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Abstract
Specifying the factors that contribute to the universality of color catego-
rization across individuals and cultures is a longstanding and still con-
troversial issue in psychology, linguistics, and anthropology. The present
article approaches this issue through the simulated evolution of color lexi-
cons. It is shown that the combination of a minimal perceptual psychology
of discrimination, simple pragmatic constraints involving communication,
and simple learning rules are enough to evolve color naming systems. Im-
plications of this result for psychological theories of color categorization
and the evolution of color naming systems in human societies are dis-
cussed.

1 Introduction

1.1 Psychological models of color categorization

An ongoing debate in the psychological study of human color categorization
and naming is whether universal tendencies exist in the ways different linguistic
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societies categorize and name perceptual color experiences. The most popular
view in the empirical literature on color categorization and naming, is that
the commonalities of color categorization across individuals and cultures are
largely explained by two factors: (i) physical features of human perceptual color
processing, and (ii) universal features of individual psychological processing
believed to underlie the sensing color. The established position in the area is a
strong form of this universalist view that asserts that the pan–human uniformity
in human visual processing gives rise to a regular, if not uniform, pan–human
phenomenological color experience, and that this regularity is the basis for the
empirically observed regularity in color categorization across cultures (see Kay
& Regier 2003, Kay 2005, Regier, Kay & Cook 2005, and their references).

A very different alternative view is a relativist one asserting that very little
in the way of “universal tendencies” exist, and that most of the “universalist”
findings in the literature are more attributable to constraints imposed by the
empirical assessment of the phenomena than they are to actual features of color
categorization phenomena (Saunders & van Brakel 1997).

In addition to the above “established” and “alternative” views, a range of
perspectives exist that blend the universalist and relativist approaches to vary-
ing degrees, with the aim of providing a comprehensive understanding to the
ways different linguistic groups categorize and name their color experience (for
a representative survey of the range of extant perspectives see the edited volume
by Hardin & Maffi 1997, Hardin 1988, and the special issues of Cross–Cultural
Research 2005a, 2005b, and the Journal of Cognition & Culture, 2005).

Although a considerable amount of detailed empirical and theoretical re-
search has examined a range of factors influencing the phenomena of color
naming, formal models have not emphasized the pragmatic and communica-
tion conditions that may be needed for the development and maintenance of a
color categorization system shared among humans. In this article, we consider
both intra–individual discrimination and inter–individual communication to be
essential for establishing, sharing, and maintaining of a color communication
code. We show through mathematical analyses and simulations that the sim-
plest forms of discrimination and communications are sufficient for the evolution
of color naming systems using simple learning algorithms. Although here we fo-
cus on the learning and evolution of color categories among artificial agents —
and do not investigate human categorization phenomena — the implications of
our results on human cross-cultural color naming research are discussed.

1.2 The signaling environment

Color naming is an example of a signaling system, with a color name signaling
a color. The assignment of meaning to signals in simple signaling situations has
been studied using evolutionary game theory and evolutionary algorithms. It is
an important issue in biology (e.g., Hauser 1996, Fitch 2000, Smith & Harper
2003), artificial intelligence (e.g. Niyogi & Berwick 1996, Steels & Vogt 1997),
and Social Evolutionary Theory (e.g., Skyrms 1996). With a few exceptions,
the evolutionary algorithms have been applied to situations in which a similarity
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structure on the meanings of the signals was neither needed nor used. However,
for some signaling systems to be effective, a similarity structure on the things
to be named is required. Color naming requires such a similarity structure.

Perceptually, colors vary continuously, and the perceptual space of colors is
representable as a topology. Human color naming reflects the perceptual topol-
ogy in various ways. For example, in human color naming, each name describes
a portion of color space where each color in the portion can be connected to each
other color in the portion via a continuous curve that is completely contained in
the portion. As a consequence, a meaning of a color name will never be a set of
colors which can be partitioned into disconnected parts. Colors that are percep-
tually very similar — that is, colors that are very “close” to one another in the
topology — will almost always be described by the same name, while different
names will generally denote dissimilar colors. Also, the cognitive organization
of the color names will inherit a similar topological–like organization from the
perceptual topology of colors; that is, a cognitive organization of names will
emerge that will have a global structure similar to the global structure of the
color topology. One goal of this article is to understand from an evolutionary
perspective the emergence and stability of such characteristics of color naming
systems. This is done here by investigating two of the simplest yet interesting
topologies of colors from the mathematical and naming points of views: colors
organized on a line and colors organized on a circle.

From the point of view of human and primate color theory, colors orga-
nized on a line and those organized on a circle are natural subspaces to consider
for several reasons: First, as a rule, the standard scientific paradigm is to ini-
tially model the simplest case from the domain investigated. The color circle
continuum together with the continuous gradient line segments of lightness (or
brightness) and saturation represent three dimensions widely considered essen-
tial for the understanding of perceptual color experience. One widely used
representation of human color experience is the Munsell Color Order System
(e.g., Newhall, Nickerson & Judd 1943). Figure 1 depicts the Munsell Color
Solid arrangement from this system. The system aims to model perceptually
uniform color differences along the three dimensions illustrated.

In this article, we examine the evolution of color naming for a circular dimen-
sion and separately for a linear dimension. The circular dimension is like the
hue dimension shown in Figure 1, and the linear dimension is like the chroma
and value dimensions shown in that figure. We base our algorithms on just–
noticeable–differences (or jnds for short) in color. We identify perceptual colors
with physical stimuli, which we call “chips,” and we consider them to produce
perceptual properties that are structurally similar to those produced by the
chips making up the Munsell solid. We consider the separate modeling of these
dimensions to be a natural, first step towards modeling the full color solid. As
discussed later, extensions of the present modeling methods to the full solid
appear to be straightforward.

By basing our investigations on discrimination along linear and circular ar-
rangements of chips, we allow for comparisons with most empirically based hu-
man and primate color naming articles which typically use stimuli selected from
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Figure 1: Munsell Book of Color System. Dimensions of the Munsell three-dimensional solid
consist of color samples (or chips) arranged by approximately uniform color differences along
each of the three dimensions, (i) a circular dimension of hue for representing non-achromatic
colors, (ii) a linear dimension of value (lightness, or brightness), and (iii) a linear dimension
of chroma (saturation). Image credit Bruce MacEvoy c© 2006. Retrieved 03/15/06 from
www.handprint.com. Reproduced with permission.

a portion of the Munsell Color Solid (e.g., the World Color Survey database.
See Regier, Kay & Cook 2005). For example, the closed continuum of Munsell
Book of Color samples defined by color stimuli used in the Farnsworth–Munsell
100-Hue test is a hue circle formed by stimuli taken from 40 hue pages of the
Munsell Book of Color.

Modeling jnds for both circular and linear arrangements of color chips taps
into the continuous nature of the perceptual constructs of hue, saturation, and
brightness. Jnd variation across different observers naturally exists. For exam-
ple, the “normal” form of hue discrimination permits perceptual differentiations
along the entire hue circle continuum, whereas (in observers with severe color
deficiencies) hue discrimination may be constrained by jnd differences along
only one chromatic dimension, which can collapse some discriminations across
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the hue circle, rendering the circle into a contour that is approximated by a
line. Modeling both circular and linear continua thus permits the additional
opportunity to investigate the consequences of interactions among agents from
a heterogeneous population comprised of “normal” and deficient observers. As
suggested by Jameson (2005a, 2005b), the possibility exists that in heteroge-
neous populations, category distinctions may follow from a need to disambiguate
the communication of categories among varying observer types.

Our general approach to learning in our evolutionary modeling of color nam-
ing is to start with very simple evolutionary algorithms that are incapable of
achieving good categorization, and gently increase the complexity of the algo-
rithm until categorization is achieved. Although many alternatives exist for
evolving color lexicons, the simple features and the forms of evolutionary algo-
rithms used here are presumably much less complicated than those found in the
evolution of human color categories.

In the following section, systems of color categorization are evolved in color
signaling games. Two classes of learning algorithms are employed: individual
and population. Individual learning is evaluated and updated by comparing the
individual’s categorization of currently presented stimuli with his previous cat-
egorization. In population learning, his categorization of current stimuli is also
compared with that of another member of the society as part of the updating.
Thus population learning may be looked at as an extension of individual learning
that includes features of the categorization behavior of other individuals of the
population. In some cases, population learning uses an index (called “fitness”)
regarding how good of categorizers the agents are in terms of their performance
on previous rounds of the game.

The “learning” that occurs in our signaling games is very different compared
to learning considered in the psychological literature: In psychology, the set of
items or behaviors to be learned are predetermined; in our signaling games
there are no specific items or behaviors to be learned. Instead, a color signaling
system takes shape through the dynamics of an evolutionary process.

Our algorithms provide criteria to evaluate whether some color signaling
behaviors might be more successful as categorization behaviors than others.
This provides for a selection pressure which in turn influences evolving signaling
strategies, and an agent produces a sequence of signaling systems involving
color categories and names. One way such sequences are produced is through
forms of reinforcement learning. These forms of reinforcement have the following
property:

Each element of the sequence, except for the first, tends to be more
successful in naming than it predecessor, except after some point in
the sequence, where it tends to be just as successful in naming as its
predecessor.

Simulations provided in Sections 3 and 4 show that for reinforcement learning,
the above sequence of color signaling systems reaches a limit that, for all prac-
tical purposes, can be considered a stable categorization system for the naming
of colors.
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Human languages categorize colors in a variety of ways. This has produced
a diversity of explanations from historians, linguists, anthropologists, psychol-
ogists, and physiologists regarding the observed regularities found the naming
of colors from ancient languages and different ethnolingustic populations. The
dominate view in the literature for explaining these regularities uses the six Her-
ing primaries—white, black, red, yellow, green, and blue—as the foundation for
explaining the commonalities found in color naming (see discussion in Jameson
2005c). Many researchers have gone further and tried to explain the observed
commonalities in terms of the physiological opponent processing of color in the
peripheral visual system. Such a view suggests that the visual processing system
assigns privileged status to the Hering primaries. This physiological explanation
has been widely employed to provide a theoretical basis for pan–human naming
regularities based on presumed physiological color processing universals. While
still prevalent literature, this physiological approach to color naming has been
abandoned by most of the major researchers in the area. For example, Boynton
(1997) wrote,

“... I would argue that all eleven basic colors are perceptual funda-
mentals, and that the concept of fundamental neural responses, as
defined by Kay, Berlin, and Merrifield (1991), should be expanded to
include all eleven. Their appeal to the early research of DeValois and
his colleagues [the suggested hardwired neural basis of ‘red,’ ‘green,’
‘yellow,’ and ‘blue’ experiences] is misguided, if only because sensa-
tions surely do not arise from the lateral geniculate nucleus, which
is the site of their recordings.” (p. 148)

Of course, the six Hering primaries may continue to be considered as a universal
basis for color naming for reasons other than physiological opponent color pro-
cessing, as for example in the empirically based approach of Regier, Kay, and
Cook (2005). They write,

It is widely held that named color categories in the world’s lan-
guages are organized around universal focal colors and that these
focal colors tend to be chosen as the best examples of color terms
across languages. However, this notion has been supported primar-
ily by data from languages of industrialized societies. In contrast,
recent research on a language from a nonindustrialized society has
called this idea into question. We examine color-naming data from
languages of 110 nonindustrialized societies and show that (i) best-
example choices for color terms in these languages cluster near the
prototypes for English white, black, red, green, yellow, and blue, and
(ii) best-examples choices cluster more tightly across languages than
do the centers of category extensions, suggesting that universal best
examples (foci) may be the source of universal tendencies in color
naming. (pg. 8386)

However, more recently Regier, Kay & Khetarpal (in–press) have adopted a
different approach:
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The nature of color categories in the world’s languages is contested.
One major view holds that color categories are organized around
universal focal colors, while an opposing view holds instead that
categories are defined at their boundaries by linguistic convention.
Both of these standardly opposed views are challenged by existing
data. Here, we argue for a third view, originally proposed by Jame-
son and D’Andrade: that color naming across languages reflects op-
timal or near-optimal divisions of an irregularly shaped perceptual
color space. We formalize this proposal, test it against color naming
data from a broad range of languages, and show that it accounts
for universal tendencies in color naming, while also accommodating
some observed cross-language variation.

Similar to Regier et al. (in–press), the present article’s evolutionary ap-
proach to color naming is also based on Jameson and D’Andrade (1997) and
that view as extended by Jameson (2005d). At this initial juncture, the meth-
ods formulated here do not permit examination of many of the color naming
principles described in Jameson (2005d), because, for example, as a prudent
first–step it was necessary to constrain our investigations to societies of homo-
geneous agents and—except for one case— homogeneous features of color space.
Nevertheless, the portion of our approach described in Section 5 validates fea-
tures of the Jameson (2005d) theory which state that effective communication
of color categories should produce color categories that are connected regions
of approximately equal size. Extending these results to nonhomogenous color
spaces and nonhomogeneous populations of agents are discussed in Section 5.

2 Mathematical framework for modeling cate-
gorization

2.1 Color stimulus domain and the definition of catego-
rization

We will investigates the categorization of two sets of color stimuli, one or-
ganized along a line, and the other along the boundary of a circle. These sets
consist of discrete arrays of color chips arranged according to perceptually just
noticeable differences; that is, arranged so that adjacent chips are at thresholds
of perceptual discriminability. (Here we differ from the Munsell color solid in
which adjacent chips are not one jnd apart but several.)

Suppose an array contains n color chips, 1, . . . , i, . . . n, such that i and i + 1
are adjacent, no other adjacencies occur if the chips are on a line, and n is
adjacent to 1 if the chips are on a circle. For such arrays we give the following
mathematical definition of color categorization:

As the first step, let us consider any two possible categories, say, “light”
and “dark.” A categorization is a mapping from {1, . . . , n} to the interval [0, 1],
which can be presented as an n-tuple of numbers, F = (f1, . . . , fn) with real
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numbers fi ∈ [0, 1]. If a color i is presented to a viewer, the viewer with
categorization F will assign the label “light” to color i with probability fi, and
the label “dark” with probability 1− fi. F is said to be probabilistic if and only
if at least one of the entries fi is not equal to 0 or 1, and deterministic if and
only if fi ∈ {0, 1} for all i, 1 ≤ i ≤ n.

Note, first, we do not specify how “light” and “dark” categories initially
arise—they could arise for any number of exogenous or endogenous reasons.
Second, any other initial categorical distinction (e.g., yellow and blue, warm
and cool) will serve equally well for describing this kind of category learning.
Our algorithms will assume for this case that a demand exists at the level of the
individual agent to differentiate “light” from “dark,” which initiates category
learning at the individual level. Such an assumption appears realistic—the need
to specify a category system on a domain follows from demands for domain dif-
ferentiation. And it is realistic in practice: For example, human categorization
systems that exhibit only two color categories are known to exist. In addition,
the existence of a universal human tendency to cognitively organize stimulus
domains using polar opposition, or symmetry, could also initiate this form of
binary categorization (Garner 1974, Jameson 2005d, 2005e, Smith & Sera 1992).
Alternatively, pragmatic needs—such as the need to specify the color of a val-
ued food source as differing from other resources—may also serve as pressure to
initiate categorization. At this point we need only accept that some unspecified
pressure to make a categorical distinction presents itself to the individual agent.

Next, we extend this notion to multiple color categories. Suppose we have
m categories. We denote the m categories by 1, . . . ,m. (When it is not clear
by context when a number i denotes a color chip or a category, it will be made
explicit by saying, for example, “the color i”, or “the category i.”) A catego-
rization is a vector function from {1, . . . , n} to [0, 1]m. We can represent it as
an n-tuple of vectors, f1, . . . , fn, where fi are m-dimensional vectors whose non-
negative entries sum up to 1 (i.e., they belong to an m-simplex). The notation
[fi]k is to be interpreted in the following manner:

[fi]k = Prob( the agent assigns the category k to the color chip i). (1)

A deterministic categorization is an n-tuple of integers, (F1, . . . , Fn), where Fi

is in {1, . . . ,m}; that is, a deterministic categorization assigns to each color chip
exactly one of the categories, 1, . . . ,m.

2.2 The range of similarity

Our categorizing algorithms are based on the following idea: Colors that are
highly similar perceptually to one another are highly likely to belong to the same
category. This idea is an obvious consequence of the following three principles:
(i) categorization is important; (ii) to be useful, categorization should attempt
to minimize ambiguity, and (iii) highly perceptually similar colors tend to be-
long to objects with similar properties. These three principles are summarized
in the concept of a similarity range, ksim .
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By definition, ksim is the minimum difference between the color chips for
which it becomes important to treat them for pragmatic purposes (and not for
perceptual purposes) as different color categories. The parameter ksim is defined
to be a fixed integer, 0 ≤ ksim ≤ n − 1, where n is the number of color chips.
Pragmatically speaking (see principle (i) above), it pays off to assign colors
outside the ksim-range to different color categories (principle (ii)), and colors
within the ksim-range to the same color category (principle (iii)).

ksim is interpreted as being related to the utility of color categorization and
is defined by the environment and the life-style of the individual agents. It is
used to reflect the notion of the pragmatic color similarity of the chips. For
instance, suppose one individual shows another a fruit and asks him/her to
bring another fruit “of the same color.” It is a nearly impossible task to bring
a fruit of a color perceptually identical to the first, because different lighting,
different color background and slight differences in fruits’ ripeness contribute to
its perceived color. Therefore to satisfy “of the same color” of a fruit’s ripeness
in practical terms, the individual must be able to ignore such unimportant
perceptual differences and bring a fruit that is “of the same color” practically.
It may also be just as important to be able to distinguish ripe, edible, “red”
fruit from the unripe, “green” ones. The parameter ksim is intended to set a
scale at which color differences become important in the everyday world. It tells
us that most of the time, certain objects with colors within the ksim range will
have similar pragmatic properties, whereas objects with larger color differences
need not.

It is important to emphasize that the range ksim is not another perceptual
version of “just noticeable difference.” Colors that differ by a perceptual jnd
are well within the similarity range, as are adjacent chips in the Munsell color
system described earlier. In general, some colors within the ksim range are
usually easily distinguished perceptually by any agents. The notion of ksim
refers to a level of importance for categorizing two chips as being “different”
rather than “the same.”

We will shortly present a simple model which expresses the evolutionary
importance of color categorization with ksim being a constant number. The
next level of complexity considered in this article introduces a non-homogeneous
k(i)
sim , that is, including the ability to make different fine-color distinctions in

naming in different portions of the color stimulus domain. Both these are special
cases of a general notion of similarity probability, in which there is an expected
likelihood, Pij = Pji, that objects of colors j and i have similar properties,
pragmatically speaking. In other words, instead of a scalar quantity ksim, in
a more general case we could talk about a similarity matrix. The special case
of the homogeneous ksim then follows if we set Pij = 1 for |i − j| ≤ ksim and
Pij = 0 otherwise.

Note that mathematically speaking, it is possible to perform a limiting tran-
sition to a continuous description of the stimulus domain. To do this, we need
to relax the assumption that the distance between two neighboring chips is a
jnd, but instead to tend this distance to zero. As a result, the number of color
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chips will tend to infinity, n→∞. The similarity range, ksim , will change pro-
portionally. The number n (the perceptual resolution of the color chips) can be
arbitrarily high, and no results presented in this article depend on the actual
number n. What is important is the relative (to n) size of the similarity range,
which is basically how many intervals of length ksim span the investigated color
stimulus domain.

We now consider the evolution of categories within individual agent inter-
acting only with his past experience.

2.3 Two types of discrimination games and their success
rates

The discrimination game is defined as follows: Two color chips i and j
are chosen from a distribution and presented to a simulated agent, or viewer.
The viewer classifies them according to F , that is, he assigns labels vi and vj

respectively to i and j, where vi and vj are in {1, . . . ,m}. The discrimination
game is said to be solved successfully if and only if for |i− j| > ksim , the viewer
chooses vi '= vj . In other words, if the color chips i and j are sufficiently different
(i.e., |i − j| > ksim), then the viewer assigns them to different categories. The
discrimination game is said to fail if and only if for |i − j| > ksim , the viewer
chooses vi = vj ; that is, if the color chips are sufficiently different, then the
viewer assigns them to the same category. If the chips i and j are within their
similarity range (i.e., |i − j| ≤ ksim), they are discarded and the game is not
played.

The discrimination-similarity game includes the data about chips that are
within of ksim of each other. We say that two chipsi and j are k-similar if the
inequality |i − j| ≤ k holds. The discrimination-similarity game is defined as
follows: As before, if the two chips are further apart than ksim , then the game is
a success if the viewer puts them into different categories. For two chips within
distance ksim , the game is a success if the viewer assigns them to the same
category.

The success rate for either game is defined as follows: For a fixed distribu-
tion, pairs of color chips are given to a viewer playing the discrimination (or
discrimination-similarity) game. After M rounds of the game, the fraction of
successful games is denoted as SM . The success rate S is then given by the
equation S = limM→∞ SM . This quantity is equivalent to the probability of
having a successful round of the game.

Finally, we define an optimal categorization for a specific game as a catego-
rization that maximizes the success rate for this game.

2.4 Optimal categorizations for discrimination games

We begin our discussion of optimal categorizations with the following exam-
ple. We suppose the following:

• m = 2 (2 color categories),
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• n is even,

• ksim > 0 ,

• the color chips are chosen from a uniform distribution, and rounds of
discrimination game are played.

Statement 1. Suppose the four assumptions above hold. If the chips have a
linear arrangement, then the following two categorizations maximize the success
rate:

(1) Fi = 2 for i ≤ n/2 and Fi = 1 for i > n/2, and

(2) Fi = 1 for i ≤ n/2 and Fi = 2 for i > n/2.

If the chips have a circular arrangement, then the following categorization max-
imizes the success rate:

Fi = 2 for i ≤ n/2 and Fi = 1 for i > n/2.

Also, any shift of the categorization pattern along the circle will also maximize
the success rate. There are no other categorizations with success rates equal to
or larger than those achieved by the above categorizations.

Proof. Let us denote the quantity ||i − j|| ≡ dij , the distance between chips
i and j. Note that in the case of a circular arrangement we take the shortest
distance along the circle.

In general, the probability of success (the success rate) of a discrimination
game is given by the following:

S = W−1
n∑

j=1

∑

||l−j||>ksim

νjνl(1− δFj ,Fl),

where νj is the probability to draw the color chip j, and the categorization is
defined by Fj ∈ {1, 2}. We also used the notations:

W =
n∑

j=1

∑

||l−j||>ksim

νjνl and δxy =
{

1, x = y,
0, otherwise.

Setting νj = 1/n, we obtain

S =
1
n2

(
1− (2ksim + 1)

n

)−1 n∑

j=1

∑

||l−j||>ksim

(1− δFj ,Fl).

To maximize the success rate, it is enough to maximize the quantity

S̄ =
n∑

j=1

∑

||l−j||>ksim

(1− δFj ,Fl).
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This is reminiscent of the Hamiltonian in a one-dimensional Ising model with
non-local interactions.1

Let us consider all categorizations where the number of chips with Fj = 1 is
A and the number of chips with Fj = 2 is n − A (here A is some integer, and
without loss of generality we can assume that 0 ≤ α ≤ n/2). Now, the quantity
S̄ can be rewritten as

S̄A =
n∑

j=1

n∑

l=1

(1− δFj ,Fl)−
n∑

j=1

∑

||l−j||≤ksim

(1− δFj ,Fl) (2)

= A(n−A)−
n∑

j=1

∑

||l−j||≤ksim

(1− δFj ,Fl).

The first term in this expression does not depend on the particular configuration
but only on the number of chips of each color (that is, on A). The second term
has to be minimized over all configurations. This term contains “interactions”
of a chip j with all chips l such that dlj ≤ ksim. The meaning of this term is
penalizing color differences: every time the two chips in a ksim-neighborhood
are categorized differently, S̄ acquires a negative contribution. Minimizing this
“penalty” term is equivalent to maximizing

n∑

j=1

∑

||l−j||≤ksim

δFj ,Fl ,

that is, maximizing the number of chips of the same color category within
neighborhoods of size ksim. The configuration which corresponds to the maximal
number of chips of the same category in ksim-neighborhoods is the one with the
minimum number of boundaries, or transitions from one category to the other.
That is, the best possible categorization will consist of only two “patches”: a
patch of color 1 and a patch of color 2.

Next, we need to consider all categorizations with the “2-patch” structure,
characterized by the parameter A. We will show that among such categoriza-
tions, the one with A = n/2 corresponds to the maximum success rate, that
is,

max
A

S̄A = S̄n/2.

Indeed, let us evaluate the quantity S̄A. We will use a circular geometry. This
reasoning can also be extended to a linear geometry. It is possible to show that
for 0 < k ≤ A, we have

n∑

j=1

∑

||l−j||=k

δFj ,Fl = 2n− 4k,

1Indeed, if the spin values σj ∈ {−1, +1}, then we have

S̄ =
nX

j=1

X

||l−j||>ksim

„
1− σjσl

2

«
= const− 1/2

nX

j=1

X

||l−j||>ksim

σjσl.
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for k > A we have
n∑

j=1

∑

||l−j||=k

δFj ,Fl = 2(n−A− k),

and for k = 0 we have
n∑

j=1

∑

||l−j||=0

δFj ,Fl = n.

Therefore, for A > ksim we have

S̄A = C + A(n−A) + n +
ksim∑

k=1

(2n− 4k) = C + A(n−A) + D,

where C =
∑n

j=1

∑
||l−j||≤ksim

1 and D = n(1+2ksim)−2ksim(ksim +1) do not
depend on A. For A < ksim we obtain:

S̄A = C + A(n−A) +
A∑

k=1

(2n− 4k) +
ksim∑

k=A+1

2(n−A− k)

= −A− ksim − 2Aksim − k2
sim + n + An + 2ksimn. (3)

In the former case (where A > ksim), S̄A is obviously maximized at A = n/2. In
the latter case, we have dS̄A/dA = n− 2ksim− 1 > 0 (because ksim ≤ n/2− 1).
Therefore, again the optimal A is n/2.

This means that in order to achieve an optimal categorization, the number
of chips of colors 1 and 2 must be equal. This completes the proof of Statement
1.

Let us calculate the success rate of the optimal distribution. Assume that
chips are arranged in a circle, and that the distanced between pairs of chips are
distributed according to some distribution, νd,

∑n/2
d=ksim+1 νd = 1. For all pairs

of distance d, the probability to belong to two different categories is 2d/n. The
success rate is given by

2
n/2∑

d=ksim+1

νd
d

n
.

In particular, if the probability to draw a given chip is 1/n uniform, then we
have

νd =
1

n/2− ksim − 1/2
≡ ν̃, ksim < d < n/2, νn/2 = ν̃/2.

Using this, we obtain the optimal success rate for the discrimination game,

S =
(n/2)2 − ksim(k − sim + 1)

n(n/2− ksim − 1/2)
.
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In particular, if ksim = 0, S = n
2(n−1) , and it increases monotonically with ksim,

reaching S = 1 for ksim = n/2− 1.

Next, let us extend our consideration to the case of several color categories.
We suppose that

• m ≥ 2 ,

• and n is divisible by m,

• ksim > 0 ,

• the color chips are chosen from a uniform distribution, and rounds of
discrimination game are played.

Statement 1′. Suppose the four assumptions above hold. If the chips are
points on an interval, then the following categorization maximizes the success
rate: chips

(i− 1)n
m

+ 1,
(i− 1)n

m
+ 2 , . . . ,

in

m

belong to color category vi, where 1 ≤ i ≤ m and for all i '= j, vi '= vj , see
Fig. 2(a). If the chips are arranged on a circle, then the following categorization
maximizes the success rate: the circle is divided into regions

[
1,

n

m

]
,

[
n

m
+ 1,

2n

m

]
, . . . ,

[
(m− 1)n

m
+ 1, n

]
.

All the vectors fi with i inside the same region are identical to each other and
have only one nonzero component. Any vectors fi and fj with i and j belonging
to different regions are different from each other. Also, any shift of this pattern
along the circle maximizes the success rate, see Fig. 2(b). There is no other
categorization that has the success rate equal or bigger than those achieved by
the above categorizations.

In other words, the most successful categorization deterministically parti-
tions the colors into categories of equal size such that each category is a con-
nected set (as suggested by Jameson 2005d, 2005e).

Statements 1 and 1′ above hold if the probability distribution to draw a chip
is uniform. This is an important assumption. In the example of Figure 3, we
can see that a nonuniform sampling distribution can break the symmetry (the
translational invariance) of the optimal categorizations in a circular geometry.
Indeed, let us suppose that each of the chips marked by “X” in the figure
are sampled with probability p1, whereas the rest of the chips are all sampled
with probability p2 > p1 (we have 6p2 = 1 − 8p1). Then, in the limit where
p1 → 0, categorization (a) with ksim = 2 gives the success rate of Sa = 1. The
categorization of Figure 3(b) has a smaller success rate of Sb = 5/8. For finite
values of p1 < p2, we will still have Sa > Sb. Thus, non-uniformities in the
sampling can lock the position of the boundaries of color categories.
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(a)

(b)

Figure 2: Some optimal categorizations for (a) an interval and (b) a circle. White, gray and
black dots represent the m = 3 color categories, and n = 21.

In the absence of the uniform sampling distribution, one can also come up
with examples of optimal categorizations which do not have the structure de-
scribed in Statement 1′. Indeed, let us suppose that n = 12, ksim = 3, m = 3,
ν5 = 1 and νd = 0 for d '= 5. Then the following categorization assures the
success rate S = 1: chips 1, . . . 12 have colors

1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3. (4)

Finally, we note that Statements 1 and 1′ assume that the total number of
chips is divisible by m. If this is not the case, then there still exists a family of
categorizations that are optimal. They contain all (connected) partitions of the
interval (circle) into m regions of maximally equal length.

2.5 Optimal categorizations for discrimination-similarity
games

The main difference between the discrimination game (described above) and
the discrimination-similarity game is the following: For varying m, the opti-
mal solution of the discrimination game is m = n, where each chip has its
own category. This leads to the 100% success rate of the discrimination game.
Now, if we keep this categorization and play the discrimination-similarity game
with ksim > 1, the success rate of this game will be low, because two neigh-
boring chips will always be assigned to different color categories. Therefore,
there must be some restriction on the number of categories allowed as an op-
timal categorization. In fact, the optimal categorization for ksim > 0 in the
discrimination-similarity game will include only m < n categories.

In other words, the number of categories m that are learned by a discrimina-
tion-similarity learner is smaller than n, the number of chips in the stimulus
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Figure 3: Symmetry breaking caused by inhomogeneous sampling. Here n = 14 and ksim =
2. Chips marked by “X” are chosen much less often than the rest. Then (in the limit of
zero sampling frequency of the “X”-chips) categorization (a) yields success rate of 1, whereas
categorization (b) - success rate of 5/8.

domain. It is defined by the similarity range, ksim , in such a way that each
category must be wider than ksim .

Again, these statements about the optimal categorization imply the assump-
tion that the chips are drawn according to the uniform distribution. For different
distributions, the results may change. For instance, if we have n = 12, ksim = 3,
m = 3, ν3 = 1/2 and ν5 = 1/2, then the categorization system shown in (4)
above yields a success rate of 1.

Let us calculate the number of categories in an optimal categorization. Con-
sider the case of a circle. Assume the categorization splits it into m equal regions
of length l (n = ml). Pick two chips at random and play a discrimination-
similarity game. What is the chance that this game is successful?

The quantity d ≡ ||i− j||, the shortest distance between the two chips along
the circle, varies in the interval 1 ≤ d ≤ n/2. We consider two cases: (i)
ksim < l < n/2 and (ii) 1 ≤ l ≤ ksim .

(i) First assume d = n/2. There are n/2 pairs of this kind, each of them
yielding a successful game. Next consider the case where 1 ≤ d < n/2. Let us
calculate how many pairs, out of the n possible pairs of distance d, yield suc-
cessful games. If l ≤ d ≤ n/2, then all such pairs belong to different categories,
which means success, yielding n successful games. If ksim < d < l, then only
n −m(l − d) games are successful. Indeed, for each color, we have l − d pairs
belonging to it (each of which lead to a failure). Finally, for pairs of size d such
that 1 ≤ d ≤ ksim , the number of successful games is m(l−d), which is equal to
the number of pairs of the same color. Let us denote the frequency with which
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we draw a pair of size d by νd. Then we have the total success rate,

S =
1
n






ksim∑

d=1

νdm(l − d) +
l−1∑

d=ksim+1

νd(n−m(l − d)) +
n/2−1∑

d=l

νdn




 + νn/2 .

(5)
For the uniform distribution, the probability to draw a pair with distance d <
n/2 is given by

νd =
1− νn/2

n/2 + 1
≡ ν̄ .

We have

S =
ν̄

n






ksim∑

d=1

m(l − d) +
l−1∑

d=ksim+1

(n−m(l − d)) +
n/2−1∑

d=l

n




 + νn/2 .

Remembering that m = n/l, we obtain

S =
ν̄

2l
(2ksim(l − 1) + l(n− l − 1)− 2k2

sim) + νn/2 .

Differentiating this with respect to l, we find that the extremum is at the point

lc =
√

2ksim(ksim + 1) .

This is a maximum since

d2S/dl2 = − 2ν̄ksim(ksim + 1)
l3

< 0 .

(ii) In this case, a similar argument shows that

S =
1
n






l−1∑

d=1

νdm(l − d) +
n/2−1∑

d=ksim+1

νdn




 + νn/2 .

For the uniform distribution, we get

S =
ν̄

2
(n + l − 3− 2ksim) + νn/2 ,

which is obviously maximized by l = ksim .
Let us now compare the success rates in case (i) with l = lc and in case (ii)

with l = ksim . We have

S(l = lc)− S(l = ksim) = ν̄(1 +
3ksim

2
−

√
2ksim(ksim + 1)) > 0 .

Therefore, the optimal value of l is lc, and the optimum number of color cate-
gories is given by

mc = n[2ksim(ksim + 1)]−1/2. (6)
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Remark. If the value mc is not an integer, an optimal categorization will divide
the n chips in almost equal groups of the length maximally close to mc.

To summarize, we have defined the number mc (equation (6)), which can be
used as an estimate for the actual number of categories in an optimal catego-
rization, given ksim and n. Note that in the case of nonuniform sampling, we
can still calculate the optimal number of color categories (assuming that they
are of equal size, that is, have the structure described in Statement 1′). For that
we need to use the actual distribution values of the pair sizes in formula (5).

The next necessary step is the dynamics of the acquisition of color cate-
gorizations. This is done in the next section by investigating several different
learning algorithms. We will present numerical tests which are consistent with
the analytical result above. We will show that the optimal number of color cat-
egories can be reached as a result of learning dynamics. Namely, if we start with
a total number of categories bigger than mc, and apply a learning algorithm,
some of the categories will be weeded out (or reduced to low levels) to match
the number of active categories with mc. Conversely, if we start from a number
of active categories smaller than mc and introduce some additional categories
at low levels, the additional categories will eventually be adopted, to arrive to
an optimal categorization with mc color categories.

3 Individual learning

Three kinds of learning strategies are studied throughout this article. They
were selected because they produce color categorizations that vary in terms of
stability and other dynamical features for the games considered. The variability
is used to gauge what learning properties and games are needed to produce color
categorization systems that structurally resemble those found in cross-cultural
studies of human color naming.

Individual learning is concerned with one learner playing a number of games.
The learner starts with some initial categorization function F . He is presented
with a pair of color chips, (i, j), and assigns categories vi,j respectively to the
color chips i and j. It is assumed that after each game, the individual receives
a feedback on the result of the game (i.e., “success” or “failure”). The catego-
rization is updated based on this information. The learner’s task is to maximize
his success rate.

The update rule is given by an algorithm. Several such algorithms are con-
sidered in the next subsection.

3.1 Learning algorithms

In addition to specifying categorization on a stimulus continuum, similarity
ranges, and optimal categorizations for two types of discrimination games, we
also define three different ways agents learn to categorize color.
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A memoryless learner. This learner only performs deterministic categoriza-
tion; that is, a categorization where the entries of the vectors fi are zeros and
ones. If the game is a success, the learner stays with the current categorization.
If the game fails, the learner chooses a different vector fi for one or both chips
involved in the game. The choice of the nonzero entry of the new vector(s) is
random.

In other words, if the game is a success, then there is no change, and if the
game fails, the category of the chip(s) involved is switched at random. In partic-
ular, a memoryless learner can go back to a categorization that has already been
tried and rejected (thus the name of this strategy). We consider this learning
strategy because it has been extensively used for modeling language learning
in artificial intelligence type problems, as well as in modeling the evolution of
language (Niyogi 1998, Nowak et al 2002).

A smoothing learner. Again, this learner only performs deterministic cat-
egorization. In cases where the game is a success, the learner does not change
the categorization. If the game fails, she updates the vector fi for one or both
chips involved in the game by assigning fi = fi+1. The maximum number of
categories is m = n; that is, every chip belongs to a different category.

In other words, if the game fails, the category of the chip(s) involved is made
equal to that of its (their) neighbor on the right. We can also use neighbors on
the left or a random neighbor.

Reinforcement learner I. These learners allow for stochastic categoriza-
tions. Each color chip i is associated with a vector Xi whose m components
are integer numbers that add up to some constant, L:

∑m
j=1[Xi]j = L for all

1 ≤ i ≤ n. Then the categorization components are defined as normalized
entries of these vectors:

[fi]k = [Xi]k/L,

where the components [fi]k are defined in equation (1). Let us suppose a learner
plays a game with chips i and j, and assigns them to categories vi and vj

respectively. If the game is a success, the following operation is performed
regarding the component i of the categorization. If [Xi]vi = L, then nothing
changes. Otherwise, the learner updates as follows:

[Xi]vi → [Xi]vi + 1, [Xi]k → [Xi]k − 1,

where k is chosen randomly such that k '= vi and [Xi]k > 0. In case of a failure,
the categorization of chip i is updated as follows:

[Xi]vi → [Xi]vi − 1, [Xi]k → [Xi]k + 1,

where k is chosen randomly such that k '= vi. Similar operations are performed
regarding chip j.

In other words, if a categorization fails, then the value of the category asso-
ciated with the chip decreases by 1, and another category (chosen at random) is
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enhanced. In case of a successful game, two outcomes are possible. If the corre-
sponding category is already full (equal L), then there is no change. Otherwise,
the successful category is strengthened (by adding 1); at the same time another
(randomly chosen, nonzero) category is reduced by 1.
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1="dark" and 2="light"   :   failure
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Figure 4: Two rounds of discrimination-similarity game with a reinforcement learner. Each
color chip has two vertical lines or “stacks” for categories “light” and “dark” which successively
track reinforcement updating. The current values of the stacks are denoted by the x. See text
for the explanation of the updates performed by the learner.

Reinforcement learner II. A variant of a reinforcement learner has the
following update rules: If a categorization fails, then the value of the category
associated with the chip decreases by 1 as before, and all other categories are
enhanced by the amount 1/(m− 1). In case of a successful game, the successful
category is strengthened (unless it is full), and at the same time all other nonzero
categories are reduced. It turns out that for our purposes, the two types of
reinforcement learners behave similarly. Most experiments have been performed
by using the first type of reinforcement learners.

Fig. 4 illustrates the concept of a reinforcement learner. In this example,
there are only m = 2 color categories, such that both variants of the rein-
forcement learner are the same. Each chip is assigned two nonnegative integer
numbers that sum to L = 4. For instance, chip 1 in Fig. 4(a) has [X1]1 = 1 and
[X1]2 = 3, and chip 2 has [X2]1 = [X2]2 = 2. If the first number corresponds
to, for example, “light” and the second number to “dark”, then with proba-
bility [f1]1 = 1/4 the first chip is categorized as “light” and with probability
[f1]2 = 3/4 - as “dark”. The second chip is categorized as “light” or “dark”
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with equal probability [f2]1 = [f2]2 = 1/2.
Let us suppose that in the first round of the game, chips 1 and 2 are drawn,

which are within the similarity range. Let us assume that the learner categorized
chip 1 as “dark” and chip 2 as “light”. This means that the game failed. The
learner will perform the following operations: the “light” stack of chip 1 will
go up one reinforcement unit, and its “dark” stack will go down. Similarly, the
“light” stack of chip 2 will go down, and its “dark” stack will go up, see Fig.
4(b). In the next round of the game, chips 4 and 26 were chosen; we assume
that they are further than ksim apart. The learner assigned categories “dark”
and “light” to the two chips respectively; therefore, this game is a success. The
successful update corresponds to strengthening the “dark” stack of chip 4 (and
weakening its “light” stack), as well as strengthening the “light” stack of chip
26 (and weakening its “dark” stack), see Fig. 4(c).

3.2 Game dynamics and convergence

This subsection investigates the long-term behavior of various color category
learners and whether they will, in some sense, learn an optimal system of cat-
egorization. Conceptually, the simplest cases for acquiring such categorizations
are ones where the color names (signals) and color chips are given in advance
and the task is to assign each chip a name so that an effective system of cate-
gories emerge, where a “category” is the set of chips signaled by a name. There
is obviously an issue as to how the names became present. But this issue, as
well as the one of introducing new names and categories into a system of already
existing categories, require complexities that we do not want to engage at this
stage. This is in line with the objective of this article of seeing what results
we can obtain about color categorization from considering the simplest kinds of
game-theoretic, evolutionary methods.

Discrimination game. Let us fix the initial number of categories, m, and
start from an arbitrary color categorization. In particular, we use a random color
categorization for deterministic learners (i.e., for the memoryless and smoothing
learners). This means that each chip is assigned its category at random through
a uniform probability distribution. For non-deterministic, reinforcement learn-
ers, the following initial condition is used: Each chip has an equal probability
to be categorized to each of the m categories. In other words, we initially set
for each chip i,

[Xi]k = L/m, where 1 ≤ k ≤ m .

We first consider the dynamics of the categorization as the agent plays rounds
of the discrimination game. Both linear and circular geometries were used in
our computer simulations. We observe the following:

• A memoryless learner does not tend to an optimal categorization (see
discussion below).
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• A smoothing learner develops a categorization close to an optimal if ksim >
0. For ksim = 0, as time goes by, a category may be lost, and it can
never be regained. Therefore, the only attracting state for ksim = 0 is
“one category for all chips”; in practical terms however, in realistic times
color categorizations close to optimal survive (that is, they comprise long-
lived states). What is interesting, in the case of a circular geometry, the
resulting categorization is not stationary, and it keeps shifting without
changing its color order, see Fig. 5. If the unsuccessful update involves
adopting the category from the left (right) neighbor, the the shift proceeds
to the right (left). In a randomized case a random drift is observed.

• A reinforcement learner involves the following parameters: the number of
chips, n, the number of color categories, m, the similarity range, ksim and
parameter L, the sum of the components of the vectors Xi. Depending on
these parameters, different convergence behaviors are observed. For m =
2, the learner always gives rise to a steady (non-shifting) categorization
close to an optimal one. The convergence rates depend on the parameters
such that they are faster for larger ksim . For low values of ksim , L must be
large to achieve convergence. For m > 2, the algorithm does not converge
in a reasonable time.

Note that throughout this paper we will informally use terms such as “real-
istic time”, “close to optimal”, etc. They have a clear intuitive meaning but we
do not attempt to quantify them at this stage of model development.

   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









   









Figure 5: Several consecutive snapshots of the learning dynamics of a smoothing learner
playing the discrimination game, starting from a random initial condition. The horizontal
axes represent chips from 1 to n = 45, and the graphs show the color assigned to each chip by
the current categorization function. We took m = 5 categories and ksim = 5. There are 1000
rounds between consecutive snapshots. A leftward drift is noticeable, as seen by tracking the
leftmost category (color 5), starting from the top right snapshot. In that snapshot, category
5 is assigned to chips 44, 45 and also chips 1–5. In the next few shots, category 5 moves to
the left, reaching range 37− 44 in the bottom right snapshot.

Discrimination-similarity game. As shown above, the discrimination game
leads to a close-to-optimal categorization only for smoothing learners. The

22



resulting categorization is not stationary, but it drifts in one or both direc-
tions. The next set of experiments examines the dynamics of convergence for
discrimination-similarity games. Again, but linear and circular geometries were
used. We observe the following behavior:

• A memoryless learner does not tend to an optimal categorization.

• A smoothing learner develops a “drifting” categorization close to an opti-
mal, as before.

• A reinforcement learner tends to a stationary (without a directional shift)
categorization which is close to an optimal categorization, see Figure 6.
There is no convergence in the strict sense, because the dynamics does not
have any fixed points. However, the solution remains in the vicinity of a
nearly-optimal configuration for a long time.

     











     











     











     











     











     











     











     











     











     











     











     











Figure 6: Several consecutive snapshots of the learning dynamics of a reinforcement learner
playing the discrimination-similarity game. The horizontal axes represent n = 20 chips, and
the vertical axes are the probability for each of the color categories to be chosen for each chip.
We took m = 6 color categories, L = 12 and ksim = 3. The initial condition is such that each
of the six color categories has an equal probability to be chosen for each chip (not shown).
The thick, thin and dashed, both black and gray, lines correspond to the six color categories.
There are 4000 rounds between consecutive snapshots.

The failure of the memoryless learner. Historically, the memoryless learner
algorithm has been used as a very simple, ineffective algorithm which makes min-
imal demands on the learner’s “cognitive” apparatus but nonetheless achieves
its learning goal (converges) in many settings. That is why we considered this
algorithm as a null-hypothesis of our argument. It was therefore somewhat a
surprise that in this study, the memoryless learner does not find an optimal
color categorization in either of the games.
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This is different from the behavior of the memoryless learner algorithm when
it is applied to learning fixed categories, which is the usual setting for its imple-
mentation in artificial intelligence research (Niyogi 1998). There, one envisages
a series of interactions between a learner and a teacher. There is a (finite) num-
ber of concepts (rules, grammars, etc.) and the teacher knows the “correct”
one. The learner’s task is to guess the correct concept by evaluating a string of
examples (applications of the rule, grammatically correct sentences, etc.) given
by the teacher. The learner starts from a randomly chosen first guess, and re-
ceives the first input from the teacher. If this is consistent with the learner’s
hypothesis, no action is taken. If it is inconsistent, the learner adopts a different,
randomly chosen hypothesis. One can prove that (under some mild conditions
on the underlying set of hypotheses) as the number of such games goes to in-
finity, the memoryless learner will converge to the right answer (Komarova &
Rivin 2003).

In order to appreciate similarities and differences between the above teacher-
learner learning process and our memoryless learner, consider our memoryless
learner as a set of n agents, each trying to learn the correct category for its
chip. The difference is that in our case there is no fixed “correct” categoriza-
tion, and, as t → ∞, there will always be failed games, no matter what the
current categorization is. Indeed, even for the optimal solution, some of the
learners will inevitably find themselves on the boundaries of color domains, and
for them many discrimination-similarity games will fail, simply because the two
neighboring colors will be assigned to different categories. This situation is
reminiscent of a conventional memoryless learner trying to learn from an incon-
sistent teacher, who gives contradictory cues of what the correct answer might
be. A memoryless learner is notoriously unsuccessful in such settings (Niyogi
2006), which is consistent with our result.

Gaining and losing color categories. We have observed that the estimate
of equation (6) holds true, and the learning dynamics of a reinforcement learner
may lead to color category emergence or color category extinction. If we start
from the number of categories, m > mc, we observe that some categories are
wiped off (or at least are driven to very low probabilities), and the total number
of active color categories corresponds to mc. In Fig. 6, we start from m =
6 colors while mc ≈ 4.1. We observe that most of the time, there are only
four dominant color categories present. The other two categories exist at low
probabilities, and sometimes they come up at the color category “junctions” as
shown in Fig. 6. Similarly, we could start from m < mc, add a small chance
to use an additional color category and observe an increase in the number of
dominant color categories, Fig. 7. Adding an additional color category starting
from m > mc does not lead to an increase in the number of categories (not
shown); on the contrary, m decreases to reach mc.

A note on the speed of convergence. In this article the convergence rates
for various algorithms are not calculated, because the main goal here is to
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Figure 7: Several consecutive snapshots of the learning dynamics of a reinforcement learner
playing the discrimination-similarity game. Here, we took L = 12 and ksim = 3. Initially,
we have 3 dominant, deterministically assigned color categories, with a small perturbation
introducing a small probability of the fourth color category for the first chip. The thick black,
thick gray, thin black, and dashed lines correspond to the four color categories. There are
4000 rounds between consecutive snapshots.

demonstrate that certain kinds of individual learning algorithms produce nearly-
optimal solutions. However, it is worthwhile to comment about the time it takes
to weed out extra categories as both n and the optimal number of categories
increase. Fig. 8 shows a nearly-optimal categorization reached by a reinforce-
ment learner playing rounds of the discrimination-similarity game, starting with
m = 8 color categories. It took on the order of 106 rounds to settle to approx-
imately 6 categories. This should be compared with the dynamics of Fig. 6,
where the learner went from 6 to the optimal 4 color categories after about 104

rounds.
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Figure 8: A snapshot of the reinforcement dynamics of discrimination-similarity game, with
n = 30 chips, L = 16, ksim = 3, and 8 color categories equally distributed initially. mc = 6.1
in this case. This shot corresponds to about 106 iterations of the game.
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3.3 Inhomogeneous color diet and variable color impor-
tance

So far we assumed that the color chips are drawn from a uniform distribution.
Color scientists talk about different “color stimulus diets” in which certain parts
of the color space are more frequent or more salient than others (e.g., Regan,
Julliot, Simmen, Viénot, Charles–Dominique & Mollon 1998; Stoner, Riba–
Hernández & Lucas 2005). Analogous to this, some of our simulations involve
non-uniform distributions of color chips. Namely, we assumed that the color
distribution had a “hot spot”. For example, in the experiments of Fig. 9, in
50% of the cases, a color chip was drawn from a narrow region in the color
stimulus domain (the leftmost 10 chips out of the total of n = 40 chips). In
the remaining 50% of the cases, a chip was drawn from a uniform distribution
over the whole color domain. In Fig. 9 we observe that the first categories that
emerge are the ones that surround the “hot spot”. Eventually, m = 6 color
categories will crystallize (not shown).
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Figure 9: Discrimination-similarity game of a reinforcement learner with a non-uniform color
distribution. The leftmost 10 chips (the “hot spot”) are chosen in 50% of the cases, see text.
Parameters are n = 40, m = 6, L = 15, ksim = 4. The frame is taken after about 105 runs.

So far, we have used the simplifying assumption that ksim is a constant for
all color chips. For the purposes of this article, this is interpreted as follows:
for pragmatic purposes, colors that are within the ksim range, will most likely
have similar properties. In the primate world, the range of similarity may be
different in different regions of the color space. For example, it may be of prac-
tical importance to distinguish shades of colors in the red-yellow range, and
less important to notice differences in the blue-purple region. The reason for
this could be related to kinds of edible fruit found or grown by the group of
people. If all edible fruit are reddish, and almost nothing edible (or danger-
ous) is bluish, then the reddish region becomes more important, and subtler
differences are likely be identified within that region. Whatever the reasons,
the literature contains considerable empirical evidence to support the present
suggestion regarding nonuniform color salience in humans.

The next set of experiments investigates such situations. We draw chips
from a uniform distribution over n = 40. If at least one of the chips in a pair
belongs to the range 1 − 10, then we set the similarity range to be ksim = 2.
Otherwise, ksim is taken to be 6, see Fig. 10.

26



The simulation starts with m = 6 color categories, each equally likely to be
chosen for every color chip. After about 105 runs, the following picture starts
to emerge: the region 1− 11 is divided into three color categories, and there are
also three categories that correspond to the other 29 chips. What we observe
is a non-homogeneous color categorization with finer categories in the region of
small ksim and rougher categories in the rest of the field. This result is quite
predictable. We can calculate the optimal number of color categories for the
10 chips with ksim = 2, mc = 2.9, and the optimal number of categories in the
rest of the circle, with n = 30 chips and ksim = 6: mc = 3.3. Thus we expect
to have roughly three categories for chips 1− 10 and three categories for chips
11− 40.
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Figure 10: Discrimination-similarity game of a reinforcement learner with a non-uniform
color distribution and non-constant ksim . Parameters are n = 40, m = 6, L = 15, ksim varies
between 2 for chips 1− 10 and 6 for chips 11− 40. The frame is taken after about 107 runs.

All simulations up to this point have dealt only with individual learning,
most directly capturing categorization within a single artificial agent or some
empirical situations involving the learning of color categories without commu-
nication. For the modeling the evolution of shared human-like categorization
systems used for pragmatic color communications we next consider category
solutions that emerge when individual agents in a population communicate in
color category games.

4 Population learning

This section looks at the evolution of color naming in a population of agents.
The agents play versions of the discrimination and the discrimination-similarity
game through interactions with one another. Interestingly, we observed that
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learning algorithms that did not find an optimal categorization in an individ-
ual learning task, did not improve their performance in a population-learning
setting. One could hope that interactions among individuals could improve con-
vergence properties of learning algorithms. This did not happen: for instance,
a population of memoryless learners is unsuccessful in developing an optimal
color categorization. The following two subsections consider smoothing learn-
ers playing rounds of discrimination game and reinforcement learners playing
rounds of discrimination-similarity game.

4.1 A population of smoothing learners playing a discrim-
ination game

Let us suppose we have N individuals, {1, . . . , N} in the population, each
having its own deterministic categorization, F (I), 1 ≤ I ≤ N . Time flows
discretely. At each time-step, two individuals from the population are picked
at random and presented with two color chips. First, each individual plays a
discrimination game using the two chips. There can be three outcomes of the
games, which define the update rule of the player:

(1) One of the individuals succeeds and the other fails. In this case the failing
individual learns the color categories (for the two chips) from the former
one; that is, the successful individual is taken as the teacher and the failing
one as the learner.

(2) Both individuals succeed in discriminating the two chips. In this case one
of the two individuals is picked at random to be the teacher. The other
one learns the color categories of the two chips from the teacher.

(3) If both individuals fail, then both of them perform the unsuccessful update
from the smoothing learner algorithm. (As a variant of this algorithm,
only one of the failing individuals could perform the unsuccessful update
procedure).

An example of a simulation for a population of smoothing learners is presented
in Figure 11. There, each plot corresponds to one learner. The first column
represents the population at the initial time, and the second and third columns
show snapshots of the population at two later moments of time. For each color
chip i (the horizontal axes), only a single color category is shown, which corre-
sponds to the maximum entry in the vector Xi. In other words, for each player
and for each chip, we show the color category that the player is most likely to
assign to it. For instance, player 1 is most likely to use color category 3 for chips
1 − 11 after 10, 000 rounds, and he is most likely to use category 2 for these
after 30, 000 rounds, see the second and the third columns, the top plots.

We can see that the smoothing learner algorithm converges to a high-coherence
population with a color categorization close to an optimal one. By high coher-
ence we mean a high degree of agreement among players on their choice of color
categorization. If the smoothing algorithm implies adopting the color category
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from the neighboring chip on the right (left), then a slow synchronized leftward
(rightward) drift of color categorizations is observed in the entire population.

A variant of this algorithm includes the notion of fitness. Here, we define
the fitness of individual I as

φI =
1

Nn

N∑

J=1

n∑

i=1

δ
F (I)

i ,F (J)
i

, (7)

where δ stands for the Kronecker symbol. This definition gives the degree to
which an individual agrees with others regarding color categorization. Note
0 ≤ φI ≤ 1. Now, each time both players succeed in the discrimination game,
the one with the larger fitness is chosen as a teacher; if the fitnesses are the same,
then the teacher is randomly chosen. We have run a series of experiments where
we included fitness in the dynamics. No qualitative difference in the results has
been observed.

A problem with the discrimination game is that the population can learn
an arbitrary number of categories m ≤ n. That is, an optimal solution can be
“each chip has its own category”. In fact, if we play the discrimination game
with different given numbers of categories, m, then the success rate of the games
with m = n will be the highest. This is an unwanted outcome, as it suggests
that different color names for all distinguishable color chips will evolve.

4.2 A population of reinforcement learners playing a dis-
crimination-similarity game

Suppose there are N reinforcement learners, each equipped with n vectors,
Xi. As before, a pair of individuals is chosen from the population. They are
presented with two chips chosen at random. There are three cases:

(i) The two chips are the same.

(ii) The two chips are different but within ksim of each other.

(iii) The two chips are different but not within ksim of each other.
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Figure 11: A population of smoothing learners playing the discrimination game, with N = 10
agents, n = 45 color chips, m = 3 and ksim = 5. The first column is the initial, random, color
categorization of the ten players. The second column is the categorization of the players after
10, 000 rounds of the game. The last column is the categorization 30, 000 rounds later. For
each chip (the horizontal axes) only one color category is shown: the one that the individual
is most likely to use for this chip.
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Same chip Chips within ksim Chips further than ksim
same-same C C D
same-different N/A B A
different-same N/A A B
different-different N/A D C

Table 1: Four possible outcomes of each round of the discrimination-similarity game. The
left column lists the categorization choices of the two players. A denotes that player 1 fails
and player 2 is successful, B denotes that player 2 fails and player 1 is successful, C denotes
that both are successful, and D denotes that both fail.

Each player assigns categories to the two chips. Depending on the players’
choice of categories, their game is a success or a failure. For instance, assigning
the same category to the two chips in the case when they are within the ksim
range comprises a success; and if the chips are further apart than ksim , it is
a failure. None, one, or both players can be successful in any given round of
the game. There are 4 outcomes which we denote A, B, C and D; they are
summarized in Table (1). Each of the the four outcomes has its own update
rule:

(1) In the case of outcome A, player 1 learns from player 2. This indicates
that the vector of player 1 corresponding to the first chip (chip i) changes
according to this rule:

[Xi]v(2)
1
→ [Xi]v(2)

1
+ 1, [Xi]v(1)

1
→ [Xi]v(1)

1
− 1,

where v(1)
1 is the category chosen by player 1 for chip i and v(2)

1 is the
category chosen by player 2 for the same chip. In other words, player 1
(the learner) updates his categorization for the first chip in the following
way: he adds 1 to the stack corresponding to the color category used by
player 2 (the teacher), and he subtracts 1 from the stack corresponding to
the color he previously used for this chip.
Similarly, player 1 updates the component corresponding to the second
chip:

[Xj ]v(2)
2
→ [Xj ]v(2)

2
+ 1, [Xj ]v(1)

2
→ [Xj ]v(1)

2
− 1.

(2) In the case of outcome B, the roles are reversed, and player 2 learns from
player 1.

(3) In the case of outcome C, in the simplest algorithm, the teacher is chosen
at random.

(4) In the case D, each of the players update their vectors according to the
individual reinforcement learner algorithm.
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Note that the task of learning color categories of one player from another has
to be modeled differently for smoothing and reinforcement learners. Smoothing
learners are deterministic learners, that is, they assign a particular color category
to each chip. Therefore the only learning mechanism available for them is to
switch the color category for the given chip to that of the teacher. On the other
hand, reinforcement learners allow for a more realistic modeling of the learning
process. Unlike smoothing learners, they use probabilistic categorization. As
the result of learning, the failing individual increases the “stack” corresponding
to the color category used by the teacher. Thus the next time this chip is
chosen, this individual will have an increased chance to assign it to the teacher’s
category.

This algorithm gives rise to a coherent population of stationary optimal
categorizations, see Fig. 12. In the figure, each plot corresponds to one learner.
As in Fig. 11, for each color chip i (the horizontal axes), only the most likely
color category is shown. We have mc ≈ 3 in this case, that is, only three color
categories survive.

Note that in the algorithm described above, we included pairs of identical
chips, see table 1. Such pairs were always discarded in the previous sections,
where we talked about individual learning. In an additional series of experi-
ments, we discarded pairs of identical chips in population learning scenarios.
This did not affect the results in a qualitative way.

We have considered two other extensions of this algorithm, both concerning
outcome C, where both players are successful in the game. First of all, each
player can keep a score, that is, count the number of times he served as a
teacher. Then, when it comes to a tie (C), the player with a higher score
(rather than a random player) is chosen as a teacher. (If both players have the
same score, then the teacher is chosen at random).

The other extension uses the notion of fitness of the player. In case C, the
player with a higher fitness is chosen as a teacher. The definition of fitness for
non-deterministic agents is given as follows. We first define the quantities

F (I)
i = κ, [X(I)

i ]κ = max
k

[X(I)
i ]k,

that is, for each color chip i, we pick the category κ ∈ {1, . . . ,m} such that
the component κ of the vector X(I)

i is the largest. In the case where several
components have the same magnitude, we could pick one at random. Then the
fitness can be defined by Equation (7).

It turns out that these extensions of the algorithm do not produce a qualita-
tive difference on the outcome of the evolutionary dynamics compared to those
that do not use fitness or a success score.
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5 Discussion

5.1 Local and global topological considerations

We use the generic term interval to describe a proper arc of a circle or a
proper interval on a linear segment. For the purposes of this subsection, the
different endpoint conditions of an interval play no role, and so two intervals
which only differ in terms of endpoints are considered identical. With this
convention in mind, intervals that are arcs and intervals that are linear segments
are topologically equivalent, that is, any interval can be continuously “stretched”
into the another without “tearing,” except possibly for endpoints, which do not
matter for this discussion.2 Even though the intervals of a circle are topologically
equivalent to those of a line segment, the circle and the line segment differ
topologically. We express this fact by saying the circle and line are locally
equivalent topologically—because intervals from one are topologically equivalent
to intervals of the other—but are not globally topologically equivalent, because
they cannot be continuously “stretched” into one another without “tearing.”

2Formally, this is expressed as follows: For each arc interval A and each linear interval L
there exists a one-to-one continuous function f from A onto L such that f−1 is a continuous
function from L onto A.
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Figure 12: A population of reinforcement learners playing the discrimination-similarity
game, with N = 10 agents, n = 20 color chips, m = 4, L = 12 and ksim = 4. Each plot
corresponds to the color categorization of one player. For each chip (the horizontal axis) we
show the category which has the highest entry in the learner’s categorization vector. The first
column is the initial, random, color categorization of the ten players. The second column is
the categorization of the players after 10, 000 rounds of the game. The last column is the
categorization 70, 000 rounds later.
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Our simulations of signaling systems evolved through smoothing and rein-
forcement algorithms show that the extension of a signal—that is, the set of
stimuli named by a signal—evolves to an interval or disappears, in which case
we say that the signal has no extension. Signals with extensions are called
nontrivial signals. Thus, by topological equivalence, the extensions of any two
nontrivial signals have identical topological structure. This result holds for both
individual and population games played with either circular or linear arranged
stimuli. Thus the local semantics of a nontrivial signal, i.e., the signal’s local
meaning ( = its extension) is identical topologically to the local semantics of
every other nontrivial signal. In this sense, the evolved local meaning does not
depend on whether the stimuli use in the evolution were globally circular or
linear. However, the global semantics of the signaling system, i.e., the meanings
of nontrivial signals with respect to the meanings of all other signals within
the system, depend on whether the extensions of the signals were evolved from
circularly arranged stimuli or from linearly arranged stimuli. This is because
the set of all extensions of signals arising from a circular arrangement of stim-
uli itself can be given a circular arrangement of intervals so that all chips are
continuously aligned, and similarly the set of all extensions of signals arising
from a linear arrangement can be given a linear arrangement so that all chips
continuously aligned, and a circle is topologically different from a line.

It should be noted that topology does not account for the number of jnds
within an extension of a signal. The simulation in Section 3.3 evolved exten-
sions with varying numbers of jnds, and the discussions in that section and
Subsection 5.3.1 below provided reasons for the importance of considering such
variations in color naming tasks. Thus in explaining the evolution semantics of
color signaling systems, more than just topological concepts are needed. This
point has been emphasized in Jameson (2005d) and is an important ingredient
of her Interpoint Distance Model and her analysis of color categorization and
its evolution.

5.2 Possible extensions of the evolutionary algorithms

Our approach in this article has been to consider simplest idealizations of
situations where a signaling system evolves for objects from a continuous do-
main. This subsection discusses some of the ways the concepts and algorithms
of the previous sections can be modified so that they apply to more complicated
situations. The modifications are only briefly discussed, and details involving
exactly how the evolutionary algorithms are to be extended are not presented.
They will be developed in future publications.

5.2.1 Extending algorithms for circle and line stimulus domains to
a three-dimensional color solid

As detailed above, the present investigations only consider categories formed
on continuous circle and line segment gradients. It is straightforward, however,
to extend the present investigations to simulating category evolution on a three-
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dimensional color solid, like the Munsell Color Solid, with minor modifications
of the algorithms.

That is: Chips a and b are said to be (k, l,m)-similar if and only if simulta-
neously, (i) in terms of the hue dimension a and b are k-similar, (ii) in terms of
the value dimension a and b are l-similar, and (iii) in terms of the chroma dimen-
sion a and b are m-similar. By appropriate substitutions of (k, l,m)-similarity
for k-similarity in our algorithms and other concepts, our evolutionary methods
of analyses extend to various two and three-dimensional regions of the Munsell
Color Solid.

5.2.2 How agents can immediately achieve correct categorization of
new stimuli

It is reasonable to consider cases where the number of stimuli is so huge and
diverse with respect to the number of signals that agents experience only a small
fraction of the possible stimuli. Our algorithms, as currently formulated, do not
apply to such cases, because they require each chip to be updated, usually a large
number of times. One approach to extending the algorithms to cover these cases
is to evolve for each name an icon chip. Intuitively an icon chip approximates
one feature of human long-term memory in the naming of a newly presented
color chip. Formally, any chip c occurring in a game is named as follows:

(1) If there is no icon chip to which c is k-similar, play the game, give c the
name dictated by the result of the game, compute the categorizing vector
fc accordingly, and make c an icon chip.

(2) If i is the only icon chip to which c is k-similar, play the game for c with c
having i’s name, recompute fi to reflect the result of the success or failure
of the game (even though the game was played with c), remove i as an
icon chip and replace it with a new icon chip i′ that is a chip that is nearby
i in the direction of c, and set

fi′ = the recomputation fi .

(3) If there are more than one icon chip to which c is k-similar, randomly
select one of those icon chips, i, play the game for c with c having i’s
name, recompute fi to reflect the result of the success or failure of the
game (even though the game was played with c), and retain i as an icon
chip.

In this approach, chips that are judged are only given names of icon chips,
and only icon chips are updated. The approach may be viewed as a means
of incorporating a primitive form of perceptual memory into the evolutionary
process, with the presented chips being analogous to “perceptions” and the icon
chips to “memories.”
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5.2.3 Best exemplars

The introduction of icons as just described allows for the possibility of evolv-
ing best exemplars for color categories. In such a situation, an icon chip is an
obvious choice for a best exemplar. However, there are likely to be several icon
chips for a given color category. When a color naming system achieves a near
equilibrium state in a discrimination game using k-similarity, the icon chips
nearest a category’s boundary are at a disadvantage for being a best exemplar
for that category, because they may sometimes name a chip that is classified as
a failure in simulated games. Exactly which of a category’s icon chips should
be selected as “best exemplar” would generally depend on additional factors
not emphasized in the simulations presented in Sections 2 and 3, for example,
heterogeneity of chips, heterogeneity of agents, variable k-similarity, etc.

5.3 Implications for color naming theory

It is important to re-emphasize that the agent simulations we present are not
intended to model human color category learning or interactions between human
categorizers. They are instead intended to demonstrate what can be achieved
using only the most rudimentary forms of color observation and communication
together with an elementary evolutionary dynamics. The evolutionary dynamics
used follow the ideas that (i) color naming should be based on pragmatic con-
cerns, (ii) in general, perceptually similar colors should be given the same name,
and (iii) perceptually different colors should be given different names. These
kind of simulations may be useful for clarifying certain contentious issues in the
literature concerning the basis for color naming by providing counter-examples
which show that various features of naming systems can evolve without making
additional assumptions involving physiological processing, or cognitive strate-
gies, or socio-cultural methods of transmission. On the positive side, by having
explicit evolutionary models and algorithms we may be able to demonstrate the
feasibility of certain evolutionary theories presented in the literature.

Another goal of the present work was to begin investigations into some pre-
dictions made by the Interpoint–Distance Model of color categorization (Jame-
son & D’Andrade 1997, Jameson 2005d), and to evaluate how such predictions
hold up under simulated situations of category evolution. We believe that be-
yond the limited assessment possible using diachronic analyses of color lexicon
evolution, the approach presented here is perhaps one of the few ways to evaluate
theories of color category evolution, since directly observing or assessing the evo-
lution of such systems in the real world is not achievable via typical psychological
or cultural investigative methods. Still, despite our admittedly indirect evalu-
ation of the Interpoint–Distance Model (abbreviated IDM) we found several
fruitful results that bear both on color–naming psychology, and on extensions
of some information processing principles described by Garner (1974).

First, in the present study when our category solutions were constrained by
uniform stimulus sampling we found that the equal size category partitions that
resulted could be viewed as support for the prediction that successful color–
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naming systems exhibit “... an informational advantage to making the divisions
so that category foci are maximally different from each other.” (Jameson &
D’Andrade 1997, p. 313). That is, while here our categories arose in the absence
of defined category “best–exemplars,” the stable relational structure among our
emergent partitions generally implied that best–exemplars in a given category
partition would not be close to any neighboring category boundary, a feature
dependent on the magnitude of k-similarity values). This finding is also com-
patible with categorization dynamics described by Garner (1974).

In addition, present investigations that explored the impact of inhomoge-
neous color space sampling and inhomogeneous k-similarity ranges on individual
agent categorization were found to validate the IDM prediction that exogenous
pragmatic influences — of the sort represented by our hotspot sampling — could
influence individual’s category partitioning in ways that trump some catego-
rization tendencies that may arise from features of psychological discrimination
processing alone.

5.3.1 Category solutions under inhomogeneous color space sampling
and inhomogeneous agent similarity ranges

In general, under conditions of uniformly distributed color chips we find
that the convergent solutions produce equal sized categories (where “size” is
measured in terms of jnds). Predictions regarding a tendency toward equal
sized category regions were presented in the Interpoint Distance Model (Jameson
2005d, p. 320). In addition, however, we investigated two cases illustrating
factors that influence the emergence of category regions of equal size.

For example, Section 3.3 presents algorithmic solutions under (i) varying
distributions of color chips and (ii) varying color similarity range parameter
settings. For situation (i) some segments of the hue continuum were sampled
more liberally than other segments when setting up the games to be played,
following the rationale that pragmatic concerns (i.e., colors signaling ripe fruit)
might present biases that could impact category development. In situation (ii),
an agent’s similarity range parameter was defined as inhomogeneous across the
color continuum.

Under situations (i) and (ii) two interesting results emerged: First, the
segments of the hue continuum from which more games were drawn were found
to form categories earliest. Second, the number of categories found in the region
of smaller ksim is larger, allowing the agents to use finer distinction among color
shades in that region.

The first result may provide a hint regarding the unexplained widespread
occurrence of the early emergence of reddish categories in human color catego-
rization systems. By analogy, if a pragmatic concern of optimizing caloric intake
is an especially important factor in a population’s color signaling system, then
those categories relevant to this concern emerge first and stabilize earliest.

The second result suggests that when differences in agents’ similarity ranges
exist the convergent categorization solution can in fact shrink both the size and
the number of categories to a system that is optimal for the inhomogeneous
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similarity ranges of agents across the hue continuum.
Both these results are important for evaluating how pragmatic constraints

on color naming might influence the evolution and maintenance of a color signal-
ing system in both artificial and non-artificial agents. They also indirectly give
an impression how systematic variation in observer-type heterogeneity could
influence convergent category solutions (as suggested by Jameson, 2005a)—a
topic of recent discussion in the color categorization literature (Steels & Bel-
paeme 2005). Finally, both results accord with the organizational framework
for human color categorization described by Jameson (2005d, pp. 316–325).

5.3.2 Relevance to the color category simulation literature

The modeling methods used here resemble those found in existing research
on the evolution of general communication and signaling systems (Grice 1957,
1989, Lewis 1969, Skyrms 1996, Komarova et al 2001, Nowak 2001, 2002, Ko-
marova & Niyogi 2004, Komarova 2004 ) and from computational modeling spe-
cific to perceptually-based color categorization (Zuidema & Westernann 2003,
Belpaeme & Bleys 2005, Steels & Belpaeme 2005).

Similar to previous color category simulation research we examine how in-
dividual agents behave in color discrimination games and how groups of agents
interact in language games under different constraints, allowing a shared lex-
icon to emerge and stabilize across simulated communication games among a
population of agents (Belpaeme & Bleys 2005, Steels & Belpaeme 2005).

In particular, Steels & Belpaeme (2005) recently investigated the circum-
stances under which simulated agents could arrive at human-like color catego-
rization solutions. Their goal was to explore the potential for agent communi-
cation with humans.

They implemented algorithms that incorporated the standardized three–
dimensional model of human color perception (i.e., CIELAB). They investigated
(i) whether these algorithms evolved category systems that were sufficiently
shared among agents to allow successful communication in the simulated popu-
lation, and (ii) whether the evolved category systems resembled those systems
found for humans.

By comparison, the definition of an agent in our investigation differs slightly
from that of by Steels & Belpaeme (2005). Unlike Steels & Belpaeme, we do
not incorporate a large and rich set of human color perceptual features into
our simulated agents; instead our agents incorporate only a primitive ability to
carry out color discriminations.

Interestingly, Steels & Belpaeme (2005) conclude that the collective choice
of a shared repertoire must integrate multiple constraints, including constraints
coming from communication. One can argue that the present simulations ac-
tually make this point more forcefully because we found stable shared cate-
gorization systems only required the most pragmatic assumptions about com-
munication and learning, and only a rudimentary assumption concerning agent
discrimination abilities.
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In addition, we also differ from Steels & Belpaeme (2005) regarding the spec-
ification of the stimulus set evaluated by agents, because, unlike them, we do
not use complex information about real-world surface reflectances as the input
stimulus sets in our simulations. Instead we limit the stimulus domain to to sim-
ple stimuli organized in terms of jnds. The present study employs only stimuli
arranged in circle and line gradients. However, as suggested previously, we ex-
pect our methods will extend in simple ways to the full Munsell solid. The kind
of constraints we employ do not aim to capture the considerably more complex
sets of constraints occurring in real-world color categorization among popula-
tions of humans. This latter point does not diminish the significance of our
strategy for understanding the real-world color naming in terms of evolution-
ary models involving minimal perceptual constraints and simple learning. The
rationale behind investigating the evolution of color categories this way is that
if convergent stable color categories are not observed under such evolutionary
processes, then we know that additional constraints (e.g., actual distributions
of environmental colors, a simulated model of human color perception, more
realistic language learning processes, etc.) or more complex learning algorithms
are needed for determining the conditions under which a stable, convergent sys-
tem will emerge. The outcome of our simulations, however, found that such
additional constraints were not required to produce category learning and sta-
ble convergent categorization systems for the restricted cases of circular and
linearly arrange stimuli with homogeneous agents.

5.4 Implications for social evolution

Signaling learning games within a population have have been used by philoso-
phers (e.g. Lewis, 1969; Skyrms, 1996) as devices for illustrating, arguing for,
and refuting various positions about the nature of social evolution. However,
in formulating their arguments they did not consider games that converged to
a near optimal solution. The existence of such convergent behavior—for exam-
ple, in our learning population game involving the color circle with smoothing
learners—reveals shortcomings in some important definitions employed in the
literature and presents some new and interesting avenues for modeling.

The philosopher David Lewis was the first to use signaling games to illus-
trate and formulate social evolutionary concepts. He provided a game theoretic
account for the formation of conventions and used it as the basis for a theory
of meaning for signaling systems (Lewis, 1969). Skyrms (1996) later provided a
more penetrating analysis of the evolution of meaning within signaling systems.
Both base their theories on the game theoretic concept of “equilibrium,” or more
precisely, “a robust Nash equilibrium of a coordination game.” Lewis in his final
definition of “convention” (he used 73 pages of text to arrive at this final defi-
nition) allows for the equilibrium to almost hold instead of exactly holding. In
the following quotation from Lewis (1969), P stands for a population of agents
and S for a convention:

There is no harm in allowing a few abnormal instances of S which
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violate some or all of the clauses [of Lewis’s definition of convention
as a Nash equilibrium of a coordination game]. So we replace “in
any instance of S of members of P” by “in almost any instance of S
among members of P .” If we want more precision, we can replace it
by “in a fraction of at least d0 of all instances of S among members
of p” with d0 set slightly below one.

Nor is there any harm in allowing some, even most, normal in-
stances of S to contain a few abnormal agents who may [violate the
conditions of S being a convention]. (Pg. 77)

Having a convention to hold almost universally rather than universally does
not necessarily lead to an “almost equilibrium of a coordination game,” which
in our reading of Lewis is the intended conclusion to be drawn, but could pos-
sibly lead to conventions that do not stay close to any particular solution. We
observed both kinds of behaviors in our population learning simulations: For a
population of reinforcement learners playing a discrimination-similarity game,
we observed a solution that remains in the vicinity of a nearly-optimal config-
uration for a long time; for a population of smoothing learners, we observed a
non-stationary convergence to a near optimal categorization that slowly drifts
outside of the vicinity of that categorization and into the the vicinity of another
optimal categorization.

In the population of smoothing learners, unsuccessful updates occurred ei-
ther (i) through a random choice, producing random drifts, or (ii) choosing the
left (right) neighboring category, producing shifts to the right (left). In an evolu-
tionary scenario, “choosing the left (right) neighboring category” may be looked
at as a previously established convention, much like the “keep to the right side
of the road except possibly for passing” convention that evolved for regulating
road traffic in various places being a basis of other conventions, e.g., skating
on sidewalks or passing people on an escalator. The adoption of “choosing the
left (right) neighboring category” convention in our simulations produced sig-
naling systems that were qualitative different in their dynamics from those that
adopted the null convention of choosing randomly.

Non-stationary conventions like those observed for the populations of smooth-
ing and reinforcement learners behave locally like conventions based on almost
equilibria—that is, behave like conventions based on almost equilibria for ap-
propriate intervals about times t, where t is some time after the convention has
been established—but globally behave differently from almost equilibria in that
the conventional meaning of signals changes with time.

Not all meanings in a non-stationary signaling system need to drift with time.
Consider the case of a population signaling game with the color terms yellow,
orange, red, purple, and green. Suppose, as in the simulated population
learning game involving smoothing learners and colors from a hue circle, a non-
stationary convergent solution is reached where the meanings for the color terms
are also organized in the same circular order as the colors they name, say,
counterclockwisely as: yellow, orange, red, purple, and green. Then the
proposition that orange is immediately between yellow and red conventionally
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holds globally, even though the meanings of the individual color terms change
with time. This proposition can be viewed as an example of what Lewis (1969)
calls “a consequence of the convention.” However, because the above convention
changes with time, it is better called a global consequence of the convention, in
order to distinguish it from consequences that only hold locally, that is, from
consequences that only hold for specific periods of time.

Conventions are at the heart of concepts like social contracts, norms, and
conformative behavior. To our knowledge formulations of conventions that allow
for drifting meaning have not appeared in the literature, although such “drifting
conventions” appear to be important in the modeling of some forms of social
and institutional change.

6 Summary

Our intent for this article is to examine categorization methods for color chips
that continuously perceptually vary along a circle or a line. In such situations
categorization is achieved by playing a repeated evolutionary game involving
color naming. We investigated cases where the chips are arranged according
to jnd gradients and the game’s evolutionary dynamics employ simple learning
algorithms and simple rules for determining successes in the games played. Two
types of learners are considered:

(1) An individual learner with learning updates that depend only on (i) the
presented chips, (ii) the similarity range (i.e., k-similarity), and (iii) his
current categorization strategy. This type of learner acquires a categoriza-
tion system based entirely on individual experience.

(2) A population learner with learning updates that depend, like an individual
learner, on (i) the presented chips, (ii) the similarity range, and (iii) his
current categorization strategy, but with updating additionally depending
on (iv) the current categorization of another randomly chosen learner’s
categorization of the presented chips and also possibly on that learner’s
fitness. A population learner acquires a categorization system that is based
on both his individual experience and the experiences of other members
of the population.

Our results show the emergence of optimal categorization systems across
a variety of games played with homogeneous and inhomogeneous stimuli, for
individual agents and across individual agents in a population. In these catego-
rization systems the success rate is maximized, and each category has a unique
name. Our simulations showed that the following generally holds:

• In both individual and population learning, learners categorize poorly if
memoryless learning algorithms are employed.

• In both individual and population learning, learners produce a near opti-
mal categorization system in which category meanings can drift if smooth-
ing learning algorithms are employed.
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• In both individual and population learning, learners produce a near op-
timal categorization system in which category meanings do not drift if
reinforcement learning algorithms are employed.

• In population learning, learners converge to essentially the same near op-
timal categorization.

• In population learning, incorporating agent “fitness” does not have an
effect on population categorization.

• For a similarity range constant for all chips, all categories are of approx-
imately the same size; when stimuli with varying similarity ranges are
considered, categories of different sizes evolve.

• When an inhomogeneous color distribution (“color diet”) is considered,
the most frequently occurring regions in the stimuli space develop color
categories first.

• Categories may “drop out,” i.e., the categorization that emerges through
evolution may develop variable sized and fewer numbers of categories de-
pending on the similarity ranges of chips. Similarly, color terms that occur
very infrequently in the population at first, may become adopted by the
entire population, thus increasing the total number of color terms, in re-
sponse to similarity requirements.

The main conclusion of this article is that a few simple hypotheses about
color discrimination combined with learning through a simple language game
can reproduce several general findings concerning color naming within a pop-
ulation. To reproduce finer features such as the prevalence of many naming
systems with blue-green categories, or evolutionary splitting of a category, or
schemes that classify known color naming systems, and so on, additional hy-
potheses about perceptual color organization and additional algorithms that
take into account more complicated, pragmatic, social interactions are needed.
Forthcoming research investigates whether this can be accomplished using only
a simple form of reinforcement learning.
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