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Abstract

Replicator–mutator equation is used to describe the dynamics of complex adaptive systems in population genetics, biochemistry

and models of language learning. We study ‘‘localized’’, or ‘‘coherent’’, solutions, which are especially relevant in the context of

learning and correspond to the existence of a predominant language in the population. There is a coherence threshold for learning

fidelity, above which coherent communication can be maintained. We prove the following surprising universality property of

coherence threshold: for typical realizations of random coefficients in the fitness matrix, the value of the coherence threshold does

not depend on the size of the system.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Evolution of language; Quasi-species; Error threshold
1. Introduction

The subject of this study is the so-called replicator–
mutator equation which describes dynamics of complex
adaptive systems (Levin, 2002). This equation appears in
many different contexts in biology, such as population
genetics (Hadeler, 1981), autocatalytic reaction net-
works (Stadler and Schuster, 1992) and models of
language evolution (Nowak et al., 2001).

Let us suppose that there are n types, G1;y;Gn:
Depending on the biological context, these can be different
alleles, polynucleotide molecules, or grammars, as will be
explained below. The frequency of each of the types is
denoted by x1;y; xn: We will assume that these types
undergo selection. In other words, the reproduction rate of
each type, Gj ; is determined by its fitness, fj ; which in the
most general case is a function of all frequencies, fi ¼
Fiðx1;y;xnÞ: If we take a polynomial expansion of fitness
in terms of xi; and only keep the linear terms, we obtain

fj ¼ wj þ
Xn

m¼1

ajmxm þ?; 1pjpn: ð1Þ
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Here wj is the inhomogeneous (frequency-independent)
part of fitness, and aij are entries of an n � n matrix, A:
The fidelity of reproduction can be imperfect. Let Qji be
the probability that type Gi is produced by type Gj : Q is
a row-stochastic matrix so thatXn

j¼1

Qij ¼ 1; 1pipn:

The changes in the frequencies of types G1;y;Gn in
time can then be described by the following model:

’xi ¼
Xn

j¼1

fjxjQji � xif; ð2Þ

where

f ¼
Xn

j¼1

fjxj

is the average fitness of the population. Note that this
definition of f leads to the conservation law of the formXn

i¼1

xi ¼ 1:

Eq. (2) is the replicator–mutator equation (B .urger,
1998). It is quite general and contains as limiting
cases many other important equations in biology. In
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particular, setting Q ¼ I ; the identity matrix, in (2),
yields the well known replicator equation (Hofbauer and
Sigmund, 1998) used in game theory. On the other hand,
letting aij ¼ 0 for all i and j leads to the quasi-species
equation of molecular evolution (Eigen and Schuster,
1979). It has been recently observed by Page and Nowak
(2002) that replicator–mutator equation is equivalent to
a generalized Price equation of evolutionary genetics
(Price, 1970).

In the next section, we give a brief description of
several biologically relevant contexts where the replica-
tor–mutator equation is used.

1.1. Three biological contexts

1.1.1. Population genetics

Let us suppose that a gene locus has n alleles,
G1;y;Gn; and let x1;y;xn be relative frequencies of
the alleles at the time of mating (Hofbauer and
Sigmund, 1998). The relative frequency of a new gene
pair, ðGiGjÞ; is proportional to the product xixj : Due to
natural selection, only a fraction, aijxixj of them will
survive to maturity, provided that the types of the two
alleles are independent. Here aij is the fitness parameter.
In this context, Q is a mutation matrix, wi ¼ 0 for all i

and f is the average fitness of the population. The
differential equation describing the production of new
genes is (2).

1.1.2. Autocatalytic reaction networks

The n types are n replicators—for instance, poly-
nucleotide molecules, RNA or DNA—which are cap-
able of self-replication (Stadler and Schuster, 1992).
Their concentrations are denoted as x1;y; xn: Let fj be
a reaction rate of type Gj : Then expression (1) is the
polynomial expansion of reaction rates in terms of
concentrations. Let us denote as Qij the mutation rate
which determines the fraction of replications from
template Gi which yield Gj as error copy. Then, we
can represent the kinetics as the differential equation (2).
In this context, the quantity f controls the total
concentration of replicating molecules.

1.1.3. Population language learning

Imagine a group of individuals (or linguistic agents),
each speaking one of the n possible variants of grammar,
G1;y;Gn: Individuals reproduce, and children learn
the language of their parents. Denote by xi the relative
abundance of individuals who use grammar Gi: The
process of learning is modelled as follows.

Children receive language input (sample sentences)
from their parents, as well as their siblings, peers and
other adults in the community, and develop their own
grammar. The elements Qij of the stochastic matrix, Q;
denote the probability that a child born to an individual
using Gi will develop Gj .The main source of change
comes from the interactions within the linguistic
community; presumably, if exposed to a homogeneous
source, children would acquire the source grammar
precisely. This leads us to conjecture that in the most
general case, the stochastic matrix, Q; is a function of
x1;y; xn

QðxÞ ¼ Q þ
Xn

i¼1

Q
ð1Þ
i xi þ?:

In the current setting we only consider the first term in
this general expression; the effects of the x-dependent
terms will be considered elsewhere. The matrix Q sets
the rate of language change. The quantities Qii measure
the accuracy (or fidelity) of grammar acquisition.

Let us specify the similarity between grammars by
introducing the numbers 0psijp1 which denote the
probability that a speaker who uses Gi will say a
sentence that is compatible with Gj :We assume there is a
reward for mutual understanding. The payoff for
someone who uses Gi and communicates with someone
who uses Gj is given by

aij ¼ ðsij þ sjiÞ=2: ð3Þ

This is simply the average taken over the two situations
when Gi talks to Gj and when Gj talks to Gi: Assume
that everybody in the population talks to everybody else
with equal probability. Therefore, the average payoff for
all those individuals who use grammar Gj is given byPn

m¼1 ajmxm: We assume that the payoff derived from
communication contributes to biological fitness, and wj

is the language-unrelated component of fitness. For
simplicity, let us set

wj ¼ f0; 1pjpn:

Individuals leave offspring proportional to their payoff,
and the offspring learn (possibly with mistakes) their
grammar. The population dynamics of grammar evolu-
tion are then given by Eq. (2), where f ¼

Pn
i¼1 fixi

denotes the average fitness; its language-related part,
f� f0; has the meaning of grammatical coherence of the
population. The grammatical coherence defines the
probability that a randomly chosen sentence of one
person is understood by another person. It is a measure
for successful (coherent) communication in a popula-
tion. If f� f0 ¼ 1; all sentences are understood and
communication is perfect. In general, f� f0 is a number
between 0 and 1.

Note that here, we assume that the language
contribution to fitness comes from the individuals’
ability to transfer information. This is a simplification.
It is well known that language is used for other
purposes, e.g. to disguise information, to lie, to identify
oneself with a certain group and to separate oneself
from other groups. However, despite differences across
the population which distinguish class, status etc., the
language of a community is mostly understandable by
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Fig. 1. The bifurcation diagram for fully symmetrical systems. Here,

a ¼ 0:3; n ¼ 30 and f0 ¼ 0: At q ¼ qc; n equivalent one-grammar

solutions appear. Each one-grammar equilibrium is characterized by a

dominant grammar used by a majority of the population; the rest of

the grammars are used by the remaining population and have equal

(and small) frequencies. At q ¼ *qc; a uniform (low coherence) solution

becomes unstable.
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all members. This suggests that the predominant
mechanism of selection which acts on language is the
one that makes it uniform, and therefore is related to the
role of language in information transfer. Other mechan-
isms contribute to the variation which is observed on
top of that.

1.1.4. Applicability of the replicator–mutator equation

As we have seen, the replicator–mutator equation has
relevance to many areas of science including genetics,
theoretical biochemistry, language evolution and popu-
lation biology. Like any universal equation (e.g. the
famous nonlinear Schroedinger equation in physics),
replicator–mutator equation is an approximation to
reality, but it does grasp many important features of the
dynamics, common to a wide variety of systems. Every
time we use it, we need to be aware of its shortcomings,
no matter what area of science we apply it to. However,
this does not undermine the fact that this equation can
be a first step towards building more sophisticated
models of complex systems.

In this paper, we study some general properties of the
replicator–mutator equation. For convenience, we
choose to use the terminology which comes from
language evolution models, so that G1;y;Gn are the
possible grammars, and matrix Qij defines the learning
accuracy of children.

1.2. Evidence for universality property in simple systems

This work is a part of a larger effort to understand the
properties of selection–mutation dynamics. Many inter-
esting results obtained in this area are reviewed in
B .urger (1998). In this paper, we concentrate on the
behavior of fixed points of Eq. (2).

In order to get a feeling of what the behavior of this
system may be like, let us consider the following
simplified model (Komarova et al., 2001). We impose
a symmetry condition on the matrices A and Q such that

aij ¼ a; iaj; aii ¼ 1; ð4Þ

Qij ¼
q

n � 1
; iaj; Qii ¼ 1� q; 1pi; jpn; ð5Þ

where 0oao1 is some constant and q is a control
parameter. For simplicity, we will also assume that wi ¼
0 for all i: We will refer to the corresponding system as a
fully symmetrical system.

The quantity q ranges from q ¼ 1� 1=n to 0. For q ¼
1� 1=n; the outcome of ‘‘learning’’ is random: the
chance for the learner to pick grammar Gk is the same
for all k; no matter what the teacher’s grammar is. For
q ¼ 0; learning is error-free; learners always end up
speaking the grammar of their teachers. In this simple
case, the fixed points of the system can be found exactly
and the phase portrait of the system can be obtained
analytically, see Fig. 1.

When q is close to 1 (low-learning accuracy), there is
only one stable fixed point in the system which we call
the uniform equilibrium: all the grammars are repre-
sented in the population and have an equal abundance,
xi ¼ 1=n for all i: The coherence in this case is given by

funiform ¼ a;

see Fig. 1. As q decreases, a bifurcation occurs where n

equivalent one-grammar equilibria appear, each of them
corresponds to a particular dominant grammar. These
solutions can be viewed as localized solutions of the
system (as opposed to the de-localized, uniform solu-
tion), because they have the form

xk ¼ X ; xi ¼
1� X

n � 1
; iak;

where Gk is the dominant grammar. The value of X can
be expressed in terms of the parameters of the system
and tends to X ¼ 1 as q-0:

It is possible to calculate the coherence threshold, i.e.
the value of q; qc; such that for qoqc one-grammar
solutions exist and are stable. It is given by

qc ¼
1�

ffiffiffi
a

p
1þ

ffiffiffi
a

p þ Oð1=nÞ: ð6Þ

The function qc decreases with a: This is to be expected
because as the grammars get harder to distinguish,
which corresponds to a-1; we need higher and higher
learning accuracy to reach coherence, i.e. qc-0: The
coherence of the population corresponding to one-
grammar solutions at the threshold value of q is

fone-grammar ¼
2a

1þ
ffiffiffi
a

p > funiform:

We can see that as soon as such solutions appear, the
population fitness, f; increases with a jump. As q
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Fig. 2. The bifurcation diagram for a system with a random similarity

matrix. Here, n ¼ 20: At N ¼ Nc; the first one-grammar solution

appear. The learning accuracy matrix, Q; is calculated according to the

memoryless learner algorithm, and depends on N; the number of

learning events. At N ¼ %Nc; the low coherence solution equivalent to

the uniform solution of the fully symmetrical system, disappears.
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continues to decrease to 0, fone-grammar approaches 1,
which means perfect coherence. Because of symmetries
in the system, the values of f corresponding to one-
grammar solutions with different dominant grammar
are equal to each other.

We have the following remarkable Universality

property

The threshold value, qc; for the learning accuracy tends

to a constant for large values of n; i.e. is independent of

the size of the system in the limit n-N:
Note that a similar universality result can be proved

for another particular case of system (Hadeler, 1981).
For a general A matrix, let us assume that the matrix Q

has the form

Q ¼ I þ q;

where q is a matrix and qij ¼ ej for iaj; so the error rates
only depend on the target grammar. It turns out that
system (2) in this case is a gradient flow (see Hofbauer
and Sigmund, 1998, Theorems 20.3.3 and 20.3.4), and
the localized, one-grammar solutions persist for all jqii j
smaller than a constant which does not depend on n:

It is this universality property that we are going to
study for a general class of matrices Q:

1.3. Model assumptions and the main result

In this paper, we will consider the general system (2)
under the following mild assumptions:

wj ¼ f0; 1pi; jpn; ð7Þ

aij ¼ aji; 0paijp1: ð8Þ

Eq. (7) requires the inhomogeneous part of the fitness
function to be the same for all types, and Eq. (8) is a
symmetry assumption on the A matrix (which is
obviously much weaker than the assumption made for
the fully symmetrical system). In addition, we are going
to bound the entries of the A matrix by setting

0paijp1:

Let us introduce a family of matrices, Q ¼ QðNÞ; such
that

lim
N-N

QðNÞ ¼ I : ð9Þ

Increasing N is similar to decreasing q in the fully
symmetrical case because it increases the learning
accuracy of the system. An example of a bifurcation
diagram is given in Fig. 2. This is a numerical plot,
where the values aii ¼ 1 for all i; aij with iaj are taken
from a uniform distribution between zero and one and
QðNÞ is parameterized according to the so-called
memoryless learner algorithm (Niyogi, 1998). This is a
typical bifurcation diagram for the system under
consideration. As we can see, it is in some sense similar
to the diagram in the fully symmetrical case, except
localized solutions corresponding to different dominant
grammars appear at different points and correspond to
different values of grammatical coherence, f:

In this paper, we will study the bifurcation diagram of
such systems and find out whether the appearance of
localized solutions can be controlled independently of
the size of the system. In order to approach this
problem, we will

* study the system in the limit Q ¼ I (perfect fidelity),
* employ a perturbation analysis for the Q matrices not

too far from identity (imperfect fidelity), and
investigate the persistence of stable fixed points,

* get an estimate on how far the matrix Q can deviate
from I so that the fixed points still exist and are
stable; for this we will assume that the coefficients of
the A matrix are random numbers and use their
statistics in order to get a result for a typical
realization.

It is convenient to introduce the parameter,

q ¼ max
i

ð1� QiiÞ:

The main result of this paper is the universality
property: the typical threshold value of q such that
localized solutions exist and are stable is independent on
the size of the system (Theorem 3.3) for a very wide class
of distributions of the entries aij : This work is a
generalization of the analysis of Komarova et al.
(2001) and Nowak et al. (2001); in those publications,
a severely restricted class of fully symmetrical systems
was studied. Here, we identify the universality property
in a much more general class of systems and prove that
it is indeed universal.

The rest of this paper is organized as follows. Section
2 describes the system with perfect learning fidelity. In
this limit, we obtain the well known selection equation
of population genetics. We study the stability of various
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fixed points and prove in particular that for diagonally
dominant matrices, coherent solutions are stable. In
Section 3, we consider imperfect learning accuracy and
show that solutions which are stable in the absence of
learning mistakes, persist in the presence of learning
mistakes. We give an estimate for the coherence thresh-
old which guarantees coherence for a typical realization
of the matrix, A: We also prove that this quantity tends
to a finite number as the size of the system increases to
infinity. In Section 4, we discuss some applications.
2. Perfect learning fidelity

We will start by studying the limiting case of system
(2) for N-N: This corresponds to the case of perfect
learning fidelity (no mistakes of learning). Using Eq. (9),
we obtain from Eq. (2),

’xi ¼ ð fi � fÞxi: ð10Þ

This is the selection equation of population genetics, also
known as replicator equation for partnership games
(Hofbauer and Sigmund, 1998). In Section 2.1, we give
an explicit form of all the fixed points of system (10)
together with their existence conditions. In Section 2.2,
we present their stability conditions and prove some
simple facts about coexistence of stable fixed points. In
particular, we will show that if the matrix, A; is
diagonally dominant, then the only stable solutions are
the n one-grammar (coherent) solutions, corresponding
to the n-dominant languages.

2.1. m-grammar solutions

We will refer to the domain

Sn ¼ x :
Xn

i¼1

xi ¼ 1

( )
ð11Þ

as simplex Sn: We define an m-grammar solution of
system (10), xðmÞ ¼ %xðmÞASn; as the fixed point of the form:

%x
ðmÞ ¼ ð %x1;y; %xm; 0;y; 0ÞT; %xi ¼ 0; 1pipm: ð12Þ

Here m; 0pmpn; defines how many grammars have a
non-zero share in the solution. Note that any fixed point
can be written down in this way by proper renumbering
of variables. It is easy to show that for these solutions,

f1 ¼ f2 ¼ ? ¼ fm ¼ f; ð13Þ

which together with condition
Pm

i¼1 xi ¼ 1 uniquely
defines the m-grammar solution. In order to write down
the solutions, let us introduce the following notations.
We will call AðmÞ the m � m matrix which is the upper
left corner of the A matrix. Also, the matrix which is
obtained from the AðmÞ matrix by replacing the ith
column by a column of ones will be called BðiÞðmÞ: Next,
we define

Ti
m ¼ det BðiÞðmÞ; 1pipm: ð14Þ

The m-grammar solution can be written as

%xi ¼
Ti

mPm
k¼1 Tk

m

; 1pipm; %xmþ1 ¼ ? ¼ %xn ¼ 0: ð15Þ

Note that this gives us the existence condition for the m-
grammar solution, in order for xðmÞ to belong to Sm; we
need

Ti
mTj

mX0 8i; j: ð16Þ

The fitness of the dominant grammars and the average
fitness of the population corresponding to m-grammar
solution is given by

%f ¼ %fi ¼ f0 þ
det AðmÞPm

k¼1 Tk
m

; 1pipm ð17Þ

(the bar denotes that the function is evaluated at the
fixed point). For instance, for m ¼ 1 (one-grammar
solutions) we have

%x1 ¼ 1; %f ¼ f0 þ a11: ð18Þ

For m ¼ 2 we have

%x1 ¼
a22 � a12

a11 � 2a12 þ a22
; %x2 ¼

a11 � a12

a11 � 2a12 þ a22
;

%f ¼ f0 þ
a11a22 � a2

12

a11 � 2a12 þ a22
: ð19Þ

2.2. Stability of m-grammar solutions

Let us perturb the m-grammar solution (12) with the
vector eGty so that y ¼ ðy1;y; ynÞ

T and
Pn

i¼1 yi ¼ 0: The
latter condition comes from the fact that solutions must
stay within a simplex. Linearizing around the m-
grammar solution we obtain an equation of the form
Ly ¼ Gy for the vector y: Next, we write ym ¼
�
P

iam yi: One of the n equations in the linear system
for ’y follows from the others, so we can get rid of the
variable ym and obtain a linear system for the ðn � 1Þ-
dimensional perturbation vector with the matrix L0

which has the following block structure:

L0 ¼
L L0

L0 L00

� �
; ð20Þ

where L is an ðm � 1Þ � ðm � 1Þ matrix defined as Lij ¼
%xiðaij � aimÞ;L0 is an ðm � 1Þ � ðn � mÞ matrix with
entries L0

ij ¼ %xi½aij � aim � 2 ð %fj � %fÞ�;L0 is an ðn � mÞ �
ðm � 1Þ matrix of zeros and L00 is an ðn � mÞ � ðn � mÞ
diagonal matrix with elements L00

ii ¼ %fi � %f: The stability
condition for an m-grammar solution is the negative

definiteness of the matrix L0: By Sylvester criterion, the
positive numbers multiplying the rows of the matrix do
not change the definiteness of the matrix, so we have the
following
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Theorem 2.1. The necessary and sufficient conditions for

the stability of an m-grammar solution (12) are given by

A0ðmÞ is negative definite; ð21Þ

%fj � %fo0 8j: m þ 1pjpn; ð22Þ

where the matrix A0ðmÞ is an ðm � 1Þ � ðm � 1Þ with

A0ðmÞij ¼ aij � aim:

Note that the matrix A0ðmÞ is obtained from the
matrix Aðm � 1Þ by subtracting the mth column of the
matrix AðmÞ from all its columns, and taking the upper
left ðm � 1Þ � ðm � 1Þ corner.

Applying this theorem for the case of m ¼ 1; we
obtain the following existence and stability condition for
one-grammar solutions, need

a1jpa11; 2pjpn: ð23Þ

For stability of two-grammar solutions ðm ¼ 2Þ
we need

a11oa12; ð24Þ

a22oa12; ð25Þ

ða1j � a11Þ %x1 þ ða2j � a21Þ %x2o0; 3pjpn: ð26Þ

All of the above can be explained if we notice that
Eq. (10) possess a strict Lyapunov function (Hofbauer
and Sigmund 1998, Theorem 7.8.1):

V ðxÞ ¼ xTAx ¼
Xn

i; j¼1

aijxixj : ð27Þ

We have ’VX0; and ’V ¼ 0 only at points defined by (12)
and (13). This means that the only stable solutions of
system (10) are maxima of the function V :

V ðxÞ is defined on the simplex Sn;
Pn

i¼1 xi ¼ 1; and it
can reach its maximum (maxima) in the interior or on
the boundary of the simplex. An interior maximum of
the function V corresponds to the n-grammar solution,
and a maximum reached at a boundary, or, more
precisely, at an interior point of the projection of the
simplex to m dimensions, corresponds to an m-grammar
solution.

There is a simple geometric interpretation of stability
criterion (21) and (22) of m-grammar solutions. In order
for a fixed point to be stable, it must correspond to a
maximum of the function V : An m-grammar solution
xðmÞ (of the form (28)) is a maximum if
(i)
 it corresponds to an interior maximum of the
function Vm defined on simplex Sm;

Pm
i¼1 xi ¼ 1;

and

(ii)
 the function Vj defined on any simplex which

includes Sm as a subset, satisfies VjðxÞoVmðxðmÞÞ for
any x in the vicinity of xðmÞ:
Lemma 2.2. Condition (i) is equivalent to criterion (21),
and condition (ii) is equivalent to criterion (22).

Proof. Condition (i) implies that the function V is
concave in simplex Sm: Let us express xm as 1�

Pm�1
i¼1 xi

and form the matrix A00ðmÞ ¼ @2V=ð@xi@xjÞ: The func-
tion V is concave in Sm iff the matrix A00ðmÞ is negative
definite. But matrix A00ðmÞ is defined as A00ðmÞij ¼ aij �
aim � ajm þ amm and is formed by taking the matrix
AðmÞ; subtracting the last column from all the columns,
then subtracting the last row from all the rows, and
taking the upper left ðm � 1Þ � ðm � 1Þ corner. It is easy
to show that the rows of matrix A00ðmÞ are linear
combinations of the rows of the matrix A0ðmÞ; namely,
row00

i ¼ row0
i þ
Pm�1

j¼1 %xj row0
j= %xm; where row0

i is the ith
row of the matrix A0ðmÞ and similarly with matrix
A00ðmÞ: The coefficients in these linear combinations are
positive, and therefore the definiteness of the matrices
A00ðmÞ and A0ðmÞ is the same. Thus condition (ii) is
equivalent to condition (21).

Condition (ii) can be written down as DVo0; where
DV ¼ V ðxðmÞ þ dxÞ � V ðxðmÞÞ: By taking dx ¼
ðd1; 0;y; 0; dj ; 0;y; 0ÞT such that m þ 1pjpn and d1 þ
dj ¼ 0; we obtain exactly conditions (22) for each j: &

Remark 2.3. Condition (21) is equivalent to the condi-
tion of Kingman (1961) that the matrix AðmÞ has strictly
one positive eigenvalue and m � 1 negative eigenvalues.

Proof. Let us replace the last row of the matrix AðmÞ
by the following linear combination of its rows:
rowm-

Pm
j¼1 %xj rowj ¼ ðf;y;fÞ: Next, let us subtract

the last column of this new matrix from the rest of its
columns. These operations do not change the signs of
eigenvalues of the matrix. On the other hand, the
eigenvalues of the resulting matrix are f and the eigen-
values of the matrix A0ðmÞ: Therefore, the negative
definiteness of A is equivalent to having only one
positive and m � 1 negative eigenvalues of the matrix
AðmÞ: &

With the geometric representation in mind, we can
prove some simple statements about stable fixed points
of the replicator equations.

Theorem 2.4. Suppose that system (10) has a stable m-
grammar solution, (12), with grammars G1 through Gm;
and k is some integer kom: Then system (10) cannot have

a stable k-grammar solution, where the k grammars

involved are a subset of G1;y;Gm:

Proof. Let us assume that both solutions,

#xðmÞ ¼ ð %x1;y; %xm; 0;y; 0Þ; ð28Þ

*xðkÞ ¼ ð *x1;y; *xk; 0;y; 0Þ ð29Þ
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are stable (note that we can always enumerate grammars
in such a way that an k-grammar solution involving a
subset of G1;y;Gm can be written in this way). The
point #xðmÞ is an interior maximum of function Vm

defined on simplex Sm: Solution *xðkÞ is an exterior
maximum reached on the boundary of this simplex. Let
us connect the points #xðmÞ and *xðkÞ with a straight line (it
will be contained inside the simplex). Along this line, the
function Vm has the form VmðxÞ ¼ ax2 þ bxþ c; where x
is the coordinate along the line, so that x ¼ 0;
corresponds to point #xðmÞ; and x ¼ x0 is the boundary
point of Sm; *xðkÞ: The quantities a; b and c are some
constants. Since x ¼ 0 corresponds to an inner max-
imum, we have N ¼ 0 and ao0: It is easy to see that the
function VmðxÞ cannot have a second maximum at the
end point x0a0: We have a contradiction which proves
the statement of the theorem. &

Corollary 2.5. If system (10) has n distinct stable one-

grammar solutions, it can have no other stable fixed points.

Proof. Let us assume that system (10) has a stable m-
grammar solution with m > 1: Therefore, by Theorem
2.4, it cannot have a stable one-grammar solution x1 ¼
1; which proves the corollary. &

Corollary 2.6. If aii ¼ 1 for all i; and aijo1 for all iaj;
then the only stable fixed points of system (10) are the n

one-grammar solutions.

Proof. The stability of one-grammar solutions follows
from condition (23), and the uniqueness from
corollary (2.5). &

2.3. The meaning of m-grammar solutions

m-grammar solutions correspond to the coexistence of
several spoken languages. There are several reasons why
many grammars are observed in the real world. The
foremost reason is the existence of barriers separating
groups of people from each other; these could be
mountains, oceans, state borders. People mostly com-
municate within finite (and relatively small) groups. In
this paper, we do not take account of such spacial
effects; they have been addressed within our framework
by several authors (Sasaki and Nowak, 2003; Solan
et al., 2002). What we show here is the following subtle
and counterintuitive point. There may be situations
where an m-grammar solution exists even in commu-
nities where all people do talk among each other. The
necessary and sufficient requirements for this are given
in the previous section; they are conditions on pairwise
eligibility of the languages.

Note that in population genetics and in autocatalytic
reaction networks, m-grammar solutions (that is, inter-
ior solutions) are rather common and correspond to the
coexistence of several types in a community with mass-
action-type interactions.

2.4. Example: stability of one-grammar solutions

Let us perform directly a stability analysis of a one-
grammar solution,

%xk ¼ 1; %xi ¼ 0; iak;

assuming for simplicity that akk ¼ 1: We introduce a
perturbation in the form xk ¼ 1þ yke

Gt; xi ¼
yie

Gt; iak: Substituting into system (10) and linearizing
we obtain the following eigenvalue problem:

Gyi ¼ yiðaki � 1Þ; iak; ð30Þ

Gyk ¼ �
Xn

m¼1

ð f0 þ akmÞym: ð31Þ

Because of the condition
Pn

i¼1 yi ¼ 0; Eq. (31) follows
from the previous equations. The resulting system can
be rewritten in the form

#KY ¼ 0; ð32Þ

where Y ¼ ðy1;y; yk�1; ykþ1;y; ynÞ
T and #K is the

ðn � 1Þ � ðn � 1Þ diagonal matrix given by

Kij ¼
Ki � aki � 1� G; i ¼ j;

0; otherwise:

	
ð33Þ

The system has non-trivial solutions if the matrix #K has
a zero determinant. This results in the condition

det #K ¼
Y
iak

Ki ¼ 0: ð34Þ

The n � 1 expressions for the growth rate, G; are given
by

Gi ¼ aki � 1; iak: ð35Þ

We can see that under the condition of strict diagonal
dominance, akioakk; all the expressions for G are
negative, and the solution under consideration is stable.
3. Imperfect learning fidelity

In this section, we will see how existence and stability
properties for m-grammar solutions change for finite
values of N; that is, when the learning fidelity is not
perfect. In Section 3.1, we will find corrections to m-
grammar solutions which come from mistakes of
learning, and derive the existence conditions. In Section
3.2, we will prove that there is a region where these
extended solutions are stable. In Section 3.3, we will
prove the universality property, which states that the
size of the stability domain is independent of the system
size, n; in the limit n-N:
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3.1. Existence of m-grammar solutions

Let us study how the stable fixed points correspond-
ing to m-grammar solutions change for finite values of
N: In this case, the matrix Q is given by

Qij ¼ dij þ qij ; jjqjj51 ð36Þ

(here jj  jj is some matrix norm). Note that qiip0; qijX0
for all iaj and

Pn
j¼1 qij ¼ 0 (to keep the matrix row-

stochastic). Let us check if m-grammar solutions depend
on the quantities qij continuously in the vicinity of jjqjj ¼
0: We start by assuming that they do, and write down
their expansion in terms of qij around zero, keeping only
the first-order terms

x1 ¼ %x1 þ y1 þ Oðjjqjj2Þ;y;xm

¼ %xm þ ym þ Oðjjqjj2Þ; ð37Þ

xmþ1 ¼ ymþ1 þ OðjjqjjÞ2;y;xn ¼ yn þ Oðjjqjj2Þ; ð38Þ

where %xj ; 1pjpm; are the components of the m-
grammar solution for N ¼ N: We will have to check
that condition

ykBjjqjj 8k ð39Þ

is satisfied, otherwise our assumption of smoothness
breaks down. Let us find yk explicitly. We have

fj ¼ %fþ
Xn

k¼1

ajkyk; 1pjpm; ð40Þ

fi ¼
Xm

j¼1

aji %xj þ
Xn

k¼1

aikyk; m þ 1pipn; ð41Þ

f ¼ %fþ f0; f0 � 2
Xn

k¼1

Xm

j¼1

ajk %xjyk: ð42Þ

We first calculate the correction to the average fitness,
f0; coming from a finite probability of mutation. We can
write down the first m-evolutionary equations using
expressions (37), (38) and (42). They are

0 ¼ %x1

Xn

k¼1

a1kyk

þ %fðq11 %x1 þ?þ qm1 %xmÞ � %x1f
0; ð43Þ

0 ¼ %x2

Xn

k¼1

a2kyk

þ %fðq12 %x1 þ?þ qm2 %xmÞ � %x2f
0; ð44Þ

?

0 ¼ %xm

Xn

k¼1

amkyk

þ %fðq1m %x1 þ?þ qmm %xmÞ � %xmf
0: ð45Þ
Adding up these equations and using
Pm

j¼1 %xj ¼ 1 and
definition (42), we obtain the following expression:

f0 ¼ 2 %f
Xm

j¼1

Xm

k¼1

qjk %xj : ð46Þ

The corrections to xi look like

yi ¼
%f
Pm

j¼1 %xjqji

%f�
Pm

j¼1 aji %xj

¼
%f
Pm

j¼1 %xjqji

%f� %fi

; i > m: ð47Þ

Finally, in order to calculate corrections yk for 1pkpm;
we use Eqs. (43)–(45). We have

Pm
k¼1 aikyk þPn

j¼mþ1 ajkyj ¼
%f
%xi

Pm
j;k¼1 %xjð2qjk � qjiÞ: Let us express

ym ¼ �
P

jam yj ; and denote yðm�1Þ ¼ ðy1;y; ym�1Þ
T:

The corrections yðm�1Þ are obtained by solving an
inhomogeneous linear system of equations with a non-
singular matrix, A0ðmÞ

yðm�1Þ ¼ ½A0ðmÞ��1gðm�1Þ; gðm�1Þ ¼ ðg1;y; gm�1Þ
T ð48Þ

with gi ¼ %f
Pm

k¼1 %xk
1
%xi

Pm
j¼1 ð2qkj � qkiÞ �

Pn
j¼mþ1

�
ðqkj= %f� %fjÞÞ:

Note that since the m-grammar solution is stable for
N-N; condition (22) is satisfied which guarantees the
finiteness of the expression (47). Similarly, the matrix
A0ðmÞ is negative definite (see Eq. (21)) and therefore the
corrections y1;y; ym�1 are also finite. This means that
condition of smoothness (39) holds, which in turn
proves the existence of the fixed point for finite N:

Now it is possible to estimate the domain of existence
of m-grammar solutions. Let us concentrate on the
important case m ¼ 1: We have from (46) and (47)

f ¼ ð f0 þ a11Þð1þ 2q11Þ; yi ¼
ð f0 þ a11Þq1i

a11 � a1i

; i > 1;

y1 ¼ �
Xn

i¼2

yi: ð49Þ

Fig. 3 illustrates formula (49). The horizontal axis is N ;
the number of learning events, and the vertical axis is f:
The diamonds represent the stable fixed points of the
system found numerically, and the solid lines are
formula (49) with k from 1 to n: The theoretically
calculated values predict the limiting behavior of the
fixed points for large values of N:

Let us take for simplicity f0 ¼ 0 and a11 ¼ 1 (the case
where the diagonal elements of the matrix A are equal to
one is important because it corresponds to ‘‘self-
consistent’’ languages where the probability to under-
stand a grammatically correct sentence is one). It is clear
from formula (49) that in order for our approximation
to hold we need to require

q1i5ð1� a1iÞ ð50Þ

and also that

Xn

i¼2

q1i

1� a1i

�����
�����51: ð51Þ
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Fig. 3. The bifurcation diagram for a system with a random similarity

matrix. The diamonds represent the stable fixed points of the system

found numerically, and the solid lines represent formula (49) with k

from 1 to n:
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This guarantees the smallness of the correction y1 in
formula (49).

3.2. Stability domains

Next we will derive some stability results for the m-
grammar solutions. We have the following:

Theorem 3.1. Let us suppose that for N ¼ N there exists

a stable m-grammar solution. Then there exists a finite

value N ¼ N0 such that for all N > N0 the m-grammar

solution is stable.

Proof. Let us solve the stability problem of m-grammar
solutions for finite values of N (in the region of their
existence). We take the exact steady-state solution (we
do not have an analytical formula for it), and follow the
usual steps of a linear analysis: perturb it with zi;
linearize with respect to small zi; and obtain a system of
homogeneous linear equations for zi: The m-grammar
solution is stable if all the eigenvalues of the correspond-
ing linear matrix are negative. Next, we recall that the
value jjqjj51 which means that the linear matrix is equal
to matrix *L of the stability problem, plus a correction.
In other words, the new matrix L satisfies

L ¼ *LþN; jjNjjBjjqjj: ð52Þ

The matrix N is expressed in terms of corrections to the
m-grammar solution found in (47) and (48). We need to
solve the equation

detð *LþN� GIÞ ¼ 0; ð53Þ

where G is the growth rate of the perturbation and is
equal to the ith eigenvalue of L: Let us write

Gi ¼ *Gi þ gi; jgi jBjjqjj; 1pipm � 1; ð54Þ
where the first approximation to the growth rate, *Gi; is
found to be the ith eigenvalue of the linear stability
problem for jjqjj ¼ 0: We assume that all *Gio0; i.e. the
m-grammar solution is stable at N ¼ N: Linearizing
Eq. (53) for different values of *Gi; we obtain m � 1 linear
equations for gi; which yield exactly m � 1 corrections to
the growth rate.

Now in order to guarantee the stability of the m-
grammar solution, we need to have

*Gi þ gio0 8i: ð55Þ

Note that gi is a linear functional of qij and is equal to
zero at qij ¼ 0 thus making expressions (55) negative. It
follows that in the Rn�n space of all qij ; there exists a
neighborhood of the origin, where all the functions (55)
are negative. In this neighborhood the m-grammar
solution is stable if it exists. Since qij-0 and N-N;
we can find such N ¼ N0 that the matrix ½qij� belongs to
the neighborhood where the m-grammar solution is
stable. &

3.3. Stability of one-grammar solutions

Let us consider the case m ¼ 1 more closely. We can
calculate the explicit values of corrections gi: We have
for 2pipn

gi ¼ a1iðq1i þ qiiÞ þ
a11q1iðaii � 2a1iÞ

a11 � a1i

þ a11

Xn

k¼2

q1kðaik � 2a1k � a1i þ 2a11Þ
a1i � a1k

: ð56Þ

For stability we need conditions (55) with *Gi ¼ �ð1�
a1iÞ; see Eq. (35). Let us define regions wi in the space
ðRþÞðn�1Þ of all q1i; 2pipn

wi ¼ fq1j > 0 : gi � a11 þ a1io0g ð57Þ

(this set depends on the quantities qii; 2pipn; see
formula (56)). Outside the set w ¼

Tn
i¼2 wi the one-

grammar solution is unstable. The boundaries of the set
w indicate the boundaries of stability (up to higher order
terms).

We are going to use inequalities (56) to find a
sufficient condition of stability of 1-grammar solutions.
Let us rewrite conditions (57) with the simplification
aii ¼ 1

q1i 1�
a2
1i

1� ali

� �
þ
Xn

k¼2

q1k

1� a1k

� ðaik � 2a1k � a1i þ 2Þo1� a1i þ a1i jqii j: ð58Þ

It is convenient to use the notation

bi ¼ 1� a1i; xik ¼ 1� aik: ð59Þ
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We have

q1i 1�
ð1� biÞ

2

bi

� �
þ 2

Xn

k¼2

q1k

þ
Xn

k¼2

q1k

bi � xik

bk

obi þ ð1� biÞjqii j: ð60Þ

These inequalities contain linear functions of q1i and
thus define n � 1-dimensional hyperplanes in ðRþÞn�1:
The set wi is the half-space defined by the ith inequality
that contains the origin, restricted to the positive
‘‘quadrant’’. The domain of stability of the one-
grammar solution with G1 the dominant grammar is
the intersection of all wi:

3.3.1. Fully symmetrical systems

Let us consider the case where aij ¼ a; iaj; and aii ¼
1: At this point we do not make any assumptions on the
matrix Q; i.e. it is not necessarily of the form (5).

First, we note that if bi � b ¼ 1� a for 2pipn;
inequalities (60) follow from the following single
inequality:

4

b

Xn

k¼2

q1ko1: ð61Þ

This proves the following

Theorem 3.2. For fully symmetrical systems with aij ¼ a

for iaj; and aii ¼ 1; there exists a ball, B; of radius R ¼
ð1� aÞ=4 in the space of all q1i; 2pipn; with the l1
metric, centered at the origin, such that for any q12;y; q1n

inside B; the 1-grammar solution is stable.

Note that the radius R does not depend on the size of
the system, n: Since jq11j ¼

Pn
k¼2 q1k; we have a

sufficient condition for stability

jq11joð1� aÞ=4: ð62Þ

Let us compare this result with the exact calculation for
a fully symmetrical learner defined by (5). We can see
that condition (62) is stronger than condition (6), and
they coincide in the limit a-1:

3.3.2. Random coefficients

Next, we assume that the coefficients bi are random
variables. In this case, a statement like Theorem 3.2 is
hardly possible, and the question we pose must change
slightly. Namely, a ‘‘universal’’ ball inside which
stability is guaranteed for any realization of the
coefficients, bi; might not exist (or, more precisely, its
radius might be R ¼ 0). However, for a typical
realization we can hope to find a ball of stability which
has a finite size.

Let us assume that aii ¼ 1 for all i and aij are
distributed between zero and one. Further, we assume
that the distribution has a mean and a variance, and also
the mean of the quantity ð1� aijÞ

�1 exists for iaj:

Theorem 3.3 (Universality property). There exists a

constant, qc > 0; such that if jqii joqc for all i; then for a

typical realization of aij at least one of the n possible one-

grammar solutions is stable. Moreover,

lim
n-N

qc > 0:

Proof. Let us assume without loss of generality that

jq11jojqii j; 1oipn: ð63Þ

This means that in some sense, the grammar whose
stability we are considering is easier to learn than the
others. In what follows, we will show that the stability
threshold for such ‘‘easiest’’ grammar does not depend
on the number n: Next, let us set

q1i ¼ qKi; 1oipn;
Xn

j¼2

Kj ¼ 1; jq11j ¼ q: ð64Þ

Using assumption (63), we obtain from (60):

q Ki 1�
ð1� biÞ

2

bi

� �
þ 1þ bi þ

Xn

k¼2

Kk

bi � xik

bk

" #
obi;

1oipn: ð65Þ

This inequality must be satisfied for all i: Note that the
coefficient multiplying Ki is negative if

biob� �
3�

ffiffiffi
5

p
2

E0:3820: ð66Þ

Let us define

qcðbiÞ ¼

bi

1þbiþ
Pn

k¼2
Kkðbi�xikÞ=bk

; 0pbipb�;

b�
2þbiþ

Pn

k¼2
Kkðbi�xikÞ=bk

; b�pbip1;

8><
>: ð67Þ

Then the conditions on q can be written as

0oqoqcðbiÞ if qcðbiÞ > 0; ð68Þ

q > 0 otherwise ð69Þ

(if qcðbiÞ is negative, we do not need to impose any
condition on q; because for such bi condition (65) is
satisfied for any q > 0).

Let us fix i and calculate the expected value of qcðbiÞ:
We will assume that the variable

yk �
bi � xik

bk

ð70Þ

is distributed with density fy and has the mean mðyÞ and
the variance s2ðyÞ: By an analogue of the central limit
theorem, the distribution of Sn �

P
k ykKk tends to

fSðxÞ ¼

ffiffiffi
n

p
ffiffiffiffiffiffi
2p

p
s0ðyÞ

exp �
ðx � mðyÞÞ2n

2ðs0ðyÞÞ2

� �
; ð71Þ
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where

s0ðyÞ ¼ sðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
X

j

K2j

s
; ð72Þ

here and below we ignore the difference between n � 1
and n because we assume that n is large. The expected
value of qcðbiÞ can now be calculated

EðqcðbiÞÞ ¼
bi

1þ bi þ mðyÞ
1þ O

1

n

� �� �
; biob�: ð73Þ

Similarly, we get

EðqcðbiÞÞ ¼
b�

2þ bi þ mðyÞ
1þ O

1

n

� �� �
; bi > b�: ð74Þ

The threshold value of q can be found as

qc ¼ min
bi

½EðqcðbiÞÞ jEðqcðbiÞÞX0�: ð75Þ

Let us consider the quantity mðyÞ: We have

mðyÞ ¼ biE
1

bk

� �
� E

xik

bk

� �
; ð76Þ

i.e. it is a linear function of bi: Let us first look at
expression (73). If the denominator was always positive,
then its minimum would be achieved at bi ¼ 0 and equal
0, which means that the coherence threshold would
depend on n: However, if the denominator was negative
at zero, then we would have a constant threshold value
of qc: We have at bi ¼ 0

Eðqcð0ÞÞ ¼
bi

1� Eðxik=bkÞ
: ð77Þ

The random variable bk and xik come from the same
distribution, fb: It is easy to show that

E
xik

bk

� �
¼
Z

xfbðxÞ dx

Z
fbðyÞ

y
dy ¼ EðbkÞEð1=bkÞ: ð78Þ

The latter quantity is always bigger than 1 which means
that the denominator in (77) is negative. As bi increases,
the denominator may become positive at some finite
value of bi: The function EðqcðbiÞÞ is always a decreasing
function of bi; so its minimum is reached at bi ¼ b� and
equals b�=ð1þ b�ð1þ Eð1=bkÞÞ � Eðxik=bkÞÞ: The mini-
mum of expression (74) is achieved at bi ¼ 1 and equals
b�=ð3þ Eð1=bkÞ � Eðxik=bkÞÞ: Therefore, by taking the
smaller of these two expressions, we obtain the following
estimate:

qc ¼
3�

ffiffiffi
5

p
2½3þ Eð1=bkÞð1� EðbkÞÞ�

: ð79Þ

Assuming that Eð1=bkÞ and EðbkÞ exist, we conclude that
qc is a finite constant which does not depend on n: &
4. Applications, examples, conclusions

We have studied the behavior of the ‘‘coherence
threshold’’, the critical value, qc; of the learning
accuracy which corresponds to the emergence of
‘‘localized’’, or ‘‘coherent’’ solutions. For learning
accuracy higher than critical, the system has stable fixed
points corresponding to the majority of the population
speaking the same (dominant) language. In this paper,
we concentrated on the limiting behavior of the thresh-
old as the size of the system (n; the possible number of
languages) becomes high.

The phase portrait of the system is defined by the
elements of the n � n matrix, A; whose entries indicate
how different the languages are from each other. It is not
possible to find a universal threshold value of the
accuracy which would work for any matrix A: Therefore,
we formulated the problem where the entries of the A

matrix are random numbers generated by a certain
distribution. Then the definition of the coherence thresh-
old, qc; can be adjusted such that it guarantees the
existence and stability of a localized solution for a typical

realization of this system. We have been able to show that
qc tends to a non-zero constant as n tends to infinity.

If the learning accuracy matrix, Q; can be parameter-
ized in such a way that it satisfies (9), then by controlling
its diagonal entries ð1� qiiÞ by qc we can guarantee
coherence for a typical realization of the parameters. In
the next sections, we will work out an example where the
learning accuracy matrix, Q; can be varied parametri-
cally in a natural way.

4.1. The batch learner as an example of parameterization

Recall that the elements Qij of the learning accuracy
matrix, Q; give probability that a child learning the
language from a teacher with language Gi will end up
speaking language Gj : There are many ways how the
process of individual learning can be modelled. The
typical learning theory setting is as follows. We have an
ideal speaker–hearer pair. The speaker (the teacher)
formulates sentences using a specific grammar, the
hearer (the learner) receives these sentences and has to
infer the underlying grammar. There are various
algorithms that the learner could use, which differ in
efficiency and memory requirements. Here, we will
consider the so-called batch learner (Komarova et al.,
2001; Nowak et al., 2002). It works in the following way.
The learner starts by (randomly) choosing one of the n

grammars as an initial state. He then receives N

sentences from the teacher and evaluates them for
consistence. The learner sticks with his current hypoth-
esis until the input unambiguously suggests that all the
sentences come from one grammar, which is not the
current guess. At this point the learner switches to the
correct grammar.
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Note that the batch learner algorithm is not an
approximation to the actual, yet unknown mechanism
of language acquisition used by children. In this study,
we use the batch algorithm as an example to demon-
strate, how exactly the method developed here can be
applied. In fact, the universality property will hold for
any learning mechanism which satisfies the mild condi-
tions specified in Section 3.

Suppose that the teacher’s grammar is Gk: We assume
that the probability for a sentence from Gk to belong to
Gi is given by ski: We further assume that the probability
for a sentence of Gk to belong to Gi and Gj

simultaneously is given by skiskj ; and similarly with
intersections of a higher number of grammars. This
is the independence assumption introduced by Rivin
(2001).

The probability that after N sentences the input will
unambiguously point toward grammar Gk (and no other
grammar) is given by

pðkÞN ¼
Y
iak

ð1� sN
kiÞ:

The transition matrix after N sentences looks like

T
ðkÞ
ij ðNÞ ¼

1; i ¼ j ¼ k;

0; i ¼ k; jak;

pðkÞN ; iak; j ¼ k;

1� pðkÞN ; iak; j ¼ i;

0; otherwise:

8>>>>>><
>>>>>>:

Therefore, we have

Qkj ¼ ½ðpð0ÞÞTðT ðkÞÞðNÞ�j :

This gives us the following parameterization of the
learning accuracy matrix with the parameter N; the
number of sampling sentences:

Qkk ¼ 1�
n � 1

n
ð1� pðkÞN Þ; Qkj ¼

1� pðkÞN

n
:

Let us denote sk ¼ ð1� pðkÞN Þðn � 1Þ=n: Then we have

qkj ¼
sk

n � 1
; qkk ¼ sk:

This gives us the natural parameterization of the
learning accuracy matrix, Q; with the number of
sampling events, in the case of the batch learner
algorithm. Obviously, limN-N pðkÞN ¼ 1; so that

lim
N-N

Qkk ¼ 1;

consistent with (9).

4.2. Two-way communication—example of a distribution

Let us suppose that the quantities aij ¼ aji come from
symmetrizing the one-way communicability functions,
so that aij ¼ ðsij þ sjiÞ=2: Further, we will assume that sij

and sij ; 1pi; jpn; iaj are independent random vari-
ables drown from a uniform distribution between zero
and one.

Denoting bi ¼ 1� a1i; we obtain that the distribution
function of bi is given by

fbðxÞ ¼
4x; 0pxp1=2;

4ð1� xÞ; 1=2pxp1:

	
ð80Þ

First, we note that

EðbiÞ ¼ 1
2
; Fð1=biÞ ¼ 4 log 2E2:77: ð81Þ

Let us find the region of existence and stability of a
coherent solution for a typical realization of the matrix
A described above, in the scenario of the batch learning
algorithm. Applying formula (81) together with Eq. (79)
we obtain qcE0:087: In order to guarantee that our
method works, we also need the applicability conditions,
(50) and (51). We need to require

sk

n � 1
o1� akj 8j:

This condition is easy to satisfy for large enough n

because Eminð1� akjÞB 1 ffiffi
n

p ; see appendix.

Appendix A. Statistics of aik

Let us calculate the value of Eminð1� akjÞ; where the
entries of the matrix A; akj ; are random numbers drawn
from distribution (80), and Gk is the teacher’s grammar.
We will use the notation bi � 1� aki: We have

Pðmin
n

i¼1
bi > aÞ ¼

ð1� 2a2Þn; 0pap1=2;

2nð1� aÞ2n; 1=2pap1:

	
ðA:1Þ

We have

Eðmin
i

biÞ ¼ �
Z 1=2

0

a
d

da
ð1� 2a2Þn da

�
Z 1

1=2
a
d

da
2nð1� aÞ2n da: ðA:2Þ

The second integral can be evaluated to give 1þ
n=ð2nð1þ 2nÞÞ; i.e. its contribution is exponentially
small. The first integral can be taken by parts, yielding

1=2n þ
Z 1=2

0

ð1� 2a2Þn da: ðA:3Þ

The boundary contribution (the first term in the
expression above) is exponentially small above. We
will now estimate the remaining part,

R 1=2
0 ð1� 2a2Þn da:

First, we note that for a51=
ffiffiffi
2

p
; the function under

the integral can be approximated as

ð1� 2a2ÞnEe�2na2 : ðA:4Þ

Let us introduce a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log n=2n

p
: The function under

the integral is equal to 1=n at a ¼ a1: Since it is a
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monotonically decaying function of a; we can bound the
integralZ 1=2

a1
ð1� 2a2Þn dao

1

2n
: ðA:5Þ

Next, we note that for aoa1; the condition a51=
ffiffiffi
2

p
holds and we can use approximation (A.4) to estimateZ a1

0

ð1� 2a2Þn daE
Z a1

0

e�2na2da

¼
1ffiffiffiffiffi
2n

p Z ffiffiffiffiffiffiffiffi
log n

p
0

e�y2 dy; ðA:6Þ

where we introduced the variable y ¼
ffiffiffiffiffi
2n

p
a: The last

integral is easy to estimate. We have

E min
i

bi

� �
¼

1ffiffiffiffiffi
2n

p ffiffiffi
p
2

r
þ O

1

n
ffiffiffiffiffiffiffiffiffiffi
log n

p
 !" #

: ðA:7Þ
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