with coexistence (states 1 to K-1) falls 

exponentially. For the “local” model the time constant is found to have a mean value 

of 50000 MCS, which is in excellent agreement with the time-constant 50200 MCS 

that is observed in Figure 3. According to the model of Appendix B the above times 

increase when we increase the size of the simulated system but are less sensitive to 

the initial species concentration, which is what we observe here. In the present study 

we are in the situation where the two species coexist. 

 

(iii) Establishment of a common language. We notice that the fitness per individual is 

constantly increasing with time for both species. This is not done in the quasi-linear 

way observed in Figure 1b because now the parameter C in Eq. 3 is no longer a 
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constant, as individuals are born and die. This increase in fitness is conferred by 

communication and is associated with an increase in the number of words. Figure 4 

shows a plot of the average number of words of the A language that members of the A 

and B species know and the average number of words of the B language that members 

of the A and B species know. As expected, no language prevails over the other and the 

result is a population of two species that speaks both languages. This is a situation that 

resembles the linguistic situation in New Guinea, for example, where in an area of 

800,000 km2 there are about 1000 different languages [14] (not dialects), and where 

there are several individuals speaking more than one language. The important time 

constant here is the time needed for the development of a common language. For a 

100x100 lattice with initial concentrations cA=cB=0.15 and initial fitness fA=fB=30 

units and interactions according to the "local" model, this time is found to have a 

mean value of 48900 MCS (±12100 MCS). The common vocabulary has a mean 

value of 19.96 words. The population ends up speaking both languages equally well.  

Using the "global" model with the same initial condition we have found the mean 

value for the development of a common language to be 9330 MCS (±2420 MCS). The 

common vocabulary had in this case a mean size of 19.75 words. 

 

b. Inhomogeneous System 

In the previous case the system was “homogenous” because the species were identical 

regarding initial fitness and population density. Figure 5 presents results for the 

population dynamics (Fig 5a), the average fitness per individual (Fig 5b) and word 

evolution (Fig 5c) for the same system when the initial fitness of species A is 100 

units and that of species B is 30 units.  
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(i) Population Dynamics. The form of the curves for the number of individuals for 

species A and B resemble the homogenous case. The main difference is that the steady 

value of B is lower than that of A. The initial fitness advantage given to A allows it to 

grow more rapidly than the B species and to take a greater share of the arena.   

(ii) Extinction of one species. The drift to extinction, observed in the homogenous 

case, is also observed here. This is expected to be greater (favoring persistence of A) 

since the system rapidly arrives at a state closer to the boundary.  

(iii) Fitness and Language Evolution. We notice that the average fitness per 

individual rapidly becomes equal for both species and remains so for a long time. 

Again, this fitness pattern reflects the evolution of vocabulary, shown in Figure 5c. In 

this time regime language A seems to dominate as the average number of A-language 

words known to an individual is higher than those of the B language. However, the B 

language survives. If we monitor the system with the initial conditions presented in 

Figure 5 for a much longer period, then a common language is formed (in this case 

this mean time is 51500 MCS), where the vocabulary has an average size of 19.80 

words, i.e. the population will finally become bilingual. 

An interesting case appears when the initial concentration of the B species is much 

less than that of the A species and also the initial fitness of B’s is much less than that 

of the A’s.  In Figure 6 we present plots of the number of individuals vs. time (Fig 6a), 

the average fitness vs. time (Fig 6b) and the number of words vs. time (Fig 6c) for 

such a “highly inhomogeneous” system with initial concentration cA=0.15 cB=0.05 

and initial fitness fA=2000 and fB=30, using the "local" model to describe interactions. 

The number of B individuals is rapidly decreasing. The much higher initial fitness of 

the A's allows them to fill more sites faster surrounding the B's and not leaving any 

room for the B reproduction. Although the fitness advantage is once again balanced 
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rather quickly as shown in Figure 6b, it is decisive in creating a spatial arrangement 

that practically eliminates the chances of B reproduction. If we study the same system 

using the “global” model the average number of B individuals drops very quickly to 

zero (figure not shown). We observe that although the B population is rapidly 

becoming very small or even extinct in several cases, part of their vocabulary 

survives. Thus, for the “highly inhomogeneous” system presented in Figure 6c, the 

situation is rather different from that presented in previous figures. Notice that after 

400 MCS an A individual knows on average 1.5 words of the B language (besides his 

A language words) and after 5000 MCS he knows 2.5 words of the B language on 

average. The population will not arrive at a final bilingual state as in the previous case 

but at a state where only few words of the B language survive. 

We may interpret the result as follows: Initially there were two separate languages 

referring to the same set of objects. For example, individuals of the A species might 

use word number 1 of the lexicon array to identify a certain object while the B’s used 

word number 11 to identify the same object. At the end individuals of the A species 

know two words in order to identify the same object. A richer language containing 

synonyms has emerged from the two distinct languages. The presence of synonyms in 

a language is not easily justified from an evolutionary point of view as it increases 

complexity without actually improving communication. The above mechanism shows 

a way to arrive at a language containing synonyms starting from two separate 

languages, even if one of the two languages is spoken by a small fraction of the 

population and even if this fraction in most cases disappears rather quickly! 

 

c. Segregation  
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We have mentioned that segregation plays an important role in the behavior of the 

homogeneous as well as the inhomogeneous system described above. In Figure 7 we 

present two snapshots of a homogeneous system with variable number of individuals 

(as described at the section b of the Results) at time t= 1 MCS and at time t=10000 

MCS.  The initial concentration of the species is cA =0.15 and cB =0.15. The initial 

fitness of the A species is fA =30 units and the initial fitness of the B species fB=30 

units. Notice the segregation in the second snapshot that is obvious as most of the B 

individuals are surrounded by A individuals.  

In order to quantify the concept of segregation we use the idea of a segregation 

coefficient QAB introduced by Kopelman [15] and Berry [16]. It is based on a quotient 

of effective pair-correlation functions 

)2( 22
BA

BA

AB

BBAA
BA cc

cc
N

NN
Q

+

+
=       (4)  

where cA and cB is the density of A and B species respectively, NAA is the number of 

A–A pairs, NBB is the number of B–B pairs, and NAB is the number of A–B pairs. A 

pair is defined here by two nearest neighbor sites. NAB for instance, is thus the number 

of site pairs of which one site is occupied by A and the other by B. A random 

distribution of the individuals over the lattice yields QAB= 1, whereas under A–B 

segregation, most of the A–B pairs are located on the interfaces between A-rich and B- 

rich domains, so that QAB> 1. Thus, the physical meaning of the segregation 

coefficient is to provide a practical measure of the departure from randomness for the 

spatial configuration of a system comprised of two ingredients. 

In Figure 8 we present a plot of the segregation coefficient versus time keeping the 

initial concentration of A and B’s equal to 0.15 and changing the ratio between the 

initial fitness of A and B.  The plot is generated as follows: At each time step we 
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average over 500 realizations of the system to derive the quantities NAA, NBB, NAB, cA 

and cB, and use Eq. 4 to calculate the segregation coefficient.  

We notice that for the values of parameters used here there is always segregation and 

that the segregation coefficient increases with time. It may seem interesting that the 

value of the segregation coefficient is greater when the initial concentrations and 

fitness are the same. However, this is a result of the particular definition of the 

segregation coefficient and its sensitivity on the certain types of spatial arrangement 

of the species. It is a measure for deciding that the spatial arrangement of a system of 

two ingredients differs from complete randomness, but it is not actually allowed to 

compare two different systems and conclude that one is more segregated than the 

other. What characterizes the spatial arrangement of the “inhomogeneous” cases is the 

presence of several single B individuals surrounded by A’s. Each such arrangement 

increases the denominator NAB by four units and thus the segregation coefficient is 

reduced, compared to the homogeneous case where this type of arrangement is much 

rarer. 

 

CONCLUSIONS 

We have investigated the population dynamics and language evolution of a system of 

two species speaking two different languages. We considered the population 

dynamics and the explicit spatial configuration on a two-dimensional spatial lattice. 

We assumed that species could exchange words (“learn each others language”) and 

bestowed fitness in terms of the number of common words between interacting 

individuals. We considered cases with and without an initial genetic advantage.  

  The spatial and time dynamics of the system have rather complex behavior, 

characterized mainly by the appearance of segregation.  The segregation coefficient 
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QAB was calculated in several cases and found that for a large domain of initial fitness 

ratios QAB  increases to a final value in the range between 2 and 2.5 at the end of 6000 

MCS.  

Often, the system will arrive at a fairly stable state, where two species coexist 

but even when the two species start off as equal, one of them may be lost due to 

demographic stochasticity. On the other hand, when one of the species consists of 

rather few individuals with small initial fitness then it, almost always, quickly 

becomes extinct. The exchange, however, may leave a residue in the language of a 

dominant species even after the extinction of the other species. A part of its 

vocabulary has made the final state of the system somewhat “richer” in language, with 

the acquisition of new synonyms. 
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Appendix A 

 

How much of the Arena is Occupied? 

We can consider the spatial grid on which individuals move as a grid of islands that 

can be colonized or lose their occupants. This problem has been extensively studied 

by metapopulation theory. According to this theory [17], a collection of identical 

islands, or lattice sites, can be modeled by binary states: either they are empty or 

colonized. Individuals move from one site to the next and start colonies if the sites are 
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empty. Using this theory and ignoring the role of language, we can model the 

dynamics of x, the proportion of the lattice occupied: 

 

(1 ) [ (1 ) ]dx x x x x x
dt

β µ β µ= ⋅ − − = ⋅ − −    (A1) 

 

The first term on the RHS is the number of new individuals and the second is the 

number that die. Note that while the number of new individuals produced is βx (with β 

the birthrate), the probability of an individual landing on an empty cell is only 1-x.  

At steady-state, the proportion is static, x=x*, for which the equation can be solved. 

Unless the population is extinct, the proportion of cells occupied is:  

 

* 1 /x µ β= −        (A2) 

 

Thus, if 2 0.1β µ= =  MCS, about half of the arena is occupied. Although this model 

assumes global mixing, it gives us a good idea of the kind of effect of grid-saturation 

upon our system.  

 

 

Appendix B 

 

Time to Extinction  

Suppose the number of individuals (occupied cells) in the arena has reached a steady-

state, nB+nA =K, the numbers of either population can range between 0 and K. 

Assuming that there is no essential difference between the two species (neither is a 
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better competitor) nA , the number of A, may either to increase or decrease with equal 

probability. Thus, the system performs a random walk. The two boundaries (nA=0 and 

nB=0) are absorbing. Once either boundary is reached only one species remains and 

no further change in proportion is possible. This is an instance of the “gambler’s ruin 

problem” [13, p49]. This problem can be solved in a variety of ways. The simplest 

uses the methods birth-death processes (see, for example, [12]). 

Suppose we consider the problem as a birth-death process for which the probability 

( )kp t  associated with the kth state at time t is given by the following probability rate-

equation: 

 1 12k
k k k

dp bp bp bp
dt − += − + +     (B1) 

 

Here b is the rate at which changes of state occur, the “turnover rate”. In a steady state 

environment, state changes can only happen when one individual dies and another 

takes its place; changes may be up or down with equal probability. Eq. B1 holds for 

states k=2 to k=K-2. The fact that the end-states are absorbing means that probability 

is lost from either end at a rate given by: 

 

0
1 1, K

K
dp dpbp bp
dt dt −= + = +     (B2) 

 

The equations for 1( )p t  and 1( )Kp t−  also differ from (B1) because they receive no 

input from the adjacent absorbing states 

 

1 1
1 2 1 22 , 2K

K K
dp dpbp bp bp bp
dt dt

−
− −= − + = − +   (B3) 
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This system of equations (B1-B3) can be formally solved, subject to the initial 

condition / 2 (0) 1Kp =  (i.e. that the system starts with equal proportions of both 

species). However a simpler way is to use the “quasi-stationary” approximation 

[18,19] approach. This assumes is that while the probabilities do change in time, the 

essential shape of the distribution does not. This approach works provided the 

“leakage” rate into the absorbing class is small; the distribution of probabilities (the 

“quasi-stationary distribution”) may be calculated as if the absorbing class didn’t 

exist. This implies that the starting state (initial proportions of species) does not play a 

major role in the outcome. Thus the absorbing boundaries can be replaced by 

reflecting ones and we then solve for the constant vector 1 2 1{ , , , }Kπ π π −K . This means 

that we only need to solve the equations 

 

1 1

1 2

1 2

2 0 ( )
0 ( )

0 ( )

k k k

K K

a
b
c

π π π
π π
π π

+ −

− −

− + =
− =

− =

K

K

K

    (B4) 

 

The first of these is a 2nd order linear degenerate difference equation, with a solution 

1 2[ ]( 1)k
k C kCπ = + +        (B5) 

 

By symmetry it is obvious that C2=0 so that 1k Cπ = . The B4(b-c) also require 

equality of π1 and πK-1 with πk. Thus all non-absorbing states are equal: 

 

1
1 2 2 1 1 [ 1]K K C Kπ π π π −

− −= = = = = = −K     (B6) 
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In order to solve (B2), we note that  

0 0[1 ] (1 2 ) /( 1)k K kp p p p Kπ= − − = − −     (B7) 

 

So that B2 (a) becomes 

0
0

2
1 1

dp b b p
dt K K

= −
− −

      (B8) 

 

This is a first order linear differential equation whose solution is exponential. Using 

Eq. A2 and the fact that for our system b µ= (a change may occur if and when an 

organism dies, leaving an empty space), we find that (with 2 0.1β µ= =  MCS) then 

the associated time constant is: 

31 (1 / ) 1 50 10
2 2E

K N
b

µ βτ
µ

− − −
= = ≅ ×  MCS  (B9) 

This corresponds to a rate of 2×10-5 MCS-1.  
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FIGURES 

1. (a) Plot of the average number of words known to an individual vs time. The 

concentration is c=0.15 for both A and B species. (b) Logarithmic plot of the fitness 

per individual vs. time for several initial concentrations of A and B species (Lines are 

for visual aid). 

 

2. Plots of the number of individuals versus time (a) and of the average fitness per 

individual versus time (b), for a system of two species A and B with different 

languages having the same initial fitness and random initial distribution assuming 

"local model" interactions. A100x100 lattice was used with initial concentration 

cA=cB=0.15 and initial fitness fA=fB=30. (d) Population dynamics of the "global" 

model with initial concentration cA=cB=0.15 and initial fitness fA=fB=30. (Lines are 

for visual aid). 

 

3. Survival probability curve for a system of two species with local (°) and global () 

interaction. Both species occupy the lattice with the same initial concentration 

cA=cB=0.15 and have the same initial fitness fA=fB=30.  The semilog plot reveals that 

after an initial time interval where the probability of coexistence is one, it drops 

exponentially. The slope of the straight line is λ=-3.7 10-6  is for the local and  λ=-3.3 

10-5 for the global model. 

 

4. Plot of the average number of words versus time for a system of two species A and 

B with different languages having the same initial fitness and random initial 

distribution assuming "local model" interactions. A 100x100 lattice was used with 
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initial concentration cA=cB=0.15 and initial fitness fA=fB=30. (Lines are for visual 

aid). 

 

 5. Plots of the number of individuals versus time (a) and of the average fitness per 

individual versus time (b), and of the average number of words versus time (c) for a 

system of two species A and B with different languages having the different initial 

fitness and random initial distribution assuming "local model" interactions. A 

100x100 lattice was used with initial concentration cA=cB=0.15 and initial fitness 

fA=100 and fB=30. (Lines are for visual aid). 

 

6. Plots of the number of individuals versus time (a) and of the average fitness per 

individual versus time (b), and of the average number of words versus time (c) for a 

system of two species A and B with different languages having the different initial 

fitness and random initial distribution assuming "local model" interactions. A 

100x100 lattice was used with initial concentration cA=0.15 cB=0.05 and initial fitness 

fA=2000 and fB=30. (Lines are for visual aid). 

 

7. A snapshot of the system at time t= 1 MCS and at time t=10000 MCS. Light gray 

sites are occupied by A individuals while black sites by B individuals. The initial 

concentration of the species is cA =0.15 and cB =0.15. The initial fitness of the A 

species is fA =30 units and the initial fitness of the B species fB=30 units. (Particle size 

not to scale) 
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8. Segregation coefficient QAB versus time for a 2 species system. Initial 

concentration of A and B’s is cA=cB=0.15. The ratio between the initial fitness of A 

and B is 30/30, 100/30, and 2000/30 respectively. 
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Figure 3 
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