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1 Introduction

In the course of natural history, Evolution has come up with several great in-
novations, such as nucleic acids, proteins, cells, chromosomes, multi-cellular
organisms, the nervous system.... The last “invention” which truly revolu-
tionized the very rules of evolution is language. It gives us an unprecedented
possibility to transmit information from generation to generation not by the
“traditional” means of a genetic code, but by talking. This new mode of
cross-generational information transfer has given rise to the so-called “cul-
tural evolution”. It is responsible for a big part of being “human”. It is
shaping the history and changing the rules of biology. Without exaggera-
tion, it is one of the most fascinating traits of Homo Sapiens.

The study of language and grammar dates back to classical India and
Greece. In the 18th century, the “discovery” of Indo-European led to the
surprising realization that very different languages can be related to each
other, which initiated the field of historical linguistics. Formal language the-
ory emerged only in the 20th century (Chomsky, 1956, 1957; Harrison, 1978):
the main goals are to describe the rules that a speaker uses to generate lin-
guistic forms (descriptive adequacy) and to explain how language competence
emerges in the human brain (explanatory adequacy). These efforts were sup-
ported by advances in the mathematical and computational analysis of the
process of language acquisition, a field that became known as learning theory.
Currently there are increasing attempts to bring linguistic inquiry in contact
with various disciplines of biology, including neurobiology (Deacon, 1997;
Vargha-Khadem et al., 1998), animal behavior (Dunbar, 1996; Hauser, 1996;
Fitch, 2000), evolution (Lieberman, 1984; Pinker and Bloom, 1990; Bick-
erton, 1990; Lieberman, 1991; Hawkins and Gell-Mann, 1992; Batali, 1994;
Maynard Smith and Szathmary, 1995; Aitchinson, 1996; Hurford et al., 1998;
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Jackendoff, 1999; Knight et al., 2000) and genetics (Gopnik and Crago, 1991;
Lai et al., 2001). The new aim is to study language as a product of evolution
and as the extended phenotype of a species of primates.

The past decade has seen an explosion of interest in computational aspects
of the evolution of language (Cangelosi and Parisi, 2001; Christiansen and
Kirby, 2003). There is a lot of effort, across a wide range of disciplines,
to answer such questions as: why is language the way it is and how did it
become this way? Among various approaches, it has been suggested to view
language as a complex adaptive system (Steels, 2000). Levin (2002) defined
a general complex adaptive system by the following properties:

(i) they consist of a number of different components,

(ii) the components interact with each other with some degree of localiza-
tion,

(iii) an autonomous process exists that uses the outcomes of these interac-
tions to select a subset of components for replication and/or enhance-
ment.

It is property (iii) that is a signature of “biology” in a complex adaptive
system. It includes replication (which implies some degree of variability) and
Darwinian selection. A mathematical problem posed by such systems is to
find the outcome (or, more generally, describe the dynamics) of a competition
where the set of players is changing, depending on the current state of affairs.
New players come in, and their “strategies” (or properties) are drawn from
a huge set of possibilities, S. The main idea in this approach to language
evolution is as follows. There is a population of individuals (neural networks
(Oliphant, 1999; Smith, 2002), agents (Steels and Kaplan, 1998; Steels, 2001),
organisms in a foraging environment (Cangelosi, 2001)) who communicate
with each other. Each individual is characterized by a set of parameters which
define its phenotype. This usually amounts to the individual’s ability to
speak, its vocabulary, its ability to learn and other characteristics important
for communication (and sometimes other features like the life-span or the
onset of the reproductive age (Hurford and Kirby, 1998)). The individuals
communicate with each other, and the result of the communication is assessed
in some way or another. Rounds of communication are followed by rounds of
“update”, which may mimic biological reproduction (an individual is replaced
by its offspring), or leaning (the individual’s vocabulary or grammatical rules
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are changed/updated). Various numerical techniques are used to model the
dynamics of reproducing and learning individuals, such as genetic algorithms.
The initial condition usually assumes no common communication system in
the population. After a number of rounds of update/replication, the state
of communication ability is evaluated again. The questions which are often
addressed are these:

Under what circumstances does a common communication system arise in a
population of interacting individuals? What are the conditions under which
such a communication system can be maintained?

2 What is Universal Grammar and why do

we need it?

Learning is inductive inference. The learner is presented with data and has
to infer the rules that generate these data. The difference between ‘learning’
and ‘memorization’ is the ability to generalize beyond one’s own experience
to novel circumstances. In the context of language, the child learner will
generalize to novel sentences never heard before. Any child can produce and
understand sentences that are not part of his previous linguistic experience.

Children develop grammatical competence spontaneously without formal
training. All they need is interaction with people and exposure to normal
language use. In other words, the child hears a certain amount of grammati-
cal sentences and then constructs an internal representation of the rules that
generate grammatical sentences. Chomsky pointed out that the evidence
available to the child does not uniquely determine the underlying grammat-
ical rules (Chomsky, 1965, 1972). This phenomenon is called the ‘poverty
of stimulus’ (Wexler and Culicover, 1980). The ‘paradox of language ac-
quisition’ is that children nevertheless reliably achieve correct grammatical
competence (Jackendoff, 1997, 2001). How is this possible?

The proposed solution of the paradox is that children learn the correct
grammar by choosing from a restricted set of candidate grammars. The
structure of this restricted set is ‘universal grammar’ (UG). Mathematical
learning theory proves the “necessity” of UG. Discovering properties of UG
and particular human learning algorithms requires the empirical study of neu-
robiological and cognitive functions of the human brain involved in language
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Figure 1: Universal grammar specifies the search space of candidate grammars and the
learning procedure for evaluating input sentences. The basic idea is that the child has an
innate expectation of grammar (for example a finite number of candidate grammars) and
then chooses a particular candidate grammar that is compatible with the input.

acquisition. Some aspects of UG, however, might be unveiled by studying
common features of existing human languages. This has been a major goal
of linguistic research during the last decades.

In our modeling approach we use the concept and some properties of UG
to formulate the mathematical theory of language evolution. We assume
that UG contains a rule system that generates a set (or a search space)
of grammars, {G1, G2, .., Gn}. These grammars can be constructed by the
language learner as potential candidates for the grammar that needs to be
learned. The learner cannot end up with a grammar that is not part of this
search space. In this sense, UG contains the possibility to learn all human
languages (and many more). Figure 1 illustrates this process of language
acquisition. The learner has a mechanism to evaluate input sentences and to
choose one of the candidate grammars that are contained in his search space.

Next we describe how the concept of UG enters our model of language
evolution.
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3 A mathematical formulation of language evo-

lution

Our particular approach is different from many others in that we use math-
ematical, analytical tools to address questions of language origins and evolu-
tion (Komarova et al., 2001; Nowak et al., 2001; Nowak and Komarova, 2001;
Komarova and Nowak, 2001a,b; Nowak et al., 2002; Komarova and Nowak,
2003). We assume that each individual has UG which allows to learn any
language in a (finite but large) set S = {G1, . . . , Gn}.

In classical learning theory, an isolated teacher-learner pair is usually
considered. There is a collection of concepts (grammars), G1, . . . , Gn, and
“words” (or sample sentences, if we talk about learning a grammar) which
refer to these concepts, sometimes ambiguously. The teacher generates a
stream of words, referring to, say, concept G2. This is not known to the
student, but he must learn by guessing some concept Gi and checking for
consistency with the teacher’s input. A typical question of interest is this:
How quickly does a given method converge to the truth? Or, restated in the
terminology of learning languages,

How many samples, Nδ, does a given learning algorithm typically need in
order to learn the correct language with probability 1− δ?

Questions of this type for specific learning mechanisms are interesting
mathematical problems, see for instance the treatment of the so-called mem-
oryless learner (Komarova and Rivin, 2003). Next, let us imagine a popula-
tion of learners, all equipped with a given learning algorithm. The question
now becomes:

How many samples, Nδ, do individual learners in a population need, in order
for the fraction 1− δ of the population to converge to a common language?

The answer to this question will of course depend on the specifics of the
population dynamics, which we describe next.

Borrowing the idea from population biology, we will define the fitness of
speakers of different grammars. Let us denote by sij the probability that
a speaker who uses grammar Gi formulates a sentence that is compatible
with grammar Gj. The matrix {sij} describes the pairwise similarity among
the n grammars, 0 ≤ sij ≤ 1. We assume there is a reward for mutual
understanding. The payoff for an individual using Gi communicating with
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an individual using Gj is given by aij = (1/2)(sij + sji). This is the average
probability that Gi generates a sentence that is parsed by Gj and vice versa.
We denote by xi the frequency of individuals who use grammar Gi; the vector
x = {x1, . . . , xn} is defined on the simplex,

n∑

i=1

xi = 1.

The average payoff of each of these individuals is given by f = Âx, where Â =
{aij} is a symmetric matrix. Payoff translates into fitness: individuals with
a higher payoff produce more offspring. Note that the fitness of individuals
strongly depends on the current composition of the population; such is the
nature of communication.

Another biological concept coming from the theory of Darwinian evolu-
tion is variability. The “mutation rates” are defined as follows: denote by Qij

the probability that a child learning from a parent with grammar Gi will end
up speaking grammar Gj. Q̂ = {Qij} is a stochastic matrix (its rows sum up
to one). Interestingly, the findings related to individual teacher-learner pairs
can be incorporated in a natural way into the matrix Q̂.

The last component of the model is the update rule for the evolutionary
dynamics. The simplest rule is a deterministic equation, where each variable
has a meaning of its ensemble average and the noise is neglected. This can
be written by analogy with the well-known quasispecies equation (Eigen and
Schuster, 1979), except it has a higher degree of nonlinearity (a consequence
of the population-dependent fitness). We have,

ẋi =
n∑

j=1

xjfjQji − φxi, i = 1, .., n. (1)

Here φ = (x, f) is the average fitness or grammatical coherence of the popu-
lation; it is the probability that a sentence said by one person is understood
by another person. This equation describes a mutation-selection process in
a population of individuals of n types.

4 Coherence threshold in population learn-

ing

Numerical simulations (Komarova et al., 2001; Nowak et al., 2001) and ana-
lytical estimates (Komarova, 2004) of equation (1) show the following trend.
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Figure 2: Coherence threshold. When the accuracy of individual learning is low, equa-
tion (1) admits a single low-coherence solution with no predominating grammar in the
population. As the accuracy of grammar acquisition increases, however, equilibrium so-
lutions arise where a particular grammar is more abundant than all other grammars. A
coherent communication system emerges.

If the matrix Q̂ is close to identity, there are many coexisting localized steady-
state solutions (corresponding to stable fixed points). For each such solution,
the majority of the population speaks one of the languages, and the gram-
matical coherence, φ, takes values close to 1. As Q̂ deviates far from the
identity matrix (which means that there is a lot of “noise” in the system,
that is, mistakes or learning are very likely), then this localization is lost and
grammatical coherence becomes low, see figure 2. A particular, highly sym-
metrical case of this system has been analyzed by Komarova et al. (2001) and
Mitchener (2003). It was found that the low-coherence delocalized solution
undergoes a transcritical bifurcation for the value ∆Q = ||Q̂− Î|| (where Î is
the identity matrix) defined by the entries of the matrix Â. A very interest-
ing fact is that the threshold value of ∆Q does not depend on the dimension
of the system, n.

A natural question is then to describe the phenomenon of the loss/gain
of coherence for general matrices Â and Q̂. For instance, we can assume that
the entries of the matrix Â are taken from a distribution, and the matrix Q̂
is a function of Â. Our results (Komarova, 2004) suggest that typically, the
threshold value of ∆Q tends to a constant as n → ∞, where n is the size
of the system. This finding can be termed universality property of Universal
Grammars: For a (reasonable) class of learning algorithms (matrix Q̂) and
for any size of Universal Grammar (n), there is a finite coherence threshold
in the system defined by the similarity of the grammars (matrix Â).

What is the significance of the coherence threshold for our understanding
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of language evolution? Our analyses can help us obtain possible bounds
on complexity of universal grammar that are compatible with Darwinian
evolution. Indeed, if the space of all possible grammars is too large, learning
would take too long: humans only have a limited time for learning before
they become adults. This is where linguistics meets evolutionary biology:
there is a selection pressure to make universal grammar smaller and easier to
learn. On the other hand there is also an advantage to having a larger pool
of grammars, which increase flexibility and facilitate innovation.

5 Discussion

There are two common misconceptions of language evolution. The first one
represents the human language capacity as an undecomposable unit and
states that its gradual evolution is impossible, because no part of it would
have any function in the absence of other parts. For example, syntax could
not have evolved without phonology or semantics and vice versa. The other
misconception is that language evolution started from scratch some 5 million
years ago, when humans and chimps diverged, and there are virtually no
data about it.

Both views are fundamentally flawed. First, all complex biological sys-
tems consist of specific components, in a way that it is often hard to imagine
the usefulness of individual parts in the absence of other parts. The usual
task of evolutionary biology is to understand how complex systems can arise
from simpler ones gradually by mutation and natural selection. In this sense,
human language is no different from other complex traits. Second, it is clear
that evolution did not build the human language faculty de novo in the last
few million years, but used material that had evolved in other animals over a
much longer time. Many animal species have sophisticated cognitive abilities
in terms of understanding the world and interacting with one another. Fur-
thermore, it is a well known trick of evolution to use existing structures for
new and sometimes surprising purposes. Monkeys, for examples, appear to
have brain areas similar to our language centers, but use them for controlling
facial muscles and for analyzing auditory input. Evolution may have had an
easy task here to reconnect these centers for human language. Hence the
human language instinct is most likely not the result of a sudden moment of
inspiration of evolution’s blind watchmaker, but rather the consequence of
several hundred million years of ‘experimenting’ with animal cognition.
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The goal of this paper was to show how methods of formal language the-
ory, learning theory and evolutionary biology can be combined to improve our
understanding of the origins and the properties of human language. We have
formulated a mathematical theory for the population dynamics of grammar
acquisition. The key result here is a ‘coherence threshold’ that relates the
maximum complexity of the search space to the amount of linguistic input
available to the child and the performance of the learning procedure. The
coherence threshold represents an evolutionary stability condition for the lan-
guage acquisition device: only a universal grammar that operates above the
coherence threshold can induce and maintain coherent communication in a
population.
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