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Any mechanism of language acquisition can only learn a restricted set of grammars. The
human brain contains a mechanism for language acquisition which can learn a restricted set
of grammars. The theory of this restricted set is universal grammar (UG). UG has to be
sufficiently specific to induce linguistic coherence in a population. This phenomenon is
known as ‘‘coherence threshold’’. Previously, we have calculated the coherence threshold for
deterministic dynamics and infinitely large populations. Here, we extend the framework to
stochastic processes and finite populations. If there is selection for communicative function
(selective language dynamics), then the analytic results for infinite populations are excellent
approximations for finite populations; as expected, finite populations need a slightly higher
accuracy of language acquisition to maintain coherence. If there is no selection for
communicative function (neutral language dynamics), then linguistic coherence is only
possible for finite populations.

r 2003 Published by Elsevier Science Ltd.
1. Introduction

Grammar is the computational system of human
language. It is a machinery that allows us to
make ‘‘infinite use of finite means’’. Each of the
6000 human languages currently spoken con-
tains a finite number of phonemes, but can
generate infinitely many sentences.
Children learn grammar by interacting with

speakers of their native language. They receive
sample sentences and construct a sub-conscious
representation of the underlying grammatical
rules. Such a learning process is based on
generalization as opposed to memorization.
The learner ‘‘generalizes’’ from a finite number
of sentences to a rule system that generates a
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much larger (and in the case of human language,
an infinite) number of sentences. Generalization
is equivalent to ‘‘looking for rules’’. General-
ization is only possible if the learner has a limited
search space. This means the learner can only
acquire a restricted set of languages. Universal
grammar (UG) provides a theory of the re-
stricted set of languages learnable by the human
brain in the context of language acquisition
(Chomsky, 1972, 1981, 1984). More generally,
UG is what is innate about human language.
UG is what the child brings to the process of
language acquisition. UG includes a procedure
for language acquisition, sometimes called ‘‘lan-
guage acquisition device’’, and a description of
the restricted set of languages learnable by this
device.
Consider a population of speakers with the

same UG. In this paper, we will assume that UG
r 2003 Published by Elsevier Science Ltd.
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admits only a finite number of languages,
L1;y;Ln: This is, for example, in agreement
with the principles-and-parameters theory of
language acquisition (Chomsky, 1981; Baker,
2001): children learn the grammars of natural
languages by setting binary parameters. For k

parameters, there are n ¼ 2k possible languages.
A finite search space is also implied by optim-
ality theory (Prince & Smolensky, 1997): chil-
dren learn grammar by ranking a finite number
of constraints. For k constraints, there are n ¼ k!
languages. In principle, however, UG could
also admit an infinite number of candidate
languages. In this case, UG must contain a prior
ranking or probability distribution specifying
which languages are more likely than others. In
this paper, we only consider a finite search
space; the extension to infinite search spaces is
possible.
We formulate language dynamics similar to

evolutionary game dynamics. There is a popula-
tion of individuals. They talk to each other.
Successful communication results in a payoff,
which contributes to biological fitness (Nowak
et al., 2001). Children learn the language of their
parents. Alternatively we can assume that
successful communication also leads to ‘‘cultural
fitness’’ and that children are more likely to
learn the language of individuals with a high
payoff.
We will also study the case where language

does not affect any fitness. Let us coin the term
neutral language dynamics for this situation. In
contrast, selective language dynamics refers to the
situation where language affects (biological or
cultural) fitness.
We consider a language to be a mapping

between form and meaning. Denote by aij the
probability that a speaker of Li generates a
sentence that is compatible with Lj: The payoff
for Li conversing with Lj is Fij ¼ ðaij þ ajiÞ=2:
The matrix, A ¼ ½aij�; measures the similarity
between languages L1;y;Ln and is a property
of UG.
Language acquisition is not perfect but

subject to mistakes. The matrix Q contains
entries qij denoting the probability that
a child learner will acquire language Lj when
learning from a teacher who uses Li: The
Q matrix will depend on the A matrix
and the actual learning mechanism used by
children.
Throughout the paper, we consider the fully

symmetric case aij ¼ a for iaj and aii ¼ 1:
Hence all languages have the same expressive
power and are equally distant from each other.
For this case, analytic investigations are possi-
ble. The symmetry of the A matrix is also
reflected in the Q matrix. We have qij ¼ u=ðn �
1Þ for iaj and qii ¼ 1� u: Here, u is the error
rate of language acquisition. For most learning
mechanisms, u will depend on a and n:
In Section 2, we summarize the results for

infinite population size. For selective dynamics,
there is a coherence threshold. If the error rate,
u; is less than a critical value, u1; then there are
equilibrium solutions where a single grammar is
predominating. If u is even smaller (less than a
critical value u2ou1), then such equilibrium
solutions are the only stable solutions of the
system. For selective dynamics, linguistic coher-
ence is a requirement of language adaptation.
Only a UG that induces linguistic coherence
admits language adaptation. In turn, only a UG
that admits language adaptation can be selected
for linguistic function. For neutral dynamics,
there is no linguistic coherence for infinite
populations.
In Section 3, we introduce a stochastic process

for language dynamics in finite populations.
For selective dynamics, we find coherence
threshold phenomena similar to the deterministic
case, but language acquisition has to be slightly
more accurate to maintain coherence in finite
populations. For neutral dynamics, we find
linguistic coherence whenever uou3; where
u3B1=M: In this case, it is likely that the
stochastic process is at a state where all
individuals speak the same language. This is
coherence without adaptation. The model for
neutral language dynamics is equivalent to
stochastic processes analysed in the context
of the neutral theory of molecular evolution
(Moran, 1962; Kimura, 1983).
In Section 4, we estimate the lifetime, T ; of a

language in a finite population in the limit
u51=M: For neutral dynamics, we find T ¼ 1=u
generations. For selective dynamics, we find
that T is proportional to M�1=2egM ; where g ¼
ð1� aÞ=2=ð1þ aÞ:
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In Section 5, we summarize our findings and
compare selective and neutral language dy-
namics.
There is a fascinating and growing literature

on the evolution of language (Pinker, 1979;
Lieberman, 1984; Brandon & Hornstein, 1986;
Bickerton, 1990; Pinker & Bloom, 1990;
Newmeyer, 1991; Hawkins & Gell-Mann, 1992;
Aitchinson, 1996; Deacon, 1997; Jackendoff,
1999; Lightfoot, 1999). The modeling framework
that we present in this paper is a part of a larger
effort to obtain a mathematical description of
language evolution (Batali, 1994; Hashimoto &
Ikegami, 1996; Kirby & Hurford, 1997; Huford
et al., 1998; Nowak & Krakauer, 1999; Nowak
et al., 2000; Ferrer i Cancho & Sole, 2001; Kirby,
2001; Kamarova & Nowaka, 2001; Lachmann
et al., 2001; Christiansen et al., 2002). The
traditional approach is to discuss ideas of
language in the context of language acquisition.
A linguistic theory has ‘‘explanatory adequacy’’
if it describes how the grammar develops in the
brain of a child learner (if it describes UG). The
new approach [‘‘Beyond explanatory adequacy’’
(Chomsky, 2002)] is to discuss theories of
language acquisition in the context of evolution,
which requires the synthesis of mathematical
models of language, learning and evolutionary
dynamics (Nowak, et al., 2001, 2002; Komarova
et al., 2001).

2. The Limit of Infinite Populations

2.1. MODEL WITH SELECTION

Let us describe the dynamics of learning and
evolution of languages. We denote by xi the
frequency of individuals who speak language i:
Then we can set the fitness of those who speak
language i to be

fi ¼
Xn

k¼1

xkFki: ð1Þ

Fki denotes the payoff for somebody who uses
language k communicating with somebody who
uses language i: We have Fki ¼ ðaki þ akiÞ=2;
where aki is the probability for a speaker of
language k to produce a sentence compatible
with language i: We assume that successful
communication contributes to fitness. The aver-
age fitness of the population, f; is given by

f ¼
Xn

k¼1

fkxk: ð2Þ

The function fi is the probability for a person
who speaks language i to understand and be
understood by the rest of the population. The
function f measures the linguistic coherence of
the population and in general, takes values
between zero and one (perfect coherence).
Individuals reproduce proportional to their

fitness and the children learn the language of
their parents, possibly with mistakes. In the limit
of the infinite population size, the selective
language dynamics can be described by the
following system of equations (Nowak et al.,
2001):

’xi ¼
Xn

j¼1

fjxjQji � fxi; 1pipn: ð3Þ

Here, Qij are elements of a row-stochastic
matrix; the quantity Qij is the probability for
the child to end up speaking language j; given
that the parent speaks language i:
In what follows, we assume for simplicity

that the similarity matrix has a symmetrical
form:

aij ¼
a; iaj;

1; i ¼ j;

(
ð4Þ

where 0oao1; and that the learning accuracy is
given by

Qij ¼
u=ðn � 1Þ; iaj;

1� u; i ¼ j;

(
ð5Þ

where u is the probability to make a learning
mistake; 0pup1:
The deterministic model with assumptions (4)

and (5) has been studied in detail by Komarova
et al. (2001). In particular, we know that the
system undergoes a bifurcation as the probabil-
ity of mistakes, u; decreases to zero. Namely, for
large values of u the only stable fixed point
corresponds to the ‘‘uniform solution’’ where
each of the n languages occurs with the same
frequency, 1=n: As u decreases below a threshold
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given by

uN1 ¼
ðn � 1Þ½aðn � 2Þ þ n � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � 1Þ½1þ aðn � 2Þ�

p
�

ð1� aÞðn � 2Þ2
¼

1�
ffiffiffi
a

p
1þ

ffiffiffi
a

p þ O
1

n
ffiffiffi
a

p
 !

; ð6Þ
a new type of solutions appears which we call
one-grammar solutions. There, one of the
languages is dominant in that its share in
the population is the largest; all the rest of the
languages (the secondary languages) are spoken
with equal frequencies. There are exactly n

one-grammar solutions, one for each of the n
languages. The linguistic coherence of the
population corresponding to one-grammar solu-
tions is higher than the coherence of the uniform
solution, and it tends to the maximum coherence
ðf ¼ 1Þ as u-0:
As long as u is not too small, the one-grammar

solutions coexist with the uniform solution; we
refer to this regime as bistability. When u crosses
a second threshold, defined as

uN2 ¼
ð1� aÞðn � 1Þ
n½2þ aðn � 2Þ�

¼
1� a

2þ an
þ O

1

a2n2

� �
; ð7Þ

the uniform solution loses stability, and for
uouN

2 ; the only stable fixed points of the system
are the one-grammar solutions.
The bifurcation diagram for eqn (3) is

presented in Fig. 1(a). The values uN

1 and uN

2

are the two coherence thresholds of the language
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Fig. 1. Linguistic coherence, f; of the deterministic
system as a function of u; the probability of learning
mistakes. Here a ¼ 0:1; n ¼ 10 in (a) and a ¼ 0:1; n ¼ 2
in (b).
dynamics system with selection; the superscript
refers to the fact that these values are defined for
infinite populations. The value uN1 defines the
maximum learning error compatible with coher-
ence (i.e. the existence of one-grammar solu-
tions). The value uN2 is the smallest learning
error for which incoherent (uniform) solutions
are still possible.
For nX3; the two coherence thresholds are

distinct, and we have uN1 4uN2 : The case n ¼ 2 is
special because there,

uN

1 ¼ uN2 ¼
1� a

4
; ð8Þ

and there is no bistability regime, see diagram in
Fig. 1(b).

2.2. THE NEUTRAL MODEL

Equation (3) together with eqn (1) describes
a selection-mutation model; it implies that
language-dependent fitness plays a role in the
reproductive success of the individuals. The
behavior of the system changes drastically if we
do not include selection and consider neutral
evolution of languages. The neutral limit of eqns
(3) and (1) corresponds to setting

a ¼ 1;

which is equivalent to taking

fi ¼ 1 8i; f ¼ 1;

hence we get

’xi ¼
Xn

j¼1

xjQji � xi:

For our particular choice of the matrix Q; eqn
(5), the only stable fixed point of the determi-
nistic system (3) is the uniform solution, and
linguistic coherence is never reached even for
high learning accuracy.
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3. Finite Populations

3.1. STOCHASTIC MODEL

Let us suppose that there are M people in a
population, each speaking one of n languages.
At each moment of time, one person produces a
child, and one person dies, so that the popula-
tion size stays constant (this is known as the
Moran process in population genetics). The child
learns the language of the parent, possibly with
mistakes. As before, we set the probability for
the child to learn language j given that the parent
speaks language i to be Qij:
In what follows we will consider the following

two birth–death processes.

K The neutral model assumes that all indivi-
duals reproduce with the same rate.

K In the model with selection, the chance for an
individual to reproduce is weighted with its
biological fitness.

In both models, we assume that the prob-
ability to die is the same for all.
Each model gives rise to a Markov process on

an n-dimensional simplex, Sn: The stochastic
variable is the vector ðI1; I2;y; InÞ; where
0pIkpM defines the number of people who
speak language Lk; we have

Pn
k¼1 Ik ¼ M:

In the selection model, the fitness of individual
k is given by its ability to communicate with the
rest of the population,

fk ¼
1

M � 1

X
iak

F ½LðkÞ;LðiÞ�; ð9Þ

where we sum over all other individuals in the
population. Here LðiÞ is the language of the i-th
person and F ½LðkÞ;LðiÞ� are entries of the payoff
matrix A: The average fitness of the population,
f; is given by

f ¼
1

M

XM
k¼1

fk: ð10Þ

It is easy to see that in the limit M-N;
formulas (9) and (10) tend to eqns (1) and (2),
respectively.
In the next subsections we will study the

dynamics of the neutral model and the model
with selection. We will see that the behavior of
the model with selection is similar to that in the
deterministic limit. Namely, if the accuracy of
learning is high enough, the system finds itself
above a coherence threshold. What is interesting
is that linguistic coherence can also be found for
the neutral model.

3.2. THE CASE OF TWO LANGUAGES

Let us assume that n ¼ 2; i.e. that only two
languages are possible. Let our stochastic vari-
able, j; be the number of people who speak
language 1: The variable j takes values between 0
and M: The following transition matrix governs
the stochastic process:

Pi-iþ1 ¼ ½f1ðiÞið1� uÞ þ f2ðiÞðM � iÞu�
M � i

M2fðiÞ
;

ð11Þ

Pi-i�1 ¼ ½f1ðiÞiu þ f2ðiÞðM � iÞð1� uÞ�
i

M2fðiÞ
;

ð12Þ

Pi-i ¼ 1� Pi-i�1 � Pi-iþ1; 0pipM; ð13Þ

where the fitness functions, f1;2; of speakers of
language one and two, are given, respectively, by

f1ðiÞ ¼
i � 1þ aðM � iÞ

M � 1
;

f2ðiÞ ¼
ai þ M � i � 1

M � 1

for the model with selection and they are taken
to be f1 ¼ f2 ¼ 1 for the neutral process. The
average fitness, f; is defined as

fðiÞ ¼
f1ðiÞi þ f2ðiÞðM � iÞ

M
:

3.2.1. Selective Dynamics

If u ¼ 0; the states j ¼ 0 and j ¼ M are
absorbing, so that the stationary probability
distribution is given by ð1=2; 0;y; 0; 1=2Þ: In the
model with selection, stationary probability
distribution is U-shaped for small positive values
of u; see Fig. 2(a). As u increases, the two
maxima of the distribution move towards the
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0:02 and 0:2: In this case, u3 ¼ 0:0192:
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center and after a certain threshold value, the
distribution becomes a one-humped function.
The value of u for which a maximum appears in
the center is the coherence threshold, u2; for the
stochastic selective model with n ¼ 2: Inciden-
tally, it coincides with the value of u for which
the two distinct maxima corresponding to each
of the two languages disappear, u ¼ u1; this is
the degeneracy of the case n ¼ 2; exactly as we
had in the deterministic model. Now we present
our first definition of the coherence threshold in
the case n ¼ 2:

Definition 1. We define the coherence threshold,
u1 ¼ u2; to be the value of u such that for uou1;
the stationary probability distribution has a
minimum at i ¼ M=2; and for u4u1 it has a
maximum at i ¼ M=2:

The coherence threshold can be calculated
from the equation

Pi-i1 þ Pi-iþ1 ¼ Pi�1-i þ Piþ1-i;

where we set i ¼ M=2; which gives

u1 ¼ u2 ¼
M2 þ 4M � 8� aðM2 � 4Þ

4MðM þ 2Þ
:

In the limit of large M; we obtain

u1 ¼ u2 ¼
1� a

n
;

which coincides with the deterministic results for
n ¼ 2; eqn (8).

3.2.2. Neutral Dynamics

In the neutral model, stationary probability
distribution is also U-shaped for small positive
values of u; but behaves differently for larger u;
see Fig. 2(b). As u increases, the distribution
becomes more flat, and then ‘‘flips over’’ to
become a one-humped function with a maximum
at j ¼ M=2: The value of u when this happens
corresponds to the ‘‘neutral’’ coherence thresh-
old, u3; defined below.

Definition 2. We define the coherence threshold,
u3; to be such a value of u that for uou3;
stationary probability distribution has two max-
ima at j ¼ 0 and j ¼ M ; and for u4u3 they
become minima.

The coherence threshold, u3; can be found
from the equation

P0-1 ¼ P1-0; ð14Þ

which gives

u3 ¼
M � 1

M2 þ M � 2
: ð15Þ

For large values of M; we have

u3 ¼
1

M
: ð16Þ

In the model with selection, the coherence
threshold, u3; can also be found from eqn (14). It
is given by

u3 ¼
M þ a � 2

M2 þ Mð2a � 1Þ � 2
; ð17Þ

which gives u3 ¼ 1=M for large population sizes.
Expression (17) is a decreasing function of a; so
that it is slightly easier to reach the coherence
threshold u3 for systems with strong selection
(small a). For a ¼ 1 (the neutral case) we recover
eqn (15).
For any a; there is always a value M0; such

that for all M4M0; u14u3: However, for a
given M there can be found a value a0 close to 1
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such that for a4a0; u34u1: More precisely, for

1XaX1� 4=M2;

we have u34u1: For the values of a in this
interval, selection plays no role, and the system
can be considered neutral.
The coherence threshold, u3; can also be

defined in the deterministic case. It is such value,
uN3 ; of u that for upuN3 ; the solution where the
frequency of one of the languages is equal to
one, is stable. We have

uN3 ¼ 0:

3.3. THE CASE OF MANY LANGUAGES

The stationary probability distribution for
n42 behaves in the following way. In the
neutral system, it has n maxima at the corners
of the simplex for small values of u; and a
minimum in the middle, see the diagram in
Fig. 3(a) corresponding to n ¼ 3: As u grows
through a certain value (the coherence threshold
u3), the stationary probability distribution
changes concavity and acquires a maximum in
the middle, whereas the maxima at the corners
turn into minima.
For the model with selection we have a more

complex picture, Fig. 3(b). As before, for small u

there are n maxima in the corners and a
minimum in the middle of the simplex . As u

grows, the n maxima move towards the center of
the simplex and become less sharp. At some
u < u3

u < u3 u3 < u < u2 u2 < u < u1 u > u1

u > u3
(a)

(b)

Fig. 3. Stationary probability distribution n ¼ 3; for
different values of u: (a) Neutral dynamics. (b) Selective
dynamics. Solid circles indicate maxima and empty circles
minima.
point ðu ¼ u2Þ; an additional maximum appears
in the center of the simplex. This corresponds to
the bistability regime. As u continues to grow,
the middle maximum becomes higher and the n

symmetrical maxima get smaller, until they
disappear (at u ¼ u1) and we are left with only
one maximum at the center.

3.3.1. Coherence Threshold u3 for n42

We have simulated the neutral process for
different values of u and M: For each value of u;
we started with the initial condition where all
individuals spoke different languages, with n ¼
1000: The stochastic process was running for
10 000M time steps (which is 10 000 genera-
tions), and then the linguistic coherence was
calculated by averaging over the next 10 000
generations. Results for M ¼ 10 and 100 are
presented in Fig. 4. We observe that coherence is
higher for smaller values of M: For small values
of u; the average coherence is high and tends to
its maximum ðf ¼ 1Þ as u decreases to zero.
The definition of coherence threshold u3 given

in the previous section can be generalized in the
case of n languages:

Definition 3. Coherence threshold u3 is the value
of u; such that for uou3; the stationary prob-
ability distribution has maxima in the corners of
the simplex, and for u4u3 it has minima in the
corners (and a maximum in the middle).
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tic system as a function of u; the probability of learning
mistakes. Here a ¼ 0:1; n ¼ 10 in (a) and a ¼ 0:1; n ¼ 2
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The value u3 can be found in the following
way. Let us consider the states x0 ¼ ðM; 0;y; 0Þ
(a corner of the simplex) and for 2pkpn;
xk
1 ¼ ðM � 1; 0;y; 0; 1; 0;y; 0Þ; where the

unit entry corresponds to the k-th slot (the
neighboring states of x0). Further we will
denote as pðxÞ the probability to attain the
state x: We have

pðx0Þ
Xn

k¼2

Px0-xk
1
¼
Xn

k¼2

pðxk
1ÞPxk

1
-x0

:

Let us use the fact that Px0-xk
1
¼ Px0-xm

1
and

Pxk
1
-x0

¼ Pxm
1
-x0 for all k and m; which is a

consequence of the symmetries of the system.
Setting pðx0Þ ¼ pðxk

1Þ for all k; we have

Px0-xk
1
¼ Pxk

1
-x0

8k:

This gives

u3 ¼
ðn � 1ÞðM þ a � 2Þ

ðn � 1Þ½M2 þ Mð2a � 1Þ þ a � 2� � a
: ð18Þ

For nb1 we have

u3 ¼
M þ a � 2

M2 þ Mð2a � 1Þ þ a � 2
:

Again, for large values of M we have

u3 ¼
1

M
:

In Fig. 4, estimate (18) where we take a ¼ 1 is
shown with dashed vertical lines.

3.3.2. Coherence Thresholds u1 and u2
for n42; Mbn

The prediction of the deterministic neutral
model cannot be used to describe the behavior
of the stochastic neutral model. On the other
hand, the stochastic model with selection be-
haves in the way predicted by the deterministic
system, see Fig. 5. As M grows, the average
coherence measured in the stochastic simulation
approaches the one calculated in the limit
M-N:
Let us assume that Mbn and define the

coherence thresholds for the system with n

languages.
Definition 4. Coherence threshold, u1; is the
value of u such that for u4u1; the stationary
probability distribution has a unique maximum
at the state %x ¼ ðM=n;y;M=nÞ; and for uou1 it
has n þ 1 maxima. One of the maxima is at %x and
n are at points equidistant from %x and situated
on the straight lines that connect %x to the corners
of the simplex.

In the next section we will use a simplified
model to show that as M increases, the
stochastic coherence threshold approaches the
value u1 calculated for the deterministic system
and given by eqn (6). Here we will look at the
other coherence threshold, u2:

Definition 5. Coherence threshold, u2; is the
value of u such that for u4u2; the stationary
probability distribution has a maximum at the
state %x ¼ ðM=n;y;M=nÞ; and for uou2 it has a
minimum there.

As in the case n ¼ 2; this can be found by
equating the probability to leave the state %x with
the probability to enter this state from all
neighboring states. Each of the neighboring
states has n � 2 entries M=n; one entry M=n þ
1 and one entry M=n � 1: We skip the details of
the calculation, which is straightforward, and



LANGUAGE DYNAMICS IN FINITE POPULATIONS 453
give the result:

u2 ¼
ðn � 1Þ½ð1� aÞMðM þ n þ 2Þ þ ðaðM þ 1Þ � 1Þn2�

nðM þ nÞ½ðM þ 1Þð2þ aðn � 2ÞÞ � n�
:

Expanding in 1=M; we have

u2 ¼ uN2 þ
ðn � 1Þ½2þ n þ 2aðn2 � 2Þ þ a2ðn � 2Þðn2 þ 1Þ�

nð2þ aðn � 2ÞÞ2
1

M
þ O

1

M2

� �
;

where uN2 is the deterministic value of this
threshold defined by formula (7). In the case
15n5M we get a simpler expression:

u2 ¼ uN2 þ
n

M
þ O

1

M2

� �
:

3.4. A SIMPLIFIED PROCESS

In order to estimate the threshold u1; we will
consider a simplified stochastic process. Let us
assume that nb1: The following simplified one-
dimensional process can mimic the population
dynamics of language learning. Let us consider
such states where j people speak a dominant
language, and the rest M � j people all have
different languages. Let j be our stochastic
variable. It takes values from 1 to M: The fitness
of people who speak the dominant language is
given by

fdð jÞ ¼ ½ j � 1þ ðM � jÞa�=ðM � 1Þ;

and the fitness of each of the rest of the
individuals is

fs ¼ a:

Here the subscripts in fd and fs refer to
‘‘dominant’’ and ‘‘secondary’’ grammars, respec-
tively. The average fitness is given by

fð jÞ ¼ ½ fdð jÞj þ fsðM � jÞ�=M:

We have

Pj-jþ1 ¼
fdð jÞjð1� uÞðM � jÞ

M2fð jÞ
; ð19Þ

Pj-j�1 ¼
½ fdð jÞju þ ðM � jÞfs� j

M2fðjÞ
; ð20Þ
Pj-j ¼ 1� Pj-jþ1 � Pj-j�1; ð21Þ

for 2pjpM � 1; and

P1-2 ¼ ð1� uÞð1� 1=MÞ; P1-1 ¼ 1� P1-2;

ð22Þ

PM-M�1 ¼ u; PM-M ¼ 1� u: ð23Þ

Equation (22) means that once we are at a
‘‘uniform’’ state (everybody speaks a different
language), there are M different ways to go to
the state where two people speak the dominant
grammar, because any of the M grammars
spoken can become dominant. In eqns (19–23)
we neglected back-mutations. This is a conse-
quence of the fact that n is very large.
The model described by eqns (19–23) approx-

imates the full process best when selection is
strong, which corresponds to small values of a:
Then as M gets large, the dynamics of the
simplified process approach the dynamics of the
actual, multi-dimensional stochastic process,
see Fig. 6. This is because in systems with strong
selection, there is a strong tendency to cluster. In
Fig. 6 the parameter a is taken to be a ¼ 0:1; we
have checked that a very good agreement is
achieved for values of a as high as a ¼ 0:5: For
weak selection and neutral systems (a near 1) the
simplified process always predicts lower coher-
ence (and higher coherence thresholds) than the
full stochastic process.
The main difference between the full and the

simplified processes is clear from eqn (20). There
are two ways in which the number of people
speaking the dominant grammar, j; can decrease
by one. One way is to have j � 1 people speaking
the dominant grammar and M � j þ 1 people
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Fig. 6. Average linguistic coherence, f; as a function of
u; for selection models. f for the full stochastic process
(solid lines) is calculated numerically by averaging over a
large number of generations. f for the simplified process
(dashed lines) is calculated from the stationary probability
distribution as

PM
j¼1 pjfðjÞ: (a) M ¼ 10; (b) M ¼ 100: Other

parameters are a ¼ 0:1 and n ¼ 1000 in both plots.
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speaking all different languages, and the other is
to have two people speaking one of the
secondary languages. The latter state is not a
part of the simplified description, and in eqn (20)
we simply include transitions of this kind into
Pj-j�1 [the second term on the right-hand side of
eqn (20)]. The corresponding term is multiplied
by a; so for small values of a the error introduced
by it is small.
The stationary probability distribution,

ðp1;y; pMÞ; of process (19–23) is the left
eigenvector of the matrix P corresponding to
the top eigenvalue, and is found from equation

piðPi-iþ1 þ Pi-i�1Þ ¼ pi�1Pi�1-i þ piþ1Piþ1-i;

2pipM � 1 ð24Þ

with the boundary conditions

p1P1-2 ¼ p2P2-1; ð25Þ

pMPM-M�1 ¼ pM�1PM�1-M : ð26Þ
For u ¼ 0; we have pM ¼ 1; i.e. everyone has the
same language. For small non-trivial values of u;
the stationary probability distribution peaks at
j ¼ M; which means that the system spends most
of the time at a state where all people have the
same language. As u decreases, the maximum of
pj moves from j ¼ M to smaller values of j;
which means that most of the time only a certain
fraction of people speak the dominant language.
As u grows, a second maximum near j ¼ 1
becomes more visible. For a window of values of
u; the two maxima coexist, and for yet larger
values of u the only remaining peak corresponds
to the uniform solution.
Let us estimate the coherence threshold

u1: The number of people typically speaking
the dominant grammar can be found from
eqns (24–26) for pj: Let us denote ki ¼ pi=piþ1:
Then we have the following solution for
2pipM � 1:
ki ¼
½ði þ 1Þu þ ðM � i � 1ÞaðM � 1þ ði þ 1ÞuÞ=i�ði þ 1Þ½iði � 1Þð1� aÞ þ MðM � 1Þa�

½ðM � iÞa þ i � 1�ð1� uÞðM � iÞ½ði þ 1Þið1� aÞ þ MðM � 1Þa�
:

In particular, for a ¼ 0 this is reduced to ki ¼
ði þ 1Þu=ðM � iÞ=ð1� uÞ: The equation

ki ¼ 1 ð27Þ

gives the value i ¼ i0 which corresponds to the
maximum of the stationary probability distribu-
tion. For a ¼ 0 we have i0 ¼ Mð1� uÞ: For
general values of a; we can solve eqn (27) in the
limit of large values of M: If we denote x ¼ i=M;
expand in 1=M and only consider the leading
order term, we will get

i0 ¼
1

2
1� u þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� uÞ2 �

4au

1� a

r !
:

This maximum exists if uou1 with

u1 ¼
1�

ffiffiffi
a

p
1þ

ffiffiffi
a

p ;

which is exactly the result obtained for infinitely
large populations, see eqn (6). If the next term
is taken into account in the expansion of u3 in
terms of 1=M; we obtain

u1 ¼ uN1 ð1� 3=MÞ:
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For completeness, we note that the coherence
threshold u3 can also be found for the simplified
process; we have

u3 ¼
ðM � 1ÞðM þ a � 1Þ

M3 � M2 þ 1þ að2M2 � M � 1Þ
:

For large values of M; we again obtain

u3 ¼ 1=M:

4. Characteristic Time of Language Change

Let us estimate the time-scale on which a
language can disappear from a population. Let
us assume that u is small (more precisely, that
u51=M). This means that new languages are
produced very rarely, and once a new language
is invented (a ‘‘mutant’’ speaking a different
language is produced), then this new language
typically has time to invade or go extinct until
a new innovation occurs (another ‘‘mutant’’ is
produced). Under this assumption we can
calculate the expected time, T ; it takes to go
from the state where everybody in the popula-
tion speaks a certain language until this language
is extinct. The trick is to only consider two
languages: the one spoken by everybody as the
initial condition (language 1), and the second
language ‘‘invented’’ (language 2).
In the case where u51=M; the rate of

language change, 1=T ; equals the rate at
which speakers of language 2 are produced,
times the probability ðp1Þ for language 2 to
reach fixation in the population. The latter
quantity can be found under the assumption
that u ¼ 0:
Therefore, for our purposes, it is enough to

consider the case n ¼ 2 and calculate the
expected time to go from the state j ¼ 0 to the
state j ¼ M: For u ¼ 0; the states j ¼ 0 and j ¼
M are absorbing. Let us denote as pj the
probability that starting from the state j; the
system gets absorbed in the state j ¼ M: We
have

pj ¼ Pj-M þ
XM�1

k¼1

Pj-kpk; 1pjpM � 1;

where we set u ¼ 0 in the expression for the
matrix P: Then the time to change from one
grammar to the other for small values of u is
given by

T�1 ¼ up1:

4.1. NEUTRAL LANGUAGE DYNAMICS

In the neutral case ða ¼ 1Þ we have the
following system for pj:

2pj ¼ pjþ1 þ pj�1; 2pjpM � 2; ð28Þ

2p1 ¼ p2; 2pM�1 ¼ 1þ pM�2: ð29Þ

The solution is pj ¼ j=M which gives the time of
language change in the neutral model (under the
assumption that u51=M),

T ¼ M=u:

It follows that it takes on average

Tgen ¼ 1=u

generations before a language is lost from the
population. Note that this quantity is M-
independent in this limit.

4.2. SELECTIVE LANGUAGE DYNAMICS

In the case with fitness, let us denote xj ¼
pi � pi�1: We have

½j � 1þ aðM � jÞ�xjþ1 ¼ ½aj þ M � j � 1�xj: ð30Þ

Let us ignore 1 in comparison with M and
change coordinates such that k ¼ j � M=2: We
can write

xk

xkþ1

¼ 1�
xkþ1 � xk

xkþ1

;

and from eqn (30) we have

xkþ1 � xk

xkþ1

¼
�2ð1� aÞ2k=M

1þ a � 2k=Mð1� aÞ
:

We can see that for k5M; the rate of change of
the function xk is slow, and we can use a
continuous description to obtain

dxk

dk

1

xk

¼ �
4ð1� aÞk
ð1þ aÞM

:
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Fig. 7. Average time it takes to lose a language as a
function of M; in the selection model. The solid line
corresponds to the analytical result (31), diamonds
represent the numerical results for n ¼ 2; starsFnumerical
results for n ¼ 100 and crossesFnumerical results for n ¼
1000: Other parameters are u ¼ 10�4 and a ¼ 0:5:
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This gives the estimate

xj ¼ exp �
2ð1� aÞðj � M=2Þ2

ð1þ aÞM

� �
:

Integrating in i; normalizing and setting i ¼ 1;
we obtain

p1 ¼
1

2
1�

Erf ½
ffiffiffiffiffiffiffiffiffiffi
2ð1�aÞ
1þa

q
ð

ffiffiffiffi
M

p
2

� 1ffiffiffiffi
M

p Þ�

Erf
ffiffiffiffiffiffiffiffiffiffiffiffi
Mð1�aÞ
2ð1þaÞ

q
0
BBB@

1
CCCA;

where Erf ðzÞ ¼ 2=
ffiffiffi
p

p R z

0 e
�t2 dt: For large values

of M; and assuming that Mð1� aÞ-N; this
gives

p1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� aÞ

Mpð1þ aÞ

s
exp �

Mð1� aÞ
2ð1þ aÞ

� �
:

Therefore, we obtain the time of language
change in the model with fitness in the case
where u51=M;

T ¼
1

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1þ aÞ
2ð1� aÞ

s
exp

Mð1� aÞ
2ð1þ aÞ

� �
: ð31Þ

If we denote g ¼ ð1� aÞ=2=ð1þ aÞ; then we can
say that it takes on average

TgenpM�1=2egM

generations before a language is lost from a
population if there is a selection for linguistic
ability. Note that in order to include the limit of
(almost) no fitness (a close to 1), we need to use
the expression

T ¼
1

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mpð1þ aÞ
2ð1� aÞ

s

exp
Mð1� aÞ
2ð1þ aÞ

� �
Erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mð1� aÞ
2ð1þ aÞ

s
:

This gives the right limit ðT ¼ M=uÞ as a-1:
We have compared estimate (31) with numer-

ical experiments, see Fig. 7. For a ¼ 0:5; u ¼
10�4 and the values n ¼ 2; n ¼ 100 and n ¼
1000; and M between M ¼ 5 and 30, we
estimated the average time of language extinc-
tion. For each set of parameters, we performed
100 runs. Starting from the initial condition
where everyone in the population spoke the same
language, we measured the time it took for this
language to disappear from the population. The
numerical results are in an excellent agreement
with formula (31).

5. Summary

In this paper, we have studied stochastic
processes of language acquisition and evolution
in finite populations. We have shown how
coherence threshold phenomena that were ori-
ginally calculated for deterministic dynamics of
infinite populations carry over to stochastic
dynamics of finite populations. We derive
analytic expressions for coherence thresholds in
finite population and find that they all approach
the values derived for deterministic dynamics in
the limit of large population size, M:
Of special interest is that, for neutral language

dynamics, we find linguistic coherence for
uo1=M; where u is the error rate of language
acquisition. This coherence threshold corre-
sponds to an equilibrium distribution of the
stochastic process which is peaked at homo-
geneous states (all individuals use the same
language). This threshold is largely independent
of the number of candidate languages, n; see
eqn (18). Notice however that for most learning
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algorithm (such as memoryless learners or batch
learners), u will depend on n:
Neutral coherence is an important finding

because it explains how linguistic features that
do not contribute to communicative fitness
(efficacy) can be fairly homogeneous in a
population. Neutral language dynamics provide
an appropriate description for many language
changes studied in historical linguistics (Kroch,
1989; Hopper & Traugott, 1993; Niyogi &
Berwick, 1997; Wang, 1998; de Graff, 1999)
where fitness effects can probably be neglected.
Selective language dynamics facilitates coher-

ence at higher error rates, u: Selection needs to
be taken into account whenever we want to
derive a global understanding of language
evolution.
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