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Abstract 

 

We use the formulation of equilibrium statistical mechanics in order to study some 

important characteristics of language. Using a simple expression for the Hamiltonian 

of a language system, which is directly implied by the Zipf law, we are able to explain 

several characteristic features of human language that seem completely unrelated, 

such as the universality of the Zipf exponent, the vocabulary size of children, the 

reduced communication abilities of people suffering from schizophrenia, etc. While 

several explanations are necessarily only qualitative at this stage, we have, 

nevertheless, been able to derive a formula for the vocabulary size of children as a 

function of age, which agrees rather well with experimental data. 
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1. Introduction 

Human language has recently become a subject of interdisciplinary character. 

Linguistic studies have traditionally been qualitative rather than quantitative. 

Recently, some attempts based on evolutionary game theory [1] have been made in an 

effort to understand language evolution, which have yielded some noticeable results.  

Particularly, interesting considerations were made in studies of competition between 

languages using mathematical [2] and computational models [3-10]. 

In this paper we propose the assumption that human language can be described as a 

physical system within the framework of equilibrium statistical mechanics. Defining a 

Hamiltonian analogue that is associated with words, we are able to explain basic 

properties of spoken languages, such as the universality of the exponent of Zipf law 

[11], and to predict reasonably well the form of the curve for the vocabulary size 

versus age for young children. We, thus, demonstrate that statistical physics can 

provide an interesting formulation for the study of spoken languages and can unify 

aspects, such as the frequency distribution of words and the children’s vocabulary 

learning rate, properties which at first glance seem completely different.  

A rather remarkable feature, common to several languages is the so called Zipf law 

[1], which states that if we assign the value m=1 to the most frequent word of a 

language, m=2 to the second one etc. then the frequency of occurrence of a word with 

rank m is  

~ a
mC m−        (1) 

This law has been verified experimentally for several languages with the exponent α 

value found to be universal and approximately equal to one. An alternative way, 

which is also used in the literature, to present Zipf law is to state that the proportion of 

words pf  whose frequency is f (taking values in the range 0 to 1) in a given sample 
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text is modelled by a power function pf~ f—β. The exponent β is related to the 

exponent α in equation (1) with the equation 1/α=β-1. Although it is not immediately 

evident, the frequency-rank Zipf plot is equivalent to a plot of the cumulative 

distribution of pf versus frequency f [12, 12]. Ref [12] in particular, contains a detailed 

proof of the above statement.  

 Traditionally statistical mechanics does not deal with human language. It deals with 

physical systems, i.e. with collections of atoms, molecules or other elementary 

particles. According to statistical mechanics, when a system of particles is in 

equilibrium at constant temperature T, then it can be found in one of N states. The 

probability that it is found at a given state i with energy Ei is proportional to 

Exp( )
Ei

k TB
− , the “Boltzmann factor.”  The temperature T is the “measure” of the 

interaction of the system with the environment. 

 

2. The Basic Assumption of the Model 

Suppose that an individual possesses a vocabulary of N words. We treat the language 

department of the human brain as a physical system that can be found in one of N 

states. Each state represents one word. There is a one-to-one mapping between these 

states (which are enumerated using integers up to N) and words in the individual’s 

vocabulary. If the system is found in state i then the word associated with state i is 

pronounced. We denote as “temperature”, T, a measure of the willingness (or ability) 

that the language speakers have in order to communicate. Common sense indicates 

that some words are more useful than others. The word “food” is essential and no 

organized group of people will go very far without it in their vocabulary. The word 

“heterogeneous” is probably not so useful since groups of people will probably 
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survive without knowing it. Of course, usefulness is not only associated with 

meaning. For example, the word “and” is very useful because it is used to connect 

words. In this case, the usefulness originates from syntax rather than meaning. 

Our ansatz is that the Hamiltonian of the system is H(k)= ε lnk, where ε is a constant 

and k is a measure of a words usefulness, i.e. we assign the value k=1 to the most 

useful words, k=2 to the second ones etc.  

 Following the basic assumption of statistical mechanics, the probability to find a 

word with usefulness k is 

/1 ( ) 1( ) Exp( )
B

Bk TH kp k k
Z k T Z

ε−−
= =       (2) 

where Z is the partition function of the system [14]. Note, however, that equation (2) 

is not Zipf law. Zipf law connects the frequency of occurrence of words in a language 

with the rank of the word. Equation (2) relates the probability of occurrence of a word 

with its usefulness k. Although we expect words of low k value to have a low rank m, 

and vice versa, there is no reason prohibiting two or more words from having the 

same value of k while these words have different rank. 

 

3. Implications of the Model 

a. Divergence from the Power Law at the Initial Part of a Zipf Plot 

It has been observed that while equation (1) is a straight line in log-log form, there are 

noticeable deviations in the early part of the line [15]. In Figure 1 we plot the word 

occurrence, Cm, versus the word rank, m, using experimental data that come from a 

corpus (large collection of texts) consisting of publications in several Greek Internet 

sites up to May 2001, collected by Prof. Franz Guenthner at the University of 

Munich.. It has been checked and used by T. Kyriakopoulou [16]. This corpus 

contains a total of about 2.6 x 107 words, about 2 x 105 different words and about 5.5 
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x 104 different lemmas. According to the Zipf law, such a frequency–rank plot should 

be a straight line in log-log plot as the word frequency distribution is a power law. 

This is observed in Figure 1, where the straight line is the best fit. Moreover equation 

(2) implies that in the frequency–rank plot we will be able to identify groups of words 

having different rank but the same frequency. Indeed this can be seen in the figure and 

is the reason for the divergence from the straight line at the initial part of the curve at 

small m values. Groups of words having the same frequency exist also in the rest of 

the curve but are particularly visible in the beginning, as this part is amplified by the 

log- log plot.  

b. Universality of the Zipf Exponent 

Equation (2) additionally implies that the exponent of the Zipf law is related to the 

“temperature” T. Since the usefulness of a word k is expected to be more or less 

proportional to its rank then we expect that the Zipf exponent α: 

  Bk T
ε

α ≈         (3)  

We also expect the communication willingness of the writers to be statistically the 

same (on the average) in different groups of people, such as English, German, Greek 

writers, etc. The temperature T of each group will be the same and the exponent α is 

expected to have a universal value, as is indeed experimentally observed.  

c. Emergence of Syntactic Communication. 

 The partition function of the system is calculated as follows: Suppose that on the 

average there are b words having the same usefulness. Then the partition function 

may be approximated1 by the following integral:  

                                                 
1 An exact calculation of the partition function is also possible using harmonic numbers. At this point 
however, it is not necessary, since our main objective is to get only a rough idea of how the model can 
actually be used. 
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/

1

/N b k T
BZ b k dk

ε−
≈ =∫

/[ ( ) ] /( )B B
Bk Tbk T N b k T

N
ε ε− − .    (4)

  

From the partition function we can now calculate all the properties of the system, such 

as the average energy: 

/
ln [ ln( ) ( 1) ]

( )
B

B Bk T
k TZ b bE bk T N b N

N
ε

ε
β ε

∂
= − = + −

∂ − −
   (5) 

Note the fact that E becomes indeterminate when kB T= ε. It is useful to examine the 

significance of this behavior. It is due to the fact that the integral in eq. (4) produces 

the given solution only when 1
Bk T
ε

≠ . Moreover, the partition function Z remains 

finite while the number of word N approaches infinity, only if kB T < ε. Thus, if  

kB T < ε it is allowed to have a language with infinite number of words.  In this case, 

there is no limitation for the effectiveness of the language as it can be used to describe 

an infinite collection of items, meanings, ideas etc. When kB T>ε the partition 

function diverges when N approaches infinity. Thus, there is a limitation for the 

language effectiveness. 

For species with low communication willingness (or ability) a language comprised of 

words only is sufficient to cover all possible communication needs since an infinite 

number of words is possible. On the other hand this is not true for species with high T. 

They have to find a way to overcome this difficulty. It seems that the way to do it is 

by developing a language based on syntactic communication, as syntax allows us to 

formulate an almost unlimited number of sentences combining a limited number of 

words. This result agrees with the observation that animal communication is non 

syntactic whilst human language is syntactic. The need for syntactic communication 
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was also a result in the treatment of Nowak [17], derived in a completely different 

way, namely the assumption of finite learning time, and thus the existence of a 

maximum number of words in an individual lexicon.  

 

d. Evolution of the Vocabulary Size of Children. 

 In order to be able to apply our model to data of language development in children 

vocabulary we will make the following assumptions: It is known that children 

language development is related to the speech they hear. At the age of 16 months the 

children vocabulary is rather small, but over the subsequent months it shows 

accelerating growth [18]. We will approach the vocabulary growth of children as a 

warming process. The temperature in this case is a measure of communication ability. 

We assume that this ability increases proportionally with time. This is, of course, the 

simplest choice possible. Thus, we set 

T tγ=         (6) 

where γ is a proportionality constant which may be different for different individuals. 

It is a measure of an individual’s learning ability. We assume that a word is known if 

the probability to appear is greater or equal to a threshold pc. Estimation for the 

spoken vocabulary size, i.e. the number of different words that the child will use as it 

speaks, is possible as follows: 

The usefulness k of the rarest observable word is denoted by kmax and is calculated by 

solving the equation max( ) cp k p= .   

Thus,  

/

max
1

c

k TBk p
Z

ε−
=         (7) 

There is of course the obvious constrain that kmax has values in the interval [1, N/b] 
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Thus, the vocabulary size2 is 

max
/

( ) ( 1) [ 1 ( ) ]s
c

k tBAV t b k b
p

γ ε
= − = − + ,      (8) 

where A is equal to the following expression:   

1
/( ) /( )

( ) ( ( ) )
A k t k tb bB Bb N b N k tBN N

ε
ε γ ε γ

γ

−
= +

− −

     (9) 

 

We use the above equation in order to compare the model with experimental data 

taken from Ref 5. The resulting Figure 2 shows that, despite approximations, the 

model describes the experimental data reasonably well. For producing Figure 2 we 

have used the value pc=0.0001 for the threshold3 and the value N=6000 words, as it is 

plausible to assume that a two year old child has been exposed only to a subset of  the 

words of a language. The value of the parameter b can be estimated from the Zipf plot 

of the language, as it roughly corresponds to the average size of the groups of words 

with the same frequency but different ranks. Form the data examined it turns out that 

the choice 4b ≈ is rather plausible. Thus, the parameter γ is the only parameter that is 

calculated through a non-linear fitting procedure. We have arbitrarily chosen to set 

ε=200, but as one can easily see it is the ratio ε/γ that appears in equations 8-9.  

 

e. Effort needed for communication 

A rather simple, yet important, result can be derived from the model by calculating 

the derivative of the energy with respect to the temperature EC
T
∂

=
∂

, which is a 

                                                 
2 In order to derive Eq 8 it is useful to imagine that the most frequent word (value k=1) corresponds to 
the ‘null’ word.  
3 The results are not sensitive in the particular choice of the threshold as long as it is small enough. 
Choosing a large threshold physically means that we do not observe the children for adequate time, and 
thus we cannot record words that are rarely used.  



 9

measure of how much effort is needed in order to increase communication willingness 

(i.e. the temperature) by one degree. 

It turns out that by differentiation of E we get: 

2

2
2 2

/

/

( ln( )) ( )
[ ( ) ]

( ) ( ( ) )
B

B
B

B

B

k T

k T

b bb Nk N NC bk T k T b N
N

ε

ε

εεε
ε

= −
− −

   (10) 

In Figure 3 we present a plot of this quantity assuming that the number of speakers is 

constant and rather large so that ε is constant. We use an arbitrary system of units 

setting ε=200 and kB=1. We conclude that, although it is not so difficult to make a 

group of people that does not communicate at all (T=0) to start communicating, this 

task becomes more and more difficult if the group has already some small degree of 

communication willingness. There is, however, a maximum value for C at a certain 

temperature and when we go over this temperature, a communication task is 

becoming easier. 

 

f. Bilingual Children Learning Curves 

We now use this model (Equation 8) in order to study the vocabulary size of bilingual 

children. In the case of bilingual children we expect that N will be greater than in 

monolingual children, but also b will be greater as there will be more “basic” words.  

This is a prediction of the model that can be formally tested (Figure 4). It seems to 

disagree with the dogmatic belief that “bilingual children often talk late” and agree 

with the currently acceptable view that concerning verbal abilities it makes no 

difference if children grow in monolingual or bilingual environment [19]. 

 

  

g. Schizophrenia 
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Can a mental illness be related to the present framework? It turns out that the 

exponent β for linguistic data of people suffering from schizophrenia is lower than the 

equivalent data for normal people [12]. From our point of view, (since β=1/α +1, the 

exponent a is higher in schizophrenia) this implies that the temperature T for subjects 

with schizophrenia is lower than “normal” subjects, indicating the lower 

communication ability associated with mental illness. 

 

h. Coding and non-coding DNA 

It is well known, and rather intriguing that in higher organisms only a small fraction 

of the DNA sequence is used for coding proteins [20]. This fraction is called “coding 

DNA” in contrast to the remaining part which is called “non-coding DNA”. In a 

rather pioneering work by Mantegna et al [20] it was investigated if there is a 

resemblance between the DNA sequence and language. The DNA sequence was 

partitioned in sections of fixed length and these sections were considered as words. 

“Frequency–rank” plots were constructed for both coding and non-coding DNA. 

Power-law behaviour was indeed observed. Our model implies that a low slope a of 

such a graph is associated with “high” temperature and thus with more effective 

communication. Intuitively, we would expect that the coding DNA is associated with 

more effective communication compared to the non coding DNA. Indeed in all cases 

studied in [20] the exponent a is found much higher (up to a factor of 2.2) for the 

“non coding DNA” compared to the “coding DNA”. Is this just a coincidence or a 

signal that nature has found once more the optimal way in order to convey 

information? 

 

4. Discussion and Conclusions 
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The model proposed here predicts that if we count the word frequency distribution of 

young children dividing them in age groups, then the resulting Zipf plots for each age 

group will also exhibit power law behaviour, but the slope will be different than that 

for adults.  Some preliminary work in this direction using CHILDES4 [24] data base, 

seems to agree with this prediction but due to the very small sample and the noise of 

the data this is hardly a convincing indication at this stage. An interesting quantity to 

measure is also the word frequency distribution in oral conversation rather than in 

written documents. We expect that oral communication will also follow the Zipf law, 

but the question is whether oral communication has the same “temperature” as the 

written one or not. Most likely the Zipf exponent will be different in these cases. This 

task, however, requires considerable recourses and interdisciplinary effort and is, thus, 

left for future work.  

It would, however, be useful to compare the proposed model to other models 

published in the literature. The pioneering work of Nowak et al [1,17,21] is based on 

evolutionary game theory, so it is mainly concerned with the description of language 

at large time scales. The evolution of language is a task taking several generations to 

be accomplished. Our approach relies on equilibrium statistical mechanics. As, very 

vividly, Feynman describes: “When all fast things have happened and all slow things 

have not, then the system is in equilibrium” [22]. In language there are fast processes, 

such as the physicochemical changes in the brain when a word is memorized and slow 

processes such as language evolution or the genetic evolution of the speakers. We 

study here the regime between the two, so the time scale is different from that of 

Nowak et al. Another model proposed by Abrams and Strogatz [2] deals with 
                                                 

4  The Greek child data in this corpus were donated by Ursula Stephany [25,26]. They were col-
lected between 1971 and 1974 in natural speech situations in the homes and Kindergarten from four 
monolingual Greek children growing up in Athens, Greece. 
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language competition. This is still a rather slow process in a different area 

complementary to ours, as our model does dot deal with competition between 

different languages. 

The success of statistical physics in the description of large scale materials relies on 

the fact that quantum mechanics can be used in order to determine the energy states of 

a system from first principles. For language we do not have yet such a theoretical 

description. We have to guess the form of the “energy states” so that it does not 

disagree with measured probability distributions such as the Zipf law. Is there a way 

to theoretically predict the form of the Hamiltonian? This is exactly the same as to ask 

whether Zipf law can be derived from first principles, as this derivation provides 

immediately a way to determine the word’s energy states from first principles. Thus, 

for example, the pioneering work of Cancho and Sole [23] who attempt to derive Zipf 

law using the principle of least action could be related to our approach, much like the 

way that quantum mechanics and statistical mechanics are related. The conceptual 

importance of previous studies [1, 2, 17] is that they propose methods based on 

evolutionary game theory or differential equation models, thus bridging the gap 

between linguistics and mathematics or linguistics and evolutionary biology. Our 

treatment indicates that also the gap between linguistics and physics is not as large as 

it originally seems. 

In summary, we have studied human language using the framework of equilibrium 

statistical mechanics. Within this framework we are able to qualitatively explain basic 

properties of language, such as the universality of the exponent of Zipf law and to 

predict reasonably well the form of the vocabulary size versus age curve of young 

children. The results obtained here are not particularly sensitive in the chosen values 
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of the parameters and remain qualitatively the same for a wide range of different 

values.  

It seems that statistical physics provide an interesting formulation for the study of 

language and can unify aspects, like the frequency distribution of words and 

children’s vocabulary learning rate, which initially seem completely different. 

We hope that the present paper will motivate new interdisciplinary work which will 

allow the verification or rejection of the model. This is essential, since some of the 

linguistic characteristics of interest are notoriously difficult to count and require 

combined forces of several groups. 
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FIGURES 

1. Zipf plot for the word frequency in Greek language. Data taken from the 

corpus described in Ref[16]. Points are the experimental data and straight line 

is the best fit. The slope is -0.96. Notice the existence of groups of words with 

the same frequency and different rank. 

 

2. Vocabulary size as a function of child age. The solid line is the prediction of 

our model. The points are averages of experimental data taken from 

Huttenlocher Ref [18]. The parameter values used were ε=200, kB=1, N=6000 

words and b=4. The  values  of the constant determined by non- linear fitting 

were γ =5.2 

 

3. “Heat Capacity” C vs temperature for a large group of people. The parameter 

values used were ε=200, kB=1, N=6000 words and b=4. The quantity C is 

indicative of the effort needed to increase the communication willingness of a 

group of people. 

 

4. Comparative predictions for the vocabulary size between bilingual (upper 

curve) and monolingual (lower curve) children. The parameter values used 

were ε=200 and kB=1 is used. The value γ =5.2 was used for both curves. For 

the monolingual curve we have used N=6000 words and b=4. For the 

bilingual curve we have used N=12000 words and b=8. 
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Figure 4 

 

 


