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Abstract

We consider the problem of linguistic agents that communicate with each other about a shared
world. We develop a formal notion of a language as a set of probabilistic associations between form
(lexical or syntactic) and meaning (semantic) that has general applicability. Using this notion, we
define a natural measure of the mutual intelligibility, F(L,L′), between two agents, one using the
language L and the other using L′. We then proceed to investigate three important questions within
this framework: (1) Given a language L, what language L′ maximizes mutual intelligibility with L?
We find surprisingly that L′ need not be the same as L and we present algorithms for approximating
L′ arbitrarily well. (2) How can one learn to optimally communicate with a user of language L

when L is unknown at the outset and the learner is allowed a finite number of linguistic interactions
with the user of L? We describe possible algorithms and calculate explicit bounds on the number
of interactions needed. (3) Consider a population of linguistic agents that learn from each other and
evolve over time. Will the community converge to a shared language and what is the nature of such
a language? We characterize the evolutionarily stable states of a population of linguistic agents in a
game-theoretic setting. Our analysis has significance for a number of areas in natural and artificial
communication where one studies the design, learning, and evolution of linguistic communication
systems.
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1. Introduction
Consider two linguistic agents in a shared world. The agents desire to communicate
different messages (meanings) to each other. Such a situation arises in a number of different
contexts in natural and artificial communication systems and it is important in such cases
to be able to quantify the rate of success in information transfer, in other words, the
mutual intelligibility of the agents. Each agent possesses a communicative device or a
language that allows it to relate code (signal) and message, form and meaning, syntax and
semantics, depending upon the context in which the communication arises. If they share
the same language and this language is expressive enough and unambiguous, then mutual
intelligibility will be very high. If on the other hand, they do not share the same language,
or the languages are inexpressive or ambiguous, the mutual intelligibility will be much
lower. This is often the case in the real world and in this paper, we present an analysis of
this situation. We view languages as probabilistic associations between form and meaning
and develop a natural measure of intelligibility, F(L1,L2), between two languages,L1 and
L2, which is a generalization of a similar function introduced in [10]. We ask the following
question: if there is a biological/cultural/technological advantage for an agent to increase
its intelligibility with the rest of the population, what are the ways to do this?

The task of increasing intelligibility reduces ultimately to three related sub-problems:

• Given a language L, what language L′ maximizes the mutual intelligibility F(L,L′)
for two way communication about the shared world?

• What are some acquisition mechanisms/learning algorithms that can serve the task of
improving intelligibility?

• What are the consequences of individual language acquisition behavior on the
population dynamics and the communicative efficiency of an interacting population
of linguistic agents?

In this paper, we create a mathematical framework to address these questions analytically.
We find, surprisingly, that the optimal language L′ need not be the same as L, and
we present an algorithm for approximating L′ arbitrarily well (Section 3). The optimal
language,L′, can be either learned or inherited by each individual from its “parents”. In the
former case, we find some bounds on the performance of appropriate learning algorithms
(Section 4). In the latter case, we study the resulting population dynamics in the context of
an evolutionary language game (Section 5).

1.1. Communicability in animal, human and machine communication

The simplest situation where communicability is readily defined corresponds to the case
where the “language” may be viewed as an association matrix, A. Such a matrix simply
links referents to signals. If there are M referents and N signals, then A is an N × M

matrix. The entries, aij , define the relative strength of the association between signal i
and meaning j . The matrix A thus characterizes the behavior of the linguistic agent in
(i) production mode where it may produce any of the signals corresponding to a particular
meaning in proportion to the strength of the association, and in (ii) comprehension mode
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where it may interpret a particular signal as any of the meanings in proportion to the

association strengths.

The specific settings in which such a scheme is a useful description include animal
communication, human languages and artificial languages. For instance, it often makes
sense to talk about a lexical matrix as a formal description of human mental vocabular-
ies. It is introduced to describe the arbitrary relations between discrete words and discrete
concepts of human languages ([10,14,19,26]; also see [36] for a more Bayesian perspec-
tive). Each column of the lexical matrix corresponds to a particular word meaning (or
concept), each row corresponds to a particular word form (or word image). In the Saus-
surean terminology of arbitrary sign, the lexical matrix provides the link between signifié
and signifiant [28].

An equivalent of a lexical matrix is also at the basis of any animal communication
system, where it defines the relation between animal signals and their specific meanings [4,
8,15,31,32]. A classic example of this is alarm calls in primates. There are a finite number
of referents that are coded using acoustic signals and decoded appropriately by recipients.

Infinite association matrices can be used as a description of human languages [13,25].
Human grammars mediate a complex mapping between form and meaning. There, the
space of possible signals is the set of all strings (sentences) over a finite syntactic alphabet
and the set of possible meanings is the set of all strings over some semantic alphabet. Most
crucially, the sets of possible sentences and meanings are infinite. This accounts for the
infinite expressibility of human grammars.

In artificial intelligence, the problem arises in many different settings. A number of
studies have emerged where linguistic agents interact with each other in simulated worlds
and one studies whether coherent or coordinated communication ultimately emerges (see,
for example, [2,12,21–23,33–35]). Much of this kind of research employs the simulation
methodology of Artificial Life. In this paper, we create a mathematical framework for
these kinds of problems and derive a number of analytic results. We also study language
coordination in a game-theoretic setting and our results have consequences for the Nash
equilibria for such problems (for related research on multi-agent systems and game-
theoretic foundations, see [1,37] among others).

In the design of natural language understanding systems, the goal is to develop a
computer system that is able to communicate with a human. The statistical approach
to this problem assumes an underlying probabilistic model for the human source. This
probabilistic model is then recovered or learned from data either by randomly drawn
samples as in the case of corpus linguistics or statistical language modeling (see [3] and
[16] for overviews of this point of view) or via some interactive exchanges and semantic
reinforcement [7,11]. The primary implication of this paper is that optimal communication
with a language user might require one to learn a language that is different from the target
source.

1.2. Main results in the context of previous work

Here we outline the three main sets of results presented, respectively, in Sections 3, 4
and 5.
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1.2.1. How to maximize the mutual intelligibility?

Let us consider a population of agents and assume that each of them has a language. An

evolutionary process can then be described where individuals reproduce and the offspring
do not have an innate language, but acquire a language on the basis of interaction with the
population. This process was first explicitly modeled in [10] and later in [23] and [21]. In
the approach of the latter two works, at each (discrete) moment of time, a randomly chosen
individual is replaced by a new one, which then learns the language of the population; in
[10], the generations do not overlap. It is clear that the choice of a learning procedure used
by the offspring will influence the evolutionary dynamics that ensues and, in particular,
whether or not the population will converge to (and maintain) a reasonably coherent
language.

Several basic learning mechanisms have been considered. The “imitator” simply learns
the averaged language of the population, both in the production and in the comprehension
mode. The “calculator” of Hurford (called “obverter” in [23] and “Bayesian learner” in
[21]) does not copy the language of the population but rather constructs the “best response”
to it: it adopts the production behavior which is best understood by the population, and the
comprehension strategy which is the best decoder for the population, thus maximizing its
communicative efficiency with the population. The “Saussurean learner” of [10] imitates
the production mode of the population and then adopts the comprehension behavior that
maximizes its chances of understanding itself.

It turns out that imitators do not do very well and a coordinated communication system
seems to be unstable in a population of such learners. Saussurean learners show a better
performance, but the obverters are the most efficient (in the setting of [23] and [21]).
Starting from a randomly chosen initial condition, a population of obverters quickly
develops a highly coordinated communicative system, and reaches a state where signals
and meanings are related in the one-to-one fashion (plus perhaps some isolated synonyms
or homonyms).

A peculiar feature of both imitators and obverters is that their production and
comprehension modes are completely de-correlated.1 Before the perfect coordination
of language is reached, some obverters might find themselves speaking a very strange
language. Imagine a case where the language has two sentences, s1 and s2, and two
meanings, m1 and m2. A pathological linguistic agent might use s1 to communicate the
meaning m1 and s2 to communicate m2 in production mode but interpret s1 to mean
m2 and s2 to mean m1 in comprehension mode. Such a linguistic agent is therefore self-
contradictory in its associations between form and meaning.

In this paper, we avoid such internal contradictions by requiring that a linguistic
agent’s production and comprehension modes be linked via a common association matrix.
In doing so, we have two motivating considerations in mind. First, from a cognitive
standpoint, it seems natural to give symmetric consideration to form and meaning and
treat language as a relation between form and meaning rather than two separate functional
mappings for production and comprehension. Second, from a computational standpoint, a

1 In other contexts, the obverter may be defined differently. A more general definition is that an obverter
performs to maximize comprehension on the assumption that the hearer’s reception behavior is the same as its
own.



N. Komarova, P. Niyogi / Artificial Intelligence 154 (2004) 1–42 5

common association matrix provides a compact representation for a language from which

production and comprehension modes may easily be derived. The Saussurean learner
satisfies such a criterion; obverters that have reached a co-ordinated language do not violate
this constraint (see also [20]). The communicating neural networks also provide a link
between the production and comprehension modes, see, e.g., [20,29,30].

In this paper, we execute a comprehensive analysis of this situation. The first question
we address is whether the obverter algorithm can still be carried out if the self-consistency
constraint is imposed on each of the learners.2 This requires us to understand what the
best response to an arbitrary language is, when it exists, and how to approximate it. We
demonstrate the following:

• If the language L is not self-consistent, then it is in general not possible to use the
obverter procedure for finding the best response. In other words, the comprehension
behavior and the production behavior designed to (separately) maximize the commu-
nicative efficiency, do not obey the self-consistency requirement.

• If the language L is fully co-ordinated (defines a one-to-one correspondence between
signals and meanings), then the best response exists and is equal to the language L
itself.

• Next, suppose that the language L is self-consistent, but not fully co-ordinated. Then
even though it is not in general possible to find the best response, we can approximate
it within any given accuracy, ε.

• Finally, suppose that the language L is fully co-ordinated, but the communication is
noisy. Then, under some mild restrictions on the magnitude of the noise, we can still
find the best response, and, under slightly stronger conditions, it is the language L

itself.

Incidentally, the first of the above statements suggests that the obverter mechanism cannot
be used for learning from a population of individuals. Even though each agent might have a
self-consistent language, the average language of the population may not be self-consistent.
The obverter procedure can be used by each newly introduced agent to learn from one
randomly chosen individual, or from its “parent” (i.e., an individual chosen proportionally
to its linguistic performance).

1.2.2. Learning the optimal language
A second set of results relate to the problem of learning a self consistent language

for the purpose of optimal communication with the chosen teacher or “parent”. Since the
teacher’s language is not known at the outset, the learner must obtain relevant estimates of
it over a finite number of interactions with the teacher. This situation arises in a number
of artificial intelligence settings where a machine learning approach is taken to acquire
a language for communicative purposes. For example, statistical language modeling for
spoken language understanding between human and machine, or language learning for
robotic communication systems between two robots (machines) are natural applications. In

2 The precise definition of self-consistency is that there exists a probability measure over the space of signals
and meanings, which is common for both the production and the comprehension modes.



6 N. Komarova, P. Niyogi / Artificial Intelligence 154 (2004) 1–42

most such cases, particularly in statistical language modeling, it has been tacitly assumed

that collecting a corpus by sampling the target language and then reconstructing it on the
basis of this corpus is a sufficiently good strategy for designing a natural language based
human–computer interaction system. In the light of the results presented in this paper, we
will see that this assumption is mistaken. Specifically,

• We consider two different frameworks for learning: (i) learning with full information,
where the learner has access to both the sentence and its meaning in all interactions,
and (ii) learning with partial information, where the learner has direct access only to
the sentence. The meaning is not directly accessible but the learner knows whether
communication was ultimately successful. We present algorithms to learn how to
communicate optimally in both settings.

• We present explicit bounds on the number of examples (interactions) needed for an
agent to be able to learn a self consistent language that yields communicability that is
arbitrarily close to optimal with high probability. In a partial information setting, the
number of examples is seen to be proportional to N2M2/γ 2, where N is the number
distinct signals and M is the number of distinct meanings. In the full information
setting where meanings are directly observable, the number of examples reduces
to a quantity proportional to N2/γ 2. In both cases, γ is a margin parameter that
characterizes the learning difficulty of the teacher’s language.

It is interesting to compare our approach with the approach taken in the studies of
populations of neural networks. Oliphant [21] and Smith [29] used numerical simulations
to investigate the dynamics of an iterative learning model. While they did not address the
question of convergence to a maximum communicability in a teacher-learner pair, they
looked at the convergence of the population of networks to an optimal communication
system. By varying the update rules of individual networks, they were able to show
that a learning bias toward a one-to-one mapping between meanings and signals led to
an emergence of a coordinated communication system. In their setting, each individual
did not necessarily optimize its communication ability with the current population, but
rather, each individual had a learning strategy which eventually facilitated a high long-
term communicability outcome.

1.2.3. Communicability and the evolutionary language game
Finally, we examine the implications of the communicability function in the language

game framework. There has been considerable recent activity with work on computational
models for the evolution of natural languages and animal communication [8,12,23,25]. In
models that are based on selective fitness, the communicability function determines the
payoff of different languages. Individuals that communicate well receive a high payoff
which translates into biological fitness, or reproductive success: individuals with higher
fitness produce more children who learn their language. Alternatively, one can assume
that individuals with a high payoff have a high reputation (or standing in the group) and
are more influential as language teachers. The assumption is that language performance
measured by the function F contributes to the rate with which each language is spread.
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The function F defines the equilibria of the language game equation. In [38], such

equilibria (called the Nash equilibria) were found for a system where the production and
comprehension modes are independent. In this paper, we show that these results continue
to hold if the requirement of self-consistency is imposed. In other words, all the stable and
neutrally stable states of the language system can be attained even if the production and
comprehension modes are cognitively related.

We also characterize all the evolutionarily stable strategies (ESS) [18] of the language
system. It can be proved that the (“strict”) ESS correspond to fully co-ordinated languages.
However, there is another kind of an evolutionarily significant state, called weak ESS,
which is stable modulo some random drift. This state have been observed in many
numerical studies of language systems including the above mentioned [10,21,23]. In this
paper we analytically prove that:

• If the frequency of occurrence of events (subjects of communication) in the shared
world is exactly uniform (i.e., all events occur with exactly the same frequency), then
weak ESS can be characterized as perfectly co-ordinated languages which might have
some isolated synonyms or homonyms (see Section 5.3 for the precise definition).

• In the more general case of non-uniform frequencies of events, only isolated synonyms
are possible, and homonyms are unstable.

The latter result means that ambiguous languages are evolutionarily unstable. Indeed,
while true homonyms will reduce the communicability potential of a language, (isolated)
synonyms will not. On the other hand, it is commonly observed that human languages have
numerous homonyms, whereas true synonymy is extremely rare. To resolve this apparent
contradiction, we have to remember about the presence of context.

Indeed, the relevant communicative accuracy of individuals should not be defined per-
word, but rather per utterance. Therefore, the entries of the “lexical matrix” are not words
as such, but slightly larger objects, which can roughly defined as “words in a context”.
As soon as we accept this level of description, then the results of the mathematical model
correctly describe the following observation: in human languages, there are practically
no true homonyms that remain homonyms in the presence of contextual clues, and, on the
other hand, context-dependent synonyms are rather common.

To give some examples, let us first consider a lexical homonymy, such as “fall” (autumn)
and “fall” (down). This is a complete homonymy on the level of words, but not on the level
of larger utterances (clearly, the utterances “in the fall” and “to fall down” can never be
confused). Similarly, the words “beautiful” and “fair” cannot be regarded as true synonyms
on the level of words, but if we consider the utterances “beautiful lady” and “fair lady”,
they are interchangeable. This illustrates the point that when context is taken into account,
then synonyms are possible, and homonyms are unstable.

The rest of the paper is structured as follows. In Section 2 we develop a general notion of
association matrices as probability measures on the cross product of forms and meanings.
We then show how a measure of communicative efficiency or mutual intelligibility may
be naturally defined. In Section 3 we show how to construct an approximating family of
languages that converges to the optimal communicator. We examine an extension of this
in Appendix B where we study communication with a perfect language across a noisy
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channel. We continue by examining the implications of our results for learning theory:

in Section 4 we discuss algorithms for learning to communicate and present bounds on
their sample complexity. Finally, in Section 5 implications for evolution are discussed; in
particular, we classify all Nash equilibria and characterize the possible evolutionarily stable
strategies. Conclusions are found in Section 6.

2. Communicability for linguistic systems

2.1. Basic notions

We regard a linguistic system to be an association between form and meaning. Let
S ⊂ N be the set of all possible linguistic forms (sentences or signals) and M ⊂ N be the
set of all possible semantic objects (meanings or referents). Note that depending on the
context, the elements of S can be words, codes, expressions, forms, signals or sentences.
The elements of M can be meanings, messages, events or referents. We will use the general
term signals for elements of S and meanings for elements of M.

The sets S and M need not be finite, but it is essential that they are enumerable.
The reason the sets S and M can be viewed as countable for human languages has to
do with the discrete nature of language. In the lexical setting, S is the set of all words,
and therefore is naturally countable, and the countability of M (the meanings) is assured
by categorization. In the case of human grammars, we may let S = Σ∗

1 be the set of all
possible strings over a syntactic alphabet (Σ1) and M = Σ∗

2 be the set of all possible
strings over a semantic alphabet (Σ2). Note that in this case S and M are infinite.

We define a communication system, or a language, as a probability measure µ over
S ×M. Note that in the case of finite languages (human or artificial lexicons and animal
communication systems), µ is related to the association matrix, A, by means of a simple
rescaling.

Let us enumerate all possible signals, i.e., the elements of set S , as s1, s2, s3, . . . and all
possible meanings (elements of M) as m1,m2,m3, . . . . The coding and decoding schemes
of the agent are contained in the measure µ in the following manner. Each user of µ is
characterized by an encoding matrix P and a decoding matrix Q where

Pij ≡ µ(si |mj)=
{
µ(si,mj )/

∑
p µ(sp,mj ), if

∑
p µ(sp,mj ) > 0,

0, otherwise,
(1)

Qji ≡ µ(mi |sj )=
{
µ(sj ,mi)/

∑
p µ(sj ,mp), if

∑
p µ(sj ,mp) > 0,

0, otherwise.
(2)

Both P andQ matrices are easily interpreted.Pij is simply the probability of producing the
signal si given that one wishes to convey the meaning mj . Similarly, Qij is the probability
of interpreting the expression si to mean mj by the same user.

Matrices analogous to P and Q were introduced in [10], however, they were not
explicitly related through a common measure, µ. An effective connection between P

and Q has been employed for a particular learning mechanism, called the Saussurean
[10,21].
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Remarks.
1. The user of a language is characterized in production mode by the matrix P and in
comprehension mode by the matrix Q. This captures the fact that given a particular
meaning, there might be many different ways to express it. Correspondingly given a
particular signal, there may be no unique interpretation. Thus ambiguities in sentence
interpretation or polysemy in lexical semantics are incorporated.

2. A measure µ uniquely defines the corresponding P and Q matrices. The converse is
not generally true: given the P and Q matrices it might be possible to find more than
one µ which would have the correct encoding and decoding matrices. An example
with 2 × 2 matrices is P =Q= I and

µ1 =
(

1/2 0
0 1/2

)
,

µ2 =
(

1/3 0
0 2/3

)
.

Clearly, both µ1 and µ2 lead to the same P and Q. In order to avoid such ambiguities
we introduce the equivalence classes of measures. We will say that two measures µ1
and µ2 are equivalent to each other (µ1 ≡ µ2) if and only if the corresponding P and
Q matrices are equal, i.e., P (1) = P (2) and Q(1) =Q(2).

3. For a probability measure µ let us introduce

Sµ = {
s ∈ S | ∃m ∈M s.t. µ(s,m) > 0

}
.

This defines the set of signals that are used in production or comprehension by a
linguistic agent. In the sense of formal language theory, this is the set of well formed
syntactic expressions. In fact, the set Sµ is what is normally called “language”. Our
definition of language as a measure µ contains this notion of language as the support
of µ. Similarly, one may define

Mµ = {
m ∈ M | ∃s ∈ S s.t. µ(s,m) > 0

}
.

This defines the set of all meanings that are expressible by the linguistic agent. If
Mµ = M then all meanings can be expressed. If Mµ is a proper subset of M then
some meanings are left unexpressed.

4. The probability measure µ, the sets Sµ and Mµ, and the matrices P and Q in humans
and animals arise out of highly structured systems in the brain. In fact, it is clear
that in human languages, these objects may not vary arbitrarily. A significant activity
in generative linguistics attempts to characterize the nature of this structure and the
variation that exists among natural languages of the world.

2.2. Probability of events and communicability function

The communicating agents are immersed in a world and the need to communicate
messages arises as the corresponding events occur in this shared world. Thus one may
define a measure σ on the set of possible meanings M according to which the agents
need to communicate each of these meanings to each other. Given two communication
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systems, i.e., languages µ1 and µ2, the probability that an event occurs whose meaning is

successfully communicated from µ1 to µ2 is given by

P [1 → 2] =
∑
i

σ (mi)
∑
j

µ1(sj |mi)µ2(mi |sj ).

Similarly, one may compute the probability with which an event is successfully communi-
cated from µ2 to µ1 as

P [2 → 1] =
∑
i

σ (mi)
∑
j

µ2(sj |mi)µ1(mi |sj ).

We may then define the effective communicability function of µ1 and µ2 as

F(µ1,µ2)= 1
2

(
P [1 → 2] + P [2 → 1]).

In matrix notation, this may be written as

F(µ1,µ2)= 1
2

[
tr
(
P (1)Λ

(
Q(2))T)+ tr

(
P (2)Λ

(
Q(1))T)], (3)

where Λ is a diagonal matrix such that Λii = σ(mi), and P (i),Q(i) refer to the coding and
decoding matrices associated with measure µi . Note that tr(P (1)Λ(Q(2))T) is simply the
probability that an event occurs and is successfully communicated from user of µ1 to user
of µ2.

Remarks.

1. The function F(µ1,µ2) is the average probability with which µ1 and µ2 understand
each other in two way communication mode. The function F(µ1,µ2) is symmetrical
with respect to its arguments. If µ1 is a probability measure with support only on
the diagonal elements of S × M, then the P and Q matrices are identity and the
communicative efficiency is 1.

2. F(µ1,µ1) is the communicability of two identical linguistic agents. We have

0 <F(µ1,µ1)� 1.

For two different agents µ1 and µ2 we also have

0 � F(µ1,µ2)= F(µ2,µ1)� 1.

3. The marginalsµ(m) and σ(m) are not equal to each other. In other words, the language
of an agent is simply given by µ and the conditional probabilities associated with
it. The probability with which agents communicate different meanings is determined
not by the language but by the external world in which the agents are grounded.
Therefore, two agents might have high communicative efficiency in some world and
low communicative efficiency in another one.

4. A function similar to our communicability function was introduced by Hurford [10].
However, all meanings were treated to have equal probabilities (a uniform measure σ ),
and thus the function was not suitable for infinite matrices.
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3. Reaching the highest communicability
Let us assume that one of the languages is given and call this language µ0. According
to definition (3), for any language µ we have

F(µ0,µ)= 1

2

∑
i,j

σj
[
µ0(si |mj)µ(mj |si)+µ(si |mj)µ0(mj |si)

]
. (4)

Let us define the best response as a language µ∗, such that

F(µ0,µ∗)= sup
µ
F(µ0,µ). (5)

In what follows we will present an algorithm of building a best response or a language
which in some sense approaches the best response. In particular, we show that the best
response need not exist. However, an arbitrarily good response can be constructed. We
show how to construct a sequence of languages (µε where ε > 0) such that F(µ0,µε) can
be made arbitrarily close to supµ F(µ0,µ)—the maximum possible mutual intelligibility
between a user of µ0 and a user of any allowable language.

The interesting question of finding the best response in a noisy environment is
considered in Appendix B.

3.1. A special case of finite languages

In order to keep the argument as transparent as possible, we will first make three
simplifying assumptions. The effect of relaxing these assumptions will be demonstrated
in Section 3.2. For now we will assume that the following conditions are satisfied:

(i) The languages are finite, and the matrices have the size N ×M .
(ii) The distribution σ is uniform, i.e., σi = 1/M ∀i .

(iii) The measure µ0 satisfies the property of unique maxima, i.e., for each i , there exist a
unique p0(i) and a unique r0(i) such that

µ0(si |mp0(i))= max
p

µ0(si |mp), µ0(mi |sr0(i))= max
r

µ0(mi |sr). (6)

The last condition states that there exists strictly one element of each column of µ0(s|m)
(row of µ0(m|s)) such that it is the biggest element in the column (row).

Let us maximize each of the two terms in the right hand side of expression (4) separately.
First, we find a matrix Q∗ such that∑

i,j

µ0(si |mj)Q
∗
ij = max

Q

∑
i,j

µ0(si |mj)Qij , (7)

where we maximize over all matrices Q whose elements are non-negative and sum up to
one within each row. This results in the following definition of Q∗:

Q∗
ij =

{
1, µ0(si |mj)= maxp µ0(si |mp),

0, otherwise.
(8)
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In other words, in order to construct the best decoder, Q∗, we need to find the largest

elements in each of the rows of µ0(s|m) and put “ones” at the correspondent slots of Q∗.
The rest of the entries of the matrix Q∗ are zero. This is a well defined operation because
of the property of unique maxima. Similarly, we can find the matrix P ∗ such that∑

i,j

P ∗
ij µ0(mj |si )= max

P

∑
i,j

Pijµ0(mj |si),

where we maximize over all matrices P whose elements are non-negative and sum up to
one within each column. The best encoder, P ∗, is given by

P ∗
ij =

{
1, µ0(mj |si)= maxp µ0(mj |sp),
0, otherwise,

(9)

i.e., we maximize each column of the matrix µ0(m|s). Now, we have the best encoder and
the best decoder for the language µ0. Finding the matrices P ∗ and Q∗ completes the task
of the obverter of [23]. However, in our setting, the two matrices cannot be independent,
but they need to be related by a common measure. If a measure µ∗ existed such that

µ∗(s|m)= P ∗, µ∗(m|s)=Q∗,

then it would satisfy Eq. (5), thus defining the best response. It turns out that in general, µ∗
does not exist. However, there always exists a measure which approaches the performance
of P ∗ and Q∗ arbitrarily close. It is convenient to use the following short hand notation:

P 0
ij = µ0(si |mj), Q0

ij = µ0(mj |si).
We are ready to formulate the following

Theorem 3.1. For any finite language µ0 satisfying the property of unique maxima, and a
uniform probability distribution σ , we have

sup
µ
F(µ0,µ)= 1/(2M) tr

(
P 0(Q∗)T + P ∗(Q0)T

)
.

In order to prove this statement, we need to show that

(a) for all µ,

F(µ0,µ)� 1/(2M) tr
(
P 0(Q∗)T + P ∗(Q0)T

)
,

(b) there exists a family of languages, µε , such that

lim
ε→0

∣∣sup
µ
F(µ0,µ)− F(µ0,µε)

∣∣= 0.

The proof of (a) immediately follows from the definitions of the best decoder and the best
encoder. The rest of this subsection is devoted to developing an algorithmic proof of (b).
Given the matrices Q∗ and P ∗, we will build a family of measures, µε , such that

lim
ε→0

µε(s|m)= P ∗, lim
ε→0

µε(m|s)=Q∗. (10)
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This is not a trivial task, which is demonstrated by the following example. Suppose that

the P ∗ and Q∗ matrices are given by

P ∗ =
(

1 0
0 1

)
, Q∗ =

(
0 1
1 0

)
.

It is clear that we cannot find a measure µε which would satisfy conditions (10) for this
pair (P ∗,Q∗). Fortunately, it turns out that situations like this never arise. In order to prove
this we will need to consider some auxiliary matrices.

3.1.1. The auxiliary matrix and the absence of loops
Let us define an auxiliary matrix X in the following way:

Xij =
{

1, P ∗
ij +Q∗

ij > 0,
0, otherwise.

This means that the matrix X contains nonzero entries at the slots where either of the
matrices, P ∗ or Q∗, contains a non-zero entry. Now let us draw lines connecting all the
“ones” of the X matrix that belong to the same row, and all the “ones” of the X matrix
that belong to the same column. We will obtain some (disjoint) graphs. Let us refer to the
“ones” of the X matrix as vertices.

Lemma 3.2. Suppose that a finite measure µ0 has the property of unique maxima. Graphs
constructed as described above do not contain any closed loops.

Proof. Let us assume that there exists a closed loop. It looks like a polygon with right
angles. Let us consider its “turning points”, i.e., such points which simultaneously belong
to a horizontal and a vertical line. Suppose there are 2K such vertices (this can only be an
even number). We will refer to these vertices as xαi,βj , where the pair of integers, (αi , βj ),
gives the coordinates of the vertex. Clearly, 1 � i, j �K .

Without loss of generality, let xα1,β1 be connected with xα1,β2 with a horizontal line.
Then xα1,β2 is connected with xα2,β2 with a vertical line, . . . , xαK,β1 is connected with
xα1,β1 with a vertical line, thus closing the loop (see Fig. 1, where we used K = 3). It is
possible to show that exactly a half of the vertices corresponds to “ones” of the P ∗ matrix,
and the rest—to “ones” of the Q∗ matrix. If a vertex correspond to a “one” of the Q∗
matrix then the corresponding slot of the P ∗ matrix is zero, and vice versa. This is a direct
consequence of the property of unique maxima.

Let us now suppose that Q∗
α1,β1

= 1, P ∗
α1,β1

= 0 (the alternative is that P ∗
α1,β1

= 1,
Q∗
α1,β1

= 0, in which case the proof remains very similar). This means that Q∗
α1,β2

= 0,
because by construction (see (8)), there can be only one nonzero element in the same row
of the Q∗ matrix. Then the element P ∗

α1,β2
= 1, because the corresponding vertex is present

in the X matrix. This leads to P ∗
α2,β2

= 0 (we can only have one positive element in each
column of the P ∗ matrix, Eq. (9)). This argument can be continued around the loop. The
Q∗ elements along the loop are alternating between 0 and 1, and so are the elements of the
P ∗ matrix, see Fig. 1.

We can conclude that P 0
α1,β1

>P 0
α1,β2

, because by construction, positive elements in the

Q∗ matrix correspond to the largest elements in the corresponding rows of the P 0 matrix.
Similarly, we obtain 2K inequalities:
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Fig. 1. No loops in graphs.

P 0
αi ,βi

> P 0
αi,βi+1

, (11)

Q0
αi+1,βi+1

>Q0
αi ,βi+1

, 1 � i �K (12)

(here we set αK+1 ≡ α1 and βK+1 ≡ β1). In Fig. 1, the maximum elements of the rows of
P 0 and the columns of Q0 are marked by crosses. The arrows indicate the direction toward
the larger elements.

We will now show that system (11)–(12) is incompatible. In order to do this, we write
µ0(si,mj )=Q0

ijMi , where Mi is the sum of the elements of the ith row of the matrix µ0:

Mi ≡∑
k µ0(si,mk). Then we can rewrite P 0

ij in terms of Q0 and M:

P 0
ij = µ0(si ,mj )∑

k µ0(sk,mj )
= Q0

ijMi∑
k Q

0
kjMk

.

System (11)–(12) can be presented as a closed chain of inequalities for Q0:

Q0
α1,β1

>Q0
α1,β2

∑
k Q

0
kβ1

Mk∑
k Q

0
kβ2

Mk

, Q0
α1,β2

>Q0
α2,β2

, (13)

Q0
α2,β2

>Q0
α2,β3

∑
k Q

0
kβ2

Mk∑
k Q

0
kβ3

Mk

, Q0
α2,β3

>Q0
α3,β3

,

. . .

Q0
αi ,βi

> Q0
αi,βi+1

∑
k Q

0
kβi
Mk∑

k Q
0
kβi+1

Mk

, Q0
αi ,βi+1

>Q0
αi+1,βi+1

,

. . .

Q0
αK ,βK

>Q0
αK ,β1

∑
k Q

0
kβK

Mk∑
k Q

0
kβ1

Mk

, Q0
αKβ1

>Q0
α1,β1

. (14)
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From the first two inequalities we know that
Q0
α1,β1

>Q0
α2,β2

∑
k Q

0
kβ1

Mk∑
k Q

0
kβ2

Mk

,

then using the next pair we similarly derive that

Q0
α1,β1

>Q0
α3,β3

∑
k Q

0
kβ1

Mk∑
k Q

0
kβ3

Mk

.

Continuing along the chain, at the Kth step we have

Q0
α1,β1

>Q0
αK,βK

∑
k Q

0
kβ1

Mk∑
k Q

0
kβK

Mk

.

Using the last two inequalities, we finally obtain: Q0
α1,β1

> Q0
α1,β1

. This contradiction
proves that there can be no closed loops in the matrix X. ✷
3.1.2. Constructing the matrix µε

Now we can systematically build the matrix µε . From Lemma 3.2 it follows that if
we connect all the vertices of the matrix X by horizontal and vertical lines, the resulting
(disjoint) graphs will contain no closed loops. Some of the graphs might only consist of
one vertex.

For each of these graphs we will perform the following procedure. Take a pair of
vertices. If they are connected by a horizontal (vertical) line, refer to the corresponding
entries of the Q∗ matrix (P ∗ matrix). One of them will be one and the other—zero. Draw
an arrow on the graph from the element corresponding to zero to the element corresponding
to one. Repeat this for all pairs of vertices. Next, starting from some vertex, replace the
corresponding element in theX matrix by ε, and then, following the arrows, keep replacing
the elements of X by entries of the form εk , where the integer k increases or decreases
from one vertex to the next depending on the direction of the arrow (we can always do this
because by Lemma 3.2, there are not closed loops in the graphs of matrix X). We will call
the resulting matrix Aε . The measure µε is obtained by re-normalizing the elements of the
matrix Aε:

µε(si,mj )=Aε
ij

/∑
k,l

Aε
kl. (15)

Remark 3.3. In the algorithm above we used powers of the small parameter ε, εk , to assign
to vertices of the matrix X. More generally, one can use any functions of ε, fk(ε), such
that limε→0 fk(ε)/fk+1(ε)= 0. Thus, the family µε found above is just one of many such
families.

3.1.3. Proof of Theorem 3.1
We are now ready to complete the proof of Theorem 3.1, part (b).

Proof. Let us show that Eq. (10) holds. In order to find entries of µε(s|m), we need to re-
normalize each column of the matrixµε so that its elements sum up to one. Obviously, each
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column will contain at most one segment of one of the graphs. By construction, the biggest

element of this segment of the graph corresponds to the positive element of Q∗. In the
limit ε → 0, the other elements will be vanishingly small in comparison with the biggest
one, and the resulting column of the µε(s|m) matrix will be identical to the corresponding
column of the P ∗ matrix. The same argument holds for rows of the µε(m|s) matrix which
in the limit become the rows of the Q∗ matrix. Thus we conclude that the algorithm of
Section 3.1.2 leads to constructing a family of measures µε which satisfy the requirements
of Theorem 3.1. ✷
Example 3.4. Consider the following 5 × 5 matrix:

µ0 = 1

1245


1 64 2 23 90
92 8 42 81 42
53 77 60 2 50
88 15 68 73 59
39 48 66 65 37

 . (16)

For this language, supµ F(µ0,µ) = 394/6225. In Fig. 2 we show the calculated P ∗ and
Q∗ matrices, and then construct the X and the Aε matrices. The family µε is given by

µε = 1

3(1 + ε)+ ε2


0 ε 0 0 1
1 0 0 0 0
0 ε2 0 0 0
ε 0 0 0 0
0 0 1 ε 0

 .

As ε → 0, F(µ0,µε)→ supµ F(µ0,µ).

Remark 3.5. If we let µ∗ = µε|ε=0, i.e., µε evaluated at 0, we note that µ∗ �= µ0 in
general. Further, F(µ0,µ∗) < supµ F(µ0,µ). Thus, we have that limε→0µε = µ∗ yet
F(µ0,µ∗) < limε→0F(µ0,µε)= supµ F(µ0,µ). This is a consequence of a discontinuity
in the definition of the communicability function, F(L1,L2). Namely, the conditional
probabilities entering definition (4) are discontinuous when all the elements of a column
or a row of µ are zero, see Eqs. (1)–(2). Thus the value of F(µ0,µε) may have a jump at
ε = 0.

3.2. General languages

Now we will demonstrate the effect of relaxing assumptions (i) through (iii) of
Section 3.1.

3.2.1. Multiple maxima and neutral vertices
If condition (iii) of the previous section is not satisfied, that is the language µ0 does not

possess the property of unique maxima, then definitions (8) and (9) have to be changed.
For instance, if µ0(sk|mα1) = · · · = µ0(sk|mαn) are all maximal values of the kth row of
matrix µ0(s|m), then we can take

Q∗
α1,k

= γ1, . . . ,Q
∗
αn,k

= γn,
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Fig. 2. Construction of Aε for Example 3.4. We first form P 0 and Q0 matrices by normalizing columns and
rows of µ0 respectively; this step is not shown here. Then we can construct the best encoder, P ∗, by identifying
the maximal elements in the columns of Q0, and the best decoder, Q∗, by identifying the maximal elements in
the rows of P 0, see the top of the figure. Next, we combine the positive elements (or vertices) of P ∗ and Q∗ to
create the auxiliary matrix X. The vertices of X that belong to the same column (row) are connected. In order to
define the direction of the arrows, we have to refer to the matrices P ∗ and Q∗ . If two vertices are connected by a
vertical line, we find the corresponding elements of the P ∗ matrix (they are encircled); the direction of the arrow
is always toward the “one” of the P ∗ matrix. Similarly, if two vertices are connected by a horizontal line, we find
the corresponding elements of the Q∗ matrix (encircled) and direct the arrow toward the “one” of the Q∗ matrix.
Finally, we build the Aε matrix by replacing the “ones” of the X matrix by powers of ε. The powers of ε must
be arranged in such a way that in each of the connected graphs, the arrows point from a smaller entry to a larger
entry. Note that in this example P ∗ and Q∗ are not compatible with any single measure.

so that γ1, . . . , γn are arbitrary positive numbers with the only restriction that
∑n

i=1 γi = 1.
The result of evaluating the function

∑
i,j µ0(si |mj)Q

∗
ij (Eq. (7)) does not depend on the

values of the coefficients γi . The same argument can be repeated for P ∗. Next we note
that some closed loops are possible in this case, so that Lemma 3.2 has to be modified.
Let us generalize the procedure of assigning direction to the graphs in the case where
the language µ0 does not possess the property of unique maxima. We will not assign a
direction to segments of the graph corresponding to rows of P 0 (columns of Q0) which
do not have a unique maximum. We will call the corresponding vertices neutral vertices.
For vertices which are not neutral, we proceed as before, i.e., if two vertices are connected
with a horizontal (vertical) line, then the arrow points toward the larger element of the Q∗
(P ∗) matrix.

For a closed loop of the auxiliary matrix X, we define the direction of each segment
as positive (negative) if it is clockwise (counterclockwise). The direction is zero if there is
no arrow. We say that the direction changes sign if it changes from positive to negative or
from negative to positive. Instead of Lemma 3.2 we have
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Lemma 3.6. The following is true for loops of the auxiliary matrix X:
(a) they contain more than one neutral vertex.
(b) the direction of the graph changes sign at least once, or it is identically zero.

Proof. Statement (a) can be proved by assuming that there are no neutral vertices in a
loop and applying Lemma 3.2. To prove statement (b) let us assume that the direction of
the arrows in a loop is always positive or neutral. Then we can repeat the argument of
Lemma 3.2 and write down a chain of equations/inequalities similar to (13)–(14). The only
difference is that some of the inequalities will in fact have an “equals” sign. More precisely,
a segment with a positive (zero) direction will correspond to a “<” (“=”). We immediately
get a contradiction unless all signs are “=”, or the strict inequalities change direction at
least once. This proves statement (b). ✷

The statement of Theorem 3.1 still holds in this case if the perfect encoder and decoder
are redefined as indicated above. The algorithm of building the “best response” language
stays very similar. We assign powers of ε to all nodes so that the power decreases in the
direction of arrows. For adjacent neutral nodes, the power of ε must be the same, and some
arbitrary weights can be assigned to the neutral nodes. If a loop is present, it is still possible
to assign powers of ε in a consistent way because of statement (b) of Lemma 3.6. It may
be necessary to use non-integer powers.

Example 3.7. Consider the following 3 × 3 matrix:

µ0 = 1

43

(8 5 2
2 10 2
3 9 2

)
. (17)

It is easy to calculate the P 0 and the Q0 matrices:

P 0 =
(8/13 5/24 1/3

2/13 5/12 1/3
3/13 3/8 1/3

)
, Q0 =

(8/15 1/3 2/15
1/7 5/7 1/7

3/14 9/14 1/7

)
. (18)

We can see that this language does not possess the property of unique maxima: the third
column of Q0 contains two maximal elements. We have

P ∗ =
(1 0 0

0 1 γ

0 0 1 − γ

)
, Q∗ =

( 1 0 0
0 1 0
0 1 0

)
, X =

(1 0 0
0 1 1
0 1 1

)
. (19)

The directed graph contains one loop with two neutral vertices marked by “N”:

1 N

1 N
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The graph changes direction once along the loop. Applying our algorithm we obtain the

following Aε matrix:

Aε =
(1 0 0

0 1 γ1ε

0
√
ε γ2ε

)
.

For any positive numbers γ1,2 this family satisfies the conditions of Theorem 3.1, i.e.,
approaches the best communicability. Note that if γ1/γ2 = γ then in the limit of ε → 0,
the matrices P ∗ and Q∗ are recovered, see Eqs. (19).

Note that in general it is not always possible to find an Aε matrix which would give rise
to given P ∗ and Q∗; some conditions on the arbitrary neutral coefficients in P ∗ and Q∗
matrices may be imposed (see also Lemma 5.3).

3.2.2. Non-uniform distributions
Before we only considered the uniform distributions σi = 1/M (condition (ii) above).

Now let us assume some general distribution. It turns out that the argument changes very
little. Namely, definition (8) becomes

Q∗
ij =

{
1, µ0(si |mj)σj = maxp µ0(si |mp)σp,

0, otherwise,
(20)

(and similarly for the case when we do not have the unique maxima property), and
definition (9) stays the same. In the proof of Lemma 3.2, the argument follows the same
logics, and the only change comes into inequalities (11): we have

Pαi ,βi σi > Pαi ,βi+1σi+1. (21)

However, the multipliers σl also get canceled out when we go around the loop, so the
statements of Lemmas 3.2 and 3.6 remain true in this case, and thus the algorithm of
building the best response is the same.

3.2.3. Infinite matrices
Finally, we will deal with restriction (i) of Section 3.1. First of all let us show that

definition (4) makes sense in the case of infinite matrices. We have

1
2

∑
i

(
µ0(si |mj)µ(mj |si)+µ(si |mj)µ0(mj |si)

)
� 1

2

∑
i

(
µ0(si |mj)+µ(si |mj)

)= 1.

Since σ is a measure, we have
∑

j σj = 1, which leads to the conclusion F(L0,L)� 1.
Now, us define the following quantities:

Ai = sup
j

P 0
ij σj , Bi = sup

j

Q0
ji .

The generalization of Theorem 3.1 in the case of infinite matrices is given by

Theorem 3.8. For infinite matrices, supµ F(µ0,µ)= 1
2

∑
i (Ai +Bi).
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It is straightforward to see that for any µ, F(µ0,µ) � 1 ∑
i (Ai + Bi). In order to
2

conclude the proof of Theorem 3.8, it is necessary to construct a family of languages,
µε , such that limε→0 | supµ F(µ0,µ)− F(µ0,µε)| = 0. This is done in Appendix A.

3.2.4. The existence of the best response
To end this section, we will address one more issue. From Theorem 3.1 and extensions

it follows that there exists a family of languages, µε , such that limε→∞F(µ0,µε) =∑
µ F(µ0,µ). Can it happen that the supremum is actually reached by some language?

From previous considerations it is clear that a language µ∗ satisfies Eq. (5) if and only if it
also obeys

µ∗(s|m)= P ∗, µ∗(m|s)=Q∗

(whereP ∗ andQ∗ may not be unique, like in the case where the property of unique maxima
is not satisfied). The question of existence of µ∗ is answered by the following

Theorem 3.9. For a language µ0, the limiting measure µ∗ exists if and only if the auxiliary
matrix X satisfies the following property: the only vertices of the matrix X that share the
same row (column) are neutral vertices.

Proof. The “if” part is easy: given the condition of the theorem, we can apply the algorithm
of building the family µε (Section 3.1.2 and its extension from Section 3.2.1) and observe
that the powers of ε simply get canceled when we normalize the matrixµε . This means that
µε does not depend on ε, and since we know that it satisfies the conditions of Theorem 3.1,
we conclude that µε = µ∗.

To finish the proof we need to show that if the condition of the theorem is not satisfied,
then µ∗ does not exist. Let us assume that there are two adjacent (non-neutral) vertices, a
and b, in the matrix X. Without loss of generality let us assume that they are connected by
a horizontal line. This means that Q∗ has a 1 at the one of the vertices, say vertex a, and
a 0 at vertex b. Therefore, if µ∗ exists then it must have a positive entry at a. On the other
hand, P ∗ has a 1 at vertex b and a zero at vertex a. Therefore, the matrix µ∗ must have a
zero at vertex a, which leads to a contradiction. ✷
Corollary 3.10. If P ∗ = Q∗ are extended permutation matrices, i.e., square permutation
matrices perhaps with extra rows or columns consisting entirely of zeros, then µ∗ is defined
as P ∗, properly normalized.

Corollary 3.11. If the property of unique maxima is not satisfied and µ∗ exists, it is not
unique.

4. Implications for learning

From the preceding discussion it is now clear that in order to maximize mutual
intelligibility with a language user (characterized by the measure µ), it may be necessary
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to use a different measure, µ∗, where µ∗ �= µ. This fact has implications both for learning

and evolution of populations of linguistic agents.

Let us first consider the problem of an agent trying to learn a language in order to
communicate with some other agent whose language is characterized by the measure µ.
Recall that µ∗ (the best response) itself may not exist, however, an arbitrarily close
approximation µε (for any ε) does exist. Therefore, the learner’s task becomes to estimate
µε . What degree of accuracy, ε, is useful or necessary will depend upon the particular
application in mind. Since the measure µ is unknown to the learner at the outset, there are
two natural learning scenarios depending upon how much information is available to the
learner on each interaction.

(1) Full information: This corresponds to the situation where the learner is able to sample
µ directly to get (sentence, meaning) pairs. Thus, when the teacher speaks, both
sentence and meaning are directly accessible. The strategy of the learner is to estimate
µ as well as it can and derive from it the P ∗ and Q∗ matrices and ultimately µε using
the procedure described in the previous sections.

(2) Partial information: In most natural settings, however, the meaning may not be directly
accessible. In other words, the learner only hears the sentence while the intended
meaning is latent. What the learner reasonably may have access to is whether its
interpretation of the sentence was successful or not. On the basis of this information,
the learner must somehow derive the optimal communication strategy. We refer to
this as learning with partial information. Note that we assume that the learner (hearer)
receives weak reinforcement regarding the communicative exchange. This is similar to
the setting of selfish games developed in the work of Steels and pursued also in [40]
(always through simulations). There are variants where the learner could get strong
reinforcement either in the extreme form of being told the true meaning after a failed
communicative exchange or some alternative corrective feedback. We do not explore
the strong reinforcement setting here.

Thus we see that (1) full information and (2) partial information suggest two different
frameworks for learning; in either case, the learner has to estimate P and Q matrices of
the teacher.

4.1. Estimating P

An important task for the learner is to estimate Q∗ which is derivable from the P matrix
of the teacher. Recall that

Q∗
ij =

{
1, σjµ(si |mj)= maxp σpµ(si |mp),

0, otherwise.

4.1.1. Learning with full information
The learner, in this case, has access to (s,m) (sentence,meaning) pairs every time the

teacher produces a sentence. We can define the event

Aij = Teacher produces si to communicate mj .
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The probability of event Aij is simply σjµ(si |mj). Therefore, if the teacher produces n

(sentence, meaning) pairs (which are random, independent and identically distributed),
then the ratio

âij (n)= kij

n

is an empirical estimate of the probability of the event Aij . By the law of large numbers,
as n→ ∞ we have

âij (n)→ σjµ(si |mj)

with probability 1. For the case under consideration, we can even bound the rate at which
this convergence occurs. For example, applying Hoeffding’s inequality, we have

P
[∣∣âij (n)− σjµ(si |mj)

∣∣> ε
]
� 2 e−ε2n/2.

This convergence is guaranteed for fixed (i, j). In general, the learner must estimate a
collection of events. The total number of events are given by the total number of possible
(sentence, meaning) pairs. As before, let us assume that there are N possible sentences and
M possible meanings. Therefore, there are NM different events whose probabilities need
to be estimated. The collection of events Aij , i = 1, . . . ,N; j = 1, . . . ,M , are disjoint.
For a finite collection of such events, we will derive a uniform law of large numbers.

Let event Eij be

Eij = ∣∣âij (n)− σjµ(si |mj)
∣∣> ε.

Then, by the union bound, we obtain

P

[⋃
i,j

Eij

]
�
∑
i,j

P (Eij )�NM2 e−ε2n/2.

Therefore, we have

P

[⋃
i,j

Eij

]
= P

[∀i, j ∣∣âij (n)− σjµ(si |mj)
∣∣� ε

]
> 1 −NM2 e−ε2n/2.

Thus, with high probability (depending upon the number of examples, n) all empirical
estimates âij (n) are close to σjµ(si |mj), respectively. Estimating the σjµ(si |mj)’s is the
step to estimating the Q∗ matrix that is required for the optimal communication system.

4.1.2. Learning with partial information
Now consider the setup in (2) where the learner has no access to the meaning directly

but has to guess a meaning and is told after the event whether the guess was correct or
incorrect. Thus the learner has access to asymmetric information: if the guess was correct,
the learner knows the true intended meaning; if the guess was incorrect, the learner merely
knows what the meaning was not. As it turns out, this does not dramatically change the
state of affairs. To see this, let the learner guess a meaning uniformly at random. Thus
with probability 1/M the learner chooses a meaning mj . Each time the teacher produces



N. Komarova, P. Niyogi / Artificial Intelligence 154 (2004) 1–42 23

a sentence, the intended meaning may be successfully communicated or not. Define the

event

Aij = Teacher produces si; Learner guesses mj ; Communication is successful.

The probability of event Aij is simply 1
M
σjµ(si |mj). The event Aij is observable since

the learner knows (i) what sentence has been uttered by the teacher, (ii) what meaning it
(the learner) assigned to the sentence, and (iii) whether communication was successful.
Therefore after n sentences have been produced by the teacher, the learner can count kij—
the number of times event Aij has occurred, and can make an empirical estimate of the
probability of Aij as

âij (n)= kij

n
.

By the same argument as before, âij (n) converges in probability to 1
M
σjµ(si |mj) and the

rates are provided by the Hoeffding bounds. Since M is fixed in advance and known, this
allows the learner to guess σjµ(si |mj) for each i, j arbitrarily well. Let us be a little more
precise about the rates of convergence. The learner’s estimate of σjµ(si |mj) is really Mâij
where âij is defined above. Therefore we have that

P
[∣∣Mâij − σjµ(si |mj)

∣∣> ε
]= P

[∣∣∣∣âij − 1

M
σjµ(si |mj)

∣∣∣∣> ε

M

]
� 2 e−ε2n/(2M2).

Thus the confidence in the ε-good estimate of σjµ(si |mj) is poorer than before. By the
same argument as in case (2), we have a uniform bound as follows:

P
[∀i, j ∣∣Mâij − σjµ(si |mj)

∣∣� ε
]
> 1 −NM2 e−ε2n/(2M2). (22)

4.2. Estimating Q

Let us now consider the task of estimating P ∗ which is derivable from the Q matrix of
the teacher. The same arguments of the previous section apply. Recall that

P ∗
ij =

{
1, µ(mj |si )= maxp µ(mj |sp),
0, otherwise.

4.2.1. Learning with full information
Here the learner has direct access to the meaning assigned by the teacher to each

sentence. Therefore, the learner need only pick a sentence uniformly at random (with
probability 1/N ) and produce it for the teacher to hear. Let us define the event

Aij = Learner produces si; Teacher interprets as mj .

The event Aij is observable on each trial. The probability with which it occurs is given
by 1

N
µ(mj |si). After n trials (where the learner speaks in this manner), the learner simply

counts the number kij of times event Aij occurs and its estimate of 1
N
µ(mj |si) is kij /n.

Therefore, we have

P

[∣∣∣∣âij − 1

N
µ(mj |si)

∣∣∣∣> ε

]
� 2 e−ε2n/(2N2).
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Using the same arguments as before, we have
P
[∀i, j ∣∣MNâij −µ(mj |si )

∣∣� ε
]
> 1 −NM2 e−ε2n/(2N2).

4.2.2. Learning with partial information
The learner simply picks a (sentence, meaning) pair uniformly at random (with

probability 1/(NM)). Define the event

Aij = Learner produces (si,mj ); Communication is successful.

The event Aij is observable by the learner on each trial. The probability of event Aij is
1

NM
µ(mj |si ). After n trials (where the learner speaks), the learner counts the number kij

of times event Aij occurs. Therefore, we again have

P

[∣∣∣∣âij − 1

NM
µ(mj |si)

∣∣∣∣> ε

]
� 2 e−ε2n/(2M2N2).

Using the same arguments as before, we have

P
[∀i, j ∣∣MNâij −µ(mj |si )

∣∣� ε
]
> 1 −NM2 e−ε2n/(2M2N2). (23)

4.3. Sample complexity bounds

Now we can put the pieces together to determine the number of learning events that need
to occur so that with high probability, the learner will be able to develop a language with
ε-good communicability. Let the teacher’s measure be µ. We will assume that µ is such
that the P and Q matrices have unique row-wise and column-wise maxima respectively.
First let us introduce the margin by which the maximum value clears all other values in the
row and column respectively. This margin will play an important role in determining the
number of learning events.

Definition 1. For each i , let

j∗
i = arg max

j
σjµ(si |mj)

and for each j , let

i∗j = arg max
i

µ(mj |si ).

Then, we define the margin γ to be the largest real number such that

σj∗
i
µ(si |mj∗

i
)� σjµ(si |mj)+ γ ∀j �= j∗

i

and

µ(mj |si∗j )�µ(mj |si)+ γ ∀i �= i∗j .
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4.3.1. Learning with partial information

We have described how to estimate the Q∗ and P ∗ matrices; the following theorem

provides a bound on the number of examples needed to ensure correct estimates:

Theorem 4.1. If the total number, n, of interactions between teacher and learner
(with partial information) is greater than (64M2N2/γ 2) log(4MN/δ), then with high
probability > 1 − δ, the learner can construct a measure that will give arbitrarily good
communicability with the teacher.

Proof. Let there be n/2 interactions where the teacher speaks and the learner listens and
n/2 interactions of the other form. The learner constructs estimates of σjµ(si |mj) and
µ(mj |si ) in the manner described previously. Let the estimates be denoted by p̂ij and q̂ij ,
respectively. By setting ε = γ /4 in Eqs. (22) and (23), we obtain:

P
[∀i, j ∣∣p̂ij − σjµ(si |mj)

∣∣� γ /4
]
> 1 − 2NM e−γ 2n/(64M2)

and

P
[∀i, j ∣∣q̂ij −µ(mj |si)

∣∣� γ /4
]
> 1 − 2NM e−γ 2n/(64M2N2).

Using the fact that P(A∩B)� P(A)+P(B)− 1, we can see that with probability greater
than 1 − 2NM(e−γ 2n/(64M2N2) + e−γ 2n/(64M2)), the estimates p̂ij and q̂ij are both within
γ /4 of the true values. The learner chooses Q∗ and P ∗ using the estimated matrices. Let
us first consider the case of Q∗. For each i the learner desires to obtain j∗

i given by

j∗
i = arg max

j
σjµ(si |mj).

The learner chooses

ĵi = arg max
j

p̂ij ,

and we claim that ĵi = j∗
i . In order to prove this, assume that this is not the case. Then we

get immediately:

σj∗
i
µ(si |mj∗

i
)� σ

ĵi
µ(si |mĵi

)+ γ.

However, we have the following chain of inequalities:

σ
ĵi
µ(si |mĵi

)� p̂
iĵi

− γ /4 � p̂ij∗
i

− γ /4 � σj∗
i
µ(si |mij∗

i
)− γ /2,

which leads to a contradiction. This argument holds for every i , therefore, since ĵi = j∗
i

for each i , the Q∗ matrix is identified exactly. Similarly, one can show that the P ∗ matrix
is also identified exactly.

The only thing that remains is to ensure that n is large enough so that this occurs with
high probability. We have

2NM
(
e−γ 2n/(64M2N2) + e−γ 2n/(64M2)

)
� 4NM e−γ 2n/(64M2N2) � δ.

This is satisfied for n > (64M2N2/γ 2) log(4MN/δ). Thus, with probability greater than
1 − δ, both P ∗ and Q∗ are identified exactly. Now the procedure of approximating the
measure may be applied. ✷
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Remarks.
1. The number of examples is seen to be a function of M,N and γ . The margin γ that
depends upon the teacher’s language, µ, determines, in some sense, how easy it is to
estimate Q∗ and P ∗ matrices for the learner. It therefore characterizes the learning
difficulty of µ in this setting.

2. Finite matrices are applicable to settings such as alarm calls in animal communication
systems and lexical learning in human linguistic systems. For example, [27] discusses
the problem of learning mappings between signals and meanings using a variety of
schemes from associative learning to Bayesian estimation.

3. Infinite matrices are not learnable in general. In fact, infinite dimensional spaces are
known to be unlearnable (see [39]) and therefore further constraints will be required
on the space of possible measures to which the teacher’s language belongs. There are
several ways in which one could explore reasonable constraints on linguistic measures.
One possibility might be to pursue the approach of Chomsky [5] and restrict the range
of variation on possible syntactic forms and thereby on possible measures µ. Another
possibility might be to pursue some theory of compositional semantics (e.g., [6]) where
the meanings of larger units like phrases and sentences are derived from compositional
rules applied to the meanings of smaller units like morphemes and words. Thus the
true learning task is really to learn the meanings of words appropriately and then apply
these compositional rules for all other syntactic forms. Since words are finite, this
reduces the infinite case to the finite one. A third possibility is to make use of context
heavily and claim that learning proceeds in a context by context (case based) fashion
and in each particular context there are only a finite number of possible forms and their
interpretations. A proper development of these issues is the subject of further research
and beyond the scope of the current paper.

4. The constants in the bound on sample complexity may be tightened, although the order
is essentially correct. For example, we have let the interactions be symmetric, i.e., the
numbers of sentences the learner produces and receives are the same. It is easy to
check that a more favorable bound is obtained when the learner speaks N2 times as
often as it listens. In this case, it is enough to have (32M2(N2 + 1)/γ 2) log(4MN/δ)

interactions in all.

4.3.2. Learning with full information
For completeness, let us state the number of interactions needed to learn in setting (1).

This is given by the following

Theorem 4.2. If the total number, n, of interactions between teacher and learner (with full
information) is greater than (64N2/γ 2) log(4MN/δ), then with high probability > 1 − δ,
the learner can construct a measure that will give arbitrarily good communicability with
the teacher.

The proof is very similar to that of the previous theorem and we omit it for this reason.
It is noteworthy that learning with full information requires M2 fewer interactions to learn.
This is not surprising since the meanings are accessible, and the larger is the number, M ,
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of different concepts, the greater is the difference between learning with full and partial

information.

5. Implications for evolution

In this section we address the question of evolutionary significance of communicability.
This has application in several different contexts.

First, in artificial intelligence, one way to create communicating machines is to start with
a population of agents with a sub-optimal communication system and let them evolve and
learn from each other. This general approach is pursued in various forms by researchers
in evolutionary computation, genetic algorithms, and artificial life. Since the goal is to
increase information transfer, the function F can conveniently play a role of the “score”
of different communication systems. Based on this, agents with higher intelligibility can
be arranged to proceed while agents with lower intelligibility score will be gradually
eliminated. The main question is whether such a process will ultimately lead to a coherent
communication system. In what follows we develop a formalism that will allow one to
characterize possible outcomes of such a dynamical system.

Second, game-theoretic approaches may be relevant to the biological evolution of
simple, innate signaling systems in the animal world. In this setting, the function F

contributes to the biological fitness of individuals. The framework developed here has
some obvious drawbacks, such as the assumption that the signaler and the receiver are both
equally interested in the successful transfer of the information, which may not necessarily
be the case in many natural settings. However, studying basic properties of evolutionarily
stable states of the simplest system may explain certain aspects of evolution, and this
approach can later be extended to include more sophisticated scenarios, such as clashes
of interest of signalers and receivers.

Finally, in application to human languages, evolutionary theory can also potentially
make a contribution. Here, it is not the innate genetic endowment that is considered to
be under the selective pressure, but the (learned and culturally transmitted) languages
themselves [13,25]. For natural selection to act on language ability, there must be a reward
for successful communication, which links language to biological fitness. We can therefore
assume that successful communication leads to a payoff for both the speaker and the
hearer. In the spirit of evolutionary game theory, we link payoff to reproductive success [9,
17]. Individuals that communicate more successfully have increased survival probabilities
and leave more offspring. An alternative interpretation of this kind of dynamics, is that
such individuals will acquire a higher standing or reputation in the group and leave more
followers who will learn their language. This simplified model, while leaving out many
potentially important aspects of the system, serves as a logical tool of reasoning about the
evolution of human language. The inferred properties of the evolutionarily stable states
can be compared with the observed properties of human languages. The results of such
a comparison may shed light on the role of communicability in the evolution of human
language.
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Fig. 3. Nash equilibria and ESS.

5.1. Preliminaries

Let us characterize the attracting states of the evolutionary system by means of the
payoff function, F(µ,µ′). It is useful to recall some important definitions of the classical
game theory [9]. Language µ is strict Nash equilibrium if we have F(µ,µ) > F(µ,µ′)
for all µ′ �= µ. It is Nash equilibrium if F(µ,µ)� F(µ,µ′) for all µ′ �= µ.

Languageµ is called an evolutionarily stable state (ESS) [18] if µ is Nash and for every
µ′ with F(µ,µ)= F(µ,µ′) we have F(µ,µ) > F(µ′,µ′). Language µ is a weak ESS if
the final strict inequality is relaxed to a weak one, F(µ,µ)� F(µ′,µ′).

It can be shown (see [38]) that a language is an ESS if and only if it is a strict Nash
equilibrium, see Fig. 3. It is clear thatµ′ is a strict Nash equilibrium iff there exists a unique
best response which is equal to µ′. From the algorithm of finding the best response given in
this paper it follows that strict Nash equilibria have to be square matrices and are given by
permutation languages, which is in accordance with [38]. In the presence of a non-trivial
transition matrix (the noisy environment), we can derive the following result: permutation
languages are strict Nash equilibria if the T matrix is diagonally dominant both column-
wise and row-wise, see Appendix B. (It is interesting that if these conditions on the T

matrix are not satisfied then permutation languages are no longer stable! However, such
situations correspond to the kind of noise which changes the signals beyond recognition
and can hardly be considered relevant in natural settings.) These results indicate that
perfectly coordinated systems with no homonyms or synonyms are evolutionarily stable.

Strict Nash equilibria do not exhaust the set of important rest points of the system. In
order to get the full picture we also need to characterize the weak ESS of the system. Once
the system has reached one of the weak ESS, random drift is possible without change in
the average communicability.

5.2. Nash equilibria

The classification of Nash languages for uniform σ distributions was found in [38]; we
will reproduce their result because we will need to use it later:
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Theorem 5.1 [38]. For a uniform probability distribution, σ , a language is Nash if the

supports of its P and Q matrices coincide and if each row (column) of its P (Q) matrix
contains at most two distinct values, one of which is zero.3

The case of general distributions will be considered in Section 5.4. An example of a
Nash language is given by

Example 5.2. Consider the language with

P ′′ =


a1 0 a1 a1 0 a1 0 0
a2 0 0 a2 a2 0 a2 0
0 a3 0 0 a3 a3 a3 0
0 0 a4 0 0 0 0 a4
0 a5 0 0 0 0 0 a5

 ,

Q′′ =


c1 0 c3 c4 0 c6 0 0
c1 0 0 c4 c5 0 c7 0
0 c2 0 0 c5 c6 c7 0
0 0 c3 0 0 0 0 c8
0 c2 0 0 0 0 0 c8

 .

The conditions
∑N

i=1 P
′′
ij = 1 and

∑M
j=1Q

′′
ij = 1 lead to

ai = 1
2 , c1 = 1

2 − c4, c2 = c3 = 1 − c8, c5 = 1
2 − c6,

c6 = c8 − 1
2 . (24)

This language satisfies the conditions of Theorem 5.1 and therefore, it is a Nash equilib-
rium.

We need to check whether the P and Q matrices of Nash equilibria are related through
a common measure. We have the following useful

Lemma 5.3. The P and Q matrices of Nash languages of Theorem 5.1 always correspond
to a common measure µ.

Proof. We will simply construct the measure µ. Let us form the diagonal M ×M matrix
DQ such that DQ

ii is the value of the non-zero elements of the ith column of Q. Similarly,
for the diagonal N ×N matrix DP , the element DP

ii is the value of the non-zero elements
of the ith row of P . We have P = XDP and Q=DQX, where X is the auxiliary matrix
of P and Q, i.e., it has ones on the support of Q and P and zeros everywhere else. Let us
define

A=DPXDQ. (25)

3 These conditions can be derived by methods of Section 3.2.1 using the arbitrariness in the algorithm in the
presence of neutral vertices.
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It is easy to check that the matrix µ obtained by the proper normalization of A corresponds

to the matrices P and Q. ✷

Let us assume that µ is Nash and there exists a language µ′ such that F(µ,µ) =
F(µ,µ′), and F(µ′,mu′) > F(µ,µ). There are selective pressures in the system for the
language µ to be replaced by the language µ′. A much more “reliable” equilibrium states
are given by weak ESS. If a system is at a weak ESS, it can only change its state because
of a random drift which takes a very long time in large populations [24]. Therefore, it is
important to be able to characterize all weak ESS of the language system.

It has been observed by [38] that Nash equilibria may or may not correspond to weak
ESS. Here we derive specific conditions under which Nash equilibria are weak ESS
languages.

5.3. Weak ESS for uniform σ -distributions

We will say that a language µ has synonyms (homonyms) if some column (row) of the
matrix µ has more than one positive entries. Let us call a synonym (homonym) isolated if
the corresponding rows (columns) of the matrix µ contain no other positive elements.

Example 5.4. Consider the language

µ= 1

2 + β


0 α 1 − α 0
β 0 0 0
0 0 0 γ

0 0 0 1 − γ

 . (26)

The synonyms µ34 and µ44 are isolated because the 3rd and the 4th rows do not contain
other positive entries. The homonyms µ12 and µ13 are also isolated because they are the
only entries in columns 2 and 3.

We will call syno-homonyms such sets of elements that for each two of them it is
possible to find a chain of elements connecting the given two elements via synonym-
synonym or homonym-homonym relationships. Example 5.2 contains syno-homonyms.

Suppose that the only synonyms and homonyms of a language, µ, are isolated ones. We
have the following observation.

Observation 5.5. For any µ∗ which is a best response to µ, the function F(µ,µ∗) does not
depend on the actual entries in the matrices but is simply equal to 1/M times the number of
“effective” elements, if we count all the synonyms corresponding to the same meaning as
one effective element, and all the homonyms expressed by the same word as one effective
element.

To illustrate this we note that in Example 5.4 we have three effective elements (the two
synonyms counted as one and the two homonyms counted as one). Thus F(µ,µ)= 3

4 .
The following statement holds:
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Theorem 5.6. For the uniform probability distribution σ , the language µ is a weak

ESS if and only if the only kind of synonyms (homonyms) it has are isolated synonyms
(homonyms).

Proof. The proof contains two parts. First we assume that the language satisfies the
conditions of the theorem and prove that (i) it is Nash and (ii) if for some µ′, F(µ,µ′)=
F(µ,µ) then F(µ′,µ′)� F(µ,µ). Then, we will show that the languages of Theorem 5.6
are the only weak ESS.

The languages µ of Theorem 5.6 are Nash because they obey the conditions of
Theorem 5.1. Next, we can see that by construction, the auxiliary matrix X contains
no closed loops and no turns, and thus by Theorem 3.9, the best response exists. From
Observation 5.5 it follows that F(µ,µ∗)= F(µ,µ)= F(µ∗,µ∗), i.e., µ is a weak ESS.

To conclude the proof we need to show that no other Nash language is an ESS. Let
us suppose that a language µ′′ does not satisfy the conditions of Theorem 5.6. Then it
contains sets of syno-homonyms. We will show that there exists a language µ̃ satisfying
the conditions of Theorem 5.6 such that F(µ′′,µ′′)= F(µ′′, µ̃) but

F(µ̃, µ̃) > F(µ′′,µ′′). (27)

Using the algorithm of finding the best response, we can see that the P ∗ andQ∗ matrices
for language µ′′ have the same support as the language itself, but have no symmetries. It is
easy to check that the choice of P ∗ and Q∗ (and thus the best response, µ∗) is not unique.

Let us identify all the groups of syno-homonyms in µ∗; generally, they can be
represented as sub-matrices of the size k × l for some 1 � k �N and 1 � l �M , with no
rows or columns consisting entirely of zeros. Each of the sub-matrices has to be considered
separately to maximize its contribution to the function F(µ∗,µ∗). Below we will assume
for simplicity that there is only one group of syno-homonyms, as the generalization to
multiple groups is straightforward.

Now we will build such µ̃ that F(µ̃, µ̃) = maxµ∗ F(µ∗,µ∗); for clarity it is useful to
consult the example considered below. In the support of the matrices P ∗ and Q∗, X, let
us identify the largest extended permutation matrix which belongs to the support. It is
not unique, and its size cannot be bigger than mkl ≡ min(k, l). This is the skeleton of the

matrix X̃, the support of the matrix µ̃. Next, we need to make sure that the support of
X̃ contains at least one element from each row and column of the sub-matrix—otherwise
F(µ′′,µ′′) �= F(µ′′, µ̃). This can be done by adding some elements from matrix X to the
skeleton permutation matrix, one per each row (column) that are missing from X̃. It is easy
to check that the resulting k × l matrix can only contain isolated synonyms or homonyms.
To build the P̃ and Q̃ matrices out of X̃, we simply make sure that they satisfy the standard
normalization conditions. This leaves the entries corresponding to the isolated homonyms
in the Q̃ matrix (synonyms in the P̃ matrix) undefined.

All is left is to show that for this measure µ̃, condition (27) holds. Let us consider the
function F(µ∗,µ∗), where µ∗ is any best response to µ′′. F(µ∗,µ∗) is a linear function of
its arguments, the entries of the matrices P ∗ and Q∗. A linear function can only reach its
maximum on the boundary of the domain. For each row of theQ∗ matrix, its entries lie on a
simplex. The maximum is reached when one of these elements is one and the rest are zero.
Because of the restriction that the supports of the matrices P ∗ and Q∗ must coincide, the
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non-zero entries corresponding to the vertices of the simplexes must form a permutation

matrix. Note that the value of the function F(µ∗,µ∗) does not depend on the value of the
entries corresponding to isolated synonyms/homonyms. This means that by construction,
µ̃ defined as above corresponds to the maximum of the function F(µ∗,µ∗), and therefore
inequality (27) holds.

We conclude that for any language µ′′ containing syno-homonyms, one can always
find a matrix µ̃ satisfying conditions of Theorem 5.6 such that F(µ̃, µ̃) > F(µ′′, µ̃) =
F(µ′′,µ′′). Theorem 5.6 is proven. ✷

To illustrate Theorem 5.6 and the above algorithm, we consider Example 5.2. It presents
a Nash language which does not satisfy the conditions of Theorem 5.6, i.e., contains syno-
homonyms. Its best response is defined by the following matrices:

P ∗ =


α1 0 β1 γ1 0 δ1 0 0
α2 0 0 β2 γ2 0 δ2 0
0 α3 0 0 β3 γ3 δ3 0
0 0 α4 0 0 0 0 β4
0 α5 0 0 0 0 0 β5

 ,

Q∗ =


a1 0 a3 a4 0 a6 0 0
b1 0 0 b4 a5 0 a7 0
0 a2 0 0 b5 b6 b7 0
0 0 b3 0 0 0 0 a8
0 b2 0 0 0 0 0 b8

 ,

with the usual normalization restrictions plus the condition that P ∗ and Q∗ must have
identical support. The normalization conditions state that the elements of the columns of
P ∗ and rows of Q∗ belong to some simplexes, e.g., a1 + a3 + a4 + a6 = 1. Some of the
entries of the matrices P ∗ and Q∗ are allowed to be zero, but there can be no rows or
columns consisting entirely of zeros. If this holds, we have (µ′′,µ∗)= 5/2 no matter what
the entries of µ∗ are (this follows from Eqs. (24) and normalization conditions on P ∗, Q∗).

The function F(µ∗,µ∗), on the other hand, depends on the entries of µ∗ and reaches
its maximum at the corners of the simplexes. In order to find the maximum, we need to
identify the largest permutation matrix in the support of µ∗; in Fig. 4 its elements are
encircled by solid lines. Then we make sure that there are no zero rows or columns by
adding three more elements to X̃ (they are encircled by a dotted line). The maximum
value of F(µ∗,µ∗) is 5, because such is the number of effective entries of µ̃ (see
Observation 5.5); in Fig. 4, the isolated homonyms are underlined. The matrices P̃ and
Q̃ obtained from X̃ are:

P̃ =


1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 1 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

 ,
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Fig. 4. Building the matrix µ̃ for Example 5.2.

Q̃=


1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 x1 0 0 x2 x3 x4 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

 ,

with x1 + x2 + x3 + x4 = 1. The corresponding measure µ̃ satisfies (27). We conclude that
language of Example 5.2 is not a weak ESS.

5.4. Weak ESS for general σ -distributions

First of all we will generalize Theorem 5.1 for the case of non-uniform σ . We have

Theorem 5.1′. Let Λ be the diagonal matrix with elements Λii = σi . Then a language is
Nash if the supports of its P , PΛ and Q matrices coincide and if each row (column) of its
PΛ (Q) matrix contains at most two distinct values, one of which is zero.

Example 5.7. For N = 2, M = 3 and σi given by (1/2,1/4,1/4), the language

P =
(

1/2 1 0
1/2 0 1

)
, Q=

(
1/3 2/3 0
1/3 0 2/3

)
,

PΛ=
(

1/4 1/4 0
1/4 0 1/4

)
is a Nash equilibrium.

Next, let us generalize our results about the weak ESS. As we saw in the previous
section, for uniform σ -distributions weak ESS may contain isolated synonyms and
homonyms. This means that the evolutionary system can sometimes get stuck in a sub-
optimal state where the average communicative efficiency is smaller than one; this is
a consequence of having homonyms in a language and/or not being able to express all
meanings. Below we show that ambiguous languages can be stable only in the degenerate
case of uniform probability distribution, σ . As soon as we lift this degeneracy, homonyms
disappear from the language!
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Theorem 5.8. For non-uniform σ -distributions, the language µ is a weak ESS if and only

if the only kind of synonyms it has are isolated synonyms. It cannot contain homonyms.

Proof. First we will show that a Nash language for non-uniform σ -distributions cannot
contain isolated homonyms.

Let us assume that there exists a Nash language, µ, such that it contains a string of l
isolated homonyms. The fact that µ is Nash means that µ is the best response to itself,
i.e., F(µ,µ) = supµ′ F(µ,µ′). Let us follow the algorithm of Section 3.2.2 to construct
the X matrix. In order for the X matrix to contain the sting of homonyms, the Q∗
matrix must contain them, which means that the PΛ matrix must contain a string of l
identical elements, say, (a, . . . , a). This in turn means that the P matrix must contain a
string (a/σ1, . . . , a/σl). Since the values σ1, . . . , σl are not all the same, this means that
the elements below and above the string (a/σ1, . . . , a/σl) of the matrix P cannot be all
identically equal to zero (remember that the columns of P must sum up to one). Therefore,
the matrixµ must contain non-zero elements below or above this string, i.e., the homonyms
cannot be isolated, which is a contradiction.

Now, we need to show that for any language, µ′′, which contains syno-homonyms,
another language µ̃ can be found such that F(µ′′, µ̃) = F(µ′′,µ′′) and F(µ̃, µ̃) >

F(µ′′,µ′′). We proceed with building the language µ̃ exactly as in the proof of
Theorem 5.6. The difference emerges when we consider the function F(µ̃, µ̃). Before,
its value did not depend on the values of the elements which corresponded to isolated
homonyms. Say, if we had a string α1, . . . , αl in the Q̃ matrix, the corresponding elements
entered as

∑l
i=1 αi , which is equal to one. Now, they enter as a linear combination∑l

i=1 σiαi , and in order to maximize their contribution, we would have to take αk = 1
and αj = 0 for j �= k, where σk is the largest of σi . Of course, this means that the support
of the resulting matrix Q̃ is smaller than the support of Q′′, so we cannot use this language
as a maximizer. However, we can take σk = 1 − ε and σj = ε/(l − 1). By choosing ε to be
small enough, we can always find the language µ̃ satisfying (27).

We conclude that the only weak ESS are languages which may not contain homo-
nyms. ✷

Note that Nash equilibria in the case of non-uniform σ -distributions may contain
isolated synonyms. The important difference is that isolated synonyms do not introduce
any ambiguity in the language. We can conclude that in the case of general distributions,
the ESS and weak ESS of the system correspond to the states with perfect coherence, i.e.,
no ambiguities may be present in the language. The only possible source of reduction of
the average communicability function may come from poverty, i.e., the absence of certain
meanings from the language.

Remark 5.9. Theorems 5.6 and 5.8 can be proven also if we do not assume that the matrices
P and Q are connected through a common matrix µ, and the proofs are not much longer
than the ones presented here.
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6. Conclusions
We have considered a system of linguistic agents, each characterized by a language, i.e.,
a measure µ on the (signal×meaning) space. The mutual intelligibility of such agents can
be characterized in a natural way as a simple probability to transmit signals successfully
both ways. We have studied the problem of optimizing the mutual intelligibility of
linguistic agents in a shared environment.

It turned out that, for a given language µ0, another language can be found which leads
to the mutual intelligibility higher than the one achieved with µ0 itself. (The exceptions are
the languages which correspond to Nash equilibria, for instance, permutation languages.)
Moreover, a family of languages,µε , exists which leads to the optimization of intelligibility
as ε → 0. We have identified an algorithm to construct such languages with and without
external noise in the system.

The results are of consequence for learning theory. It is apparent that in order to
maximize intelligibility, the offspring is better off learning the “best response” languages
found here rather than simply copying the language of their parents (or the population).
We have identified some algorithms that can be used for this learning task and calculated
their efficiency.

From the evolutionary prospective, we can identify all the languages which correspond
to evolutionary stable strategies in a language game. It turns out that the strict ESS (i.e.,
the stable equilibria of the system) are languages which relate signals to meanings in a
one-to-one way. The weak ESS (the neutral equilibria in dynamics) may contain isolated
synonyms, but never homonyms, which means that there cannot be ambiguity in language
(the exception is the degenerate case where all meanings occur with exactly the same
frequency).

Appendix A. Infinite matrices

Here we present an algorithmic proof of Theorem 2 for infinite languages. The main
difficulty here is that the best decoder and the best encoder cannot be defined in the same
way as they were for finite matrices, formulas (8) and (9). In the present case we need
to show that an equivalent of matrices P ∗ and Q∗ can be constructed. We will prove the
following

Lemma A.1. For any ε0, there exists an integer N and a pair (P̃ ∗, Q̃∗) of N ×N matrices
such that∣∣∣∣∣ sup

µ

1
2

∞∑
l=1

σl

∞∑
k=1

PklQ
0
kl − 1

2

N∑
l=1

σl

N∑
k=1

P̃ ∗
klQ

0
kl

∣∣∣∣∣< ε0, (A.1)

∣∣∣∣∣ sup
µ

1
2

∞∑
l=1

σl

∞∑
k=1

P 0
klQkl − 1

2

N∑
l=1

σl

N∑
k=1

P 0
klQ̃

∗
kl

∣∣∣∣∣< ε0. (A.2)
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Remark A.2. The matrix P̃ ∗ can be said to be within ε0 of the best decoder, and the matrix

Q̃∗ is within ε0 of the best encoder. Finding these matrices is equivalent to controlling the
behavior of, respectively, the second and the first terms in the expression for F(µ0,µ):

F(µ0,µ)= 1
2

∞∑
l=1

σl

∞∑
k=1

[
P 0
klQkl + PklQ

0
kl

]
. (A.3)

Proof. First of all, for any language µ, ∀ ε1 > 0, there exists an integer L such that∣∣∣∣∣ 1
2

∞∑
l=1

σl

∞∑
k=1

P 0
klQkl − 1

2

µ∑
l=1

σl

∞∑
k=1

P 0
klQkl

∣∣∣∣∣< ε1, (A.4)

∣∣∣∣∣ 1
2

∞∑
l=1

σl

∞∑
k=1

PklQ
0
kl − 1

2

L∑
l=1

σl

∞∑
k=1

PklQ
0
kl

∣∣∣∣∣< ε1. (A.5)

This is because σl is a measure and the “tails”, 1
2

∑∞
l=L σl

∑∞
k=1P

0
klQkl and 1

2

∑∞
l=L σl ×∑∞

k=1PklQ
0
kl can always be made small enough by adjusting L. The same inequalities

hold for the supremum values of all terms.
Let us concentrate on the first term of F(L0,L). For any languageL, ∀ε1 > 0,∃K1 such

that ∣∣∣∣∣ 1
2

L∑
l=1

σl

∞∑
k=1

P 0
klQkl − 1

2

L∑
l=1

σl

K1∑
k=1

P 0
klQkl

∣∣∣∣∣< ε1, (A.6)

because P 0
kl is a measure in the index k. Thus the behavior of the first term of F(L0,L)

can be controlled at infinity, and limiting the range of l by L and the range of k by K1 only
introduces an error smaller than 2ε1.

For 1 � k � K1 let us define l̃(k) such that P 0
k,l̃(k)

= maxl P 0
k,l (here we assume for

simplicity that the property of unique maxima holds). Then we can set the “nearly best
decoder” Q̃∗ to be

Q̃∗
kl =

{
1, l = l̃(k),

0, otherwise.
(A.7)

Clearly we have supL
1
2

∑L
l=1 σl

∑K1
k=1P

0
klQkl = 1

2

∑L
l=1 σl

∑K1
k=1P

0
klQ̃

∗
kl . Therefore, we

obtain∣∣∣∣∣ sup
L

1
2

∞∑
l=1

σl

∞∑
k=1

P 0
klQkl − 1

2

L∑
l=1

σl

K1∑
k=1

P 0
klQ̃

∗
kl

∣∣∣∣∣< 2ε1. (A.8)

Next, we turn to the second term of F(µ0,µ). Its behavior is harder to control in the k
direction because Q0

kl is not a measure with respect to the index k. However, we can still

approach supL
1
2

∑L
l=1 σl

∑∞
k=1PklQ

0
ml using the following construction. We note that ∀l,

1 � l � L, the sequence Q0
1,l,Q

2,l , . . . ,Q0
i,l , . . . is contained between 0 and 1. Therefore,
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we can find such k̃(l) <∞ that |Q0 − supk Q
0 |< ε1. Now we define the “nearly best
k̃(l),l kl

encoder” as follows:

P̃ ∗
kl =

{
1, k = k̃(l),

0, otherwise.
(A.9)

We have: supµ
1
2

∑L
l=1 σl

∑∞
k=1 PklQ

0
kl = 1

2

∑L
l=1 σl supk Q

0
kl . Therefore, if we set K2 =

maxi (k̃(i)), we obtain∣∣∣∣∣ sup
µ

1
2

L∑
l=1

σl

∞∑
k=1

PklQ
0
kl − 1

2

L∑
l=1

σl

K2∑
k=1

P̃ ∗
klQ

0
kl

∣∣∣∣∣< ε1. (A.10)

By combining this with inequality (A.5), we get∣∣∣∣∣ sup
µ

1
2

∞∑
l=1

σl

∞∑
k=1

PklQ
0
kl − 1

2

L∑
l=1

σl

K2∑
k=1

P̃ ∗
klQ

0
kl

∣∣∣∣∣< 2ε1. (A.11)

Next, let us take N = max(L,K1,K2). It is possible to show that∣∣∣∣∣ 1
2

L∑
l=1

σl

K1∑
k=1

P 0
klQ̃

∗
kl − 1

2

N∑
l=1

σl

N∑
k=1

P 0
klQ̃

∗
kl

∣∣∣∣∣< ε1, (A.12)

∣∣∣∣∣ 1
2

L∑
l=1

σl

K2∑
k=1

P̃ ∗
klQ

0
kl − 1

2

N∑
l=1

σl

N∑
k=1

P̃ ∗
klQ

0
kl

∣∣∣∣∣< ε1. (A.13)

Finally, we set ε1 ≡ ε0/3. Combining formulas (A.8) and (A.13), we obtain inequality
(A.2). Combining formulas (A.11) and (A.12) we obtain inequality (A.1). ✷

Now we present a proof of Theorem 3.8 for infinite matrices.

Proof. Following the algorithm for finite matrices developed in Section 3.1, let us
construct a family of N ×N languages, Lε , such that∣∣∣∣∣F(µ0,µ

ε)− 1
2

N∑
l=1

σl

N∑
k=1

(
P 0
klQ̃

∗
kl + P̃ ∗

klQ
0
kl

)∣∣∣∣∣< ε0. (A.14)

Combining this with inequalities (A.1) and (A.2) of Lemma A.1 we obtain:∣∣sup
µ
F(µ0,µ)− F(µ0,µ

ε)
∣∣< 3ε0. (A.15)

Thus we conclude that the family of languages µε satisfies the conditions of Theorem 3.8.
A generalization to the case when the language µ0 does not have the property of unique
maxima is straightforward. ✷

Appendix B. Noisy channel

From the discussion of Section 3 it is clear that “perfect” languages, i.e., those
whose association matrix is a permutation matrix, have communicability F(µ0,µ0) = 1.
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Therefore, the best language to communicate with a perfect language is that language itself.

However, imagine that an agent needs to communicate with a perfect language user (say
µ0) across a noisy channel. What is the optimal language µ∗ for such communication?

In this section we will use the same three assumption as in Section 3.1. We consider
only memoryless transmission media and therefore introduce the M × N matrix T such
that Tij is the probability that signal j is received by the listener given that signal i was
conveyed by the speaker. We have

n∑
j=1

Tij = 1.

Now the F function can be rewritten in the following way:

F(µ0,µ)= 1
2

[
tr
(
P 0T TQT)+ tr

(
PT T(Q0)T

)]
.

Let us introduce the effective encoding and decoding matrices of language µ0:

P̃ 0 = P 0T T, Q̃0 =Q0T .

We obtain:

F(µ0,µ)= 1
2

[
tr
(
P̃ 0(Q)T

)+ tr
(
P(Q̃0)T

)]
. (B.1)

This definition is formally very similar to the definition with noiseless transmission, except
the matrices P̃ 0 and Q̃0 are not necessarily related through a common association matrix.
In the case when P 0 and Q0 are identity matrices we have

P̃ 0 = T T, Q̃0 = T .

Given the matrix T , we would like to optimize the function F(µ0,µ) over all languagesµ.
Let us maximize the two terms in expression (B.1) separately. The best encoder, Q∗,

is given by picking out the maximum elements in each row of the matrix P̃ 0, i.e., in the
matrix T T. The best decoder, P ∗, is given by picking out the maximum elements in each
column of the matrix Q̃0, i.e., in the matrix T . Therefore, we have

P ∗ = (Q∗)T. (B.2)

If for a language, µ∗, P = P ∗ and Q=Q∗, then F(µ0,µ∗)= supµ F(µ0,µ). In general,
it is not possible to find such a language. However, under certain restrictions on the T

matrix, we can approach the desired communicability.
We will say that a matrix T is row-wise diagonally dominant, if for all 1 � i �M ,

Tii > Tij , ∀j �= i.

We can prove the following

Theorem B.1. If µ0 is a permutation language and T is diagonally dominated row-wise,
then supµ F(µ0,µ)= 1/(2M) tr(P 0T T(Q∗)T + P ∗T T(Q0)T).

The proof follows the same logics as the one given in Section 3.1. The key factor again
is that there are no closed loops in the auxiliary matrix combining the positive entries of
P ∗ and Q∗. This is established by
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Lemma B.2. If µ0 is a permutation language and the T matrix is row-wise diagonally

dominant, then there can be no closed loops in the auxiliary matrix.

Proof. Consider a closed loop with (α1, β1) going to (α1, β2) ultimately to (αK,βK) and
finally back to (α1, β1). Without loss of generality, we can assume that the node (α1, β1)

corresponds to a 1 in the Q∗ matrix. Immediately, it follows that

Pα1β1 >Pα1β ∀β.
But since P = T T, we have that

Tβ1α1 > Tβα1 ∀β. (B.3)

Now consider (α1, β2). For this node, Q∗ has a corresponding entry of 0 and therefore P ∗
has a corresponding entry of 1. Since P ∗ is obtained by taking maxima of columns of Q,
we have

Q0
α1β2

>Q0
αβ2

∀α,
and since Q= T , we have that

Tα1β2 > Tαβ2∀α. (B.4)

Matrix T is row-wise diagonally dominant, and therefore

Tii > Tik ∀k �= i.

Thus, from Eqs. (B.3) and (B.4) and the diagonal dominance property, we have

Tβ1β1 > Tβ1α1 > Tα1α1 > Tα1β2 > Tβ2β2 .

Now continue from (α2, β2) and use the same logics. We get,

Tβ2β2 > Tβ2α2 > Tα2α2 > Tα2β3 > Tβ3β3 .

This can be repeated to eventually obtain

TβK−1βK−1 > TβKβK ,

and finally,

TβKβK > Tβ1β1 .

This leads to a contradiction. ✷
From Lemma B.2 it follows, that if T is dominated by its diagonal, we can approach

the supµ F(µ0,µ) arbitrarily close by choosing an appropriate language µ. The proof of
Theorem B.1 is now straightforward. What is interesting is that the languages which have
a high communicability with µ0 are not necessarily identity matrices. Here is

Example B.3. Consider the following 3 × 3 T matrix:

T =
(0.46 0.45 0.09

0.3 0.4 0.3
0.47 0.05 0.48

)
.
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For this matrix, we have
P ∗ =
(0 1 0

0 0 0
1 0 1

)
, Q∗ =

( 0 0 1
1 0 0
0 0 1

)
.

Then, the auxiliary matrixX combined out of positive elements of the P ∗ andQ∗ matrices,
is given by

X =
(0 1 1

1 0 0
1 0 1

)
.

It is symmetrical and contains no closed loops, and therefore we can construct the following
family of languages:

Aε =
( 0 ε2 ε

ε2 0 0
ε 0 1

)
.

As ε tends to zero, the language Aε tends to the best response to the perfect language µ0
with the noisy channel T .

Finally, we note that if µ0 is not a permutation language and T is row-wise
diagonally dominated , then supµ F(µ0,µ)� 1/(2M) tr(P 0T T(Q∗)T +P ∗T T(Q0)T), and
the inequality can be strict, as is demonstrated by

Example B.4. The language µ0 and the transition matrix, T , are given by

µ0 ∝
(0.78 0.03 0.58

0.72 0.94 0.20
0.34 0.62 0.40

)
, T =

( 0.72 0.00 0.28
0.28 0.43 0.29
0.02 0.41 0.57

)
.

It turns out that the “best decoder” and the “best encoder” in this case are given by

P ∗ =
(0 0 1

1 0 0
0 1 0

)
, Q∗ =

( 1 0 0
0 1 0
0 0 1

)
,

which leads to the following auxiliary matrix with a closed loop:

X =
(1 0 1

1 1 0
0 1 1

)
⇒

1 1

1 1

1 1

.

This suggests that finding the best encoder and the best decoder does not help us optimize
the communicability function.
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