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Abstract: The lexical matrix is an integral part of the human language system. It provides the link between
word form and word meaning. A simple lexical matrix is also at the center of any animal communication
system, where it defines the associations between form and meaning of animal signals. We study the evolution
and population dynamics of the lexical matrix. We assume that children learn the lexical matrix of their
parents. This learning process is subject to mistakes: (i) children may not acquire all lexical items of
their parents (incomplete learning); (ii) and children might acquire associations between word forms and
word meanings that differ from their parents’ lexical items (incorrect learning). We derive an analytic
framework that deals with incomplete learning. We calculate the maximum error rate that is compatible with
a population maintaining a coherent lexical matrix of a given size. We calculate the equilibrium distribution
of the number of lexical items known to individuals. Our analytic investigations are supplemented by
numerical simulations that describe both incomplete and incorrect learning, and other extensions.

1 Introduction

Humans use words as a basic unit of communication. To a first approximation, words are arbitrary symbols
with conventionally attached meanings. Knowing a word means remembering both its sound and its meaning;
language can be viewed as a code between the two (Sperber & Wilson 1995). The lexical matrix, A, specifies
the association between word meaning and word form (Hurford 1989; Miller 1996). Each column of the
lexical matrix corresponds to a particular word meaning (or concept), each row corresponds to a particular
word form (or word image). In the Saussurean terminology of arbitrary sign, the lexical matrix provides the
link between signifie and signifiant (Saussure 1983).

A lexical matrix is a convenient description of arbitrary relations between discrete forms and discrete
concepts. It is a central component of all human languages, as well as protolanguages (Bickerton 1990),
holistic protolanguage (Wray 1998, 2000) and non-syntactic forms of communication (Hallowell 1960). In
one form or another, a lexical matrix has been a part of hominid/human language for the past four million
years (Lieberman 1992; Pinker 1995; Deacon 1997; Brandon & Hornstein 1986). Furthermore, a simple
lexical matrix is at the basis of any animal communication system, where it defines the relation between
animal signals and their specific meanings (Hauser 1997; Smith 1977, 1997; Macedonia & Evans 1993; Cheney
& Seyfarth 1990).

The goal of this paper is to study the evolutionary dynamics of the lexical matrix. We will calculate the
conditions for the evolution and maintenance of a lexical matrix in a population of individuals. Evolving a
coherent lexicon is not an easy task, because the correspondence prescribed by the lexical matrix is entirely
arbitrary in the sense that the word meaning normally cannot be derived from the word form by any rule-
based procedure. This arbitrariness gives rise to the problem of coherence. Namely, if different individuals
happen to assign different word forms to the same word meaning (or vice versa), then how can any useful
information be transferred?

Other researchers have worked on similar questions. Steels 1996 models a set of individuals who in the
beginning use random associations between word meanings and word forms. Pairs of individuals get in
contact and play a “language game” (i.e. exchange signals to find out if they “match”). If the game fails,
a new (random) association is made. As a result, after a number of time-steps, the population converges to
a unique association matrix, i.e. individuals understand each other perfectly. Steels & Vogt 1997 report on
experiments with physically embodied robots which develop a shared vocabulary through interaction. After
each unsuccessful interaction the robots improve their vocabulary. A selection mechanism is embedded in the



dynamics of associations. There is a positive reinforcement if the association is used by many agents. If the
association is not shared by many others it will eventually be replaced by a more successful one. This leads to
a disappearance of shared meanings, or ambiguities, in the language, and a convergence to a unique lexicon.
Cangelosi & Parisi 1998 have studied a computer model of syntax development in communicating neural
networks, using an evolutionary framework. There, individuals who did not form “working” associations
were considered “less fit”, whereas those who formed coherent associations were rewarded. The score was
calculated in the end of a discrete generation’s life-span which resulted in a reproductive advantage of
more fit individuals. Since associations were transferred “genetically” to following generations, a coherent
communication system developed after several iterations.

In the present paper we consider the dynamics of lexical matrices in an evolutionary framework (Nowak
& Krakauer 1999; Nowak et al. 1999). Individuals talk to each other. Whenever they succeed at transferring
information, they receive a payoff. The payoff of this evolutionary language game is interpreted as fitness.
Individuals with a higher payoff produce more offspring, who will learn their language. The assumption that
language performance affects biological fitness is crucial in this model. Otherwise language cannot evolve as
an evolutionarily stable strategy (Nowak 2000).

The communicative ability of individuals which translates into their biological fitness is determined by
the lexical matrices. Successful lexical matrices are characterized by the following two factors: (i) they are
more informative, i.e. more concepts are uniquely paired with specific words, and (ii) they are shared by a
larger fraction of individuals, which makes communication possible with a larger number of people in the
group. More successful matrices have a higher probability to be learned by others.

The learning process is probabilistic and subject to mistakes. There are two kinds of mistakes. Children
may not acquire all the lexical entries of their parents. We call this ‘incomplete learning’. Furthermore,
children may mis-hear certain words or misinterpret their meanings. As a consequence, they form entries in
their lexical matrix that differ from their parents’ entries. We call this ‘incorrect learning’.

In this paper we develop an analytic framework that deals with incomplete learning. We perform computer
simulations that also include incorrect learning, but we do not have a complete analytic understanding for
this type of mistake. This is a challenge for subsequent work.

The main analytical results for the incomplete learning model are as follows. Non-ambiguous lexical
matrices, which are defined by a one-to-one correspondence between word meanings and word forms, are
evolutionarily stable. Because of incomplete learning, some individuals only acquire a subset of the entries
of the lexical matrix. The learning accuracy, which is the ability to copy an entry of the teacher’s matrix
correctly, determines the number of words that can be kept stably in a population. We find the minimum
requirements of the lexicon acquisition device that are compatible with a population of individuals evolving
a coherent lexical matrix of a certain size. Similarly, given the learning accuracy of individuals, we find the
lexical capacity of the population, i.e. the maximum number of lexical items in the collective vocabulary,
and describe the distribution of the number of word-meaning associations that people know.

The model that we can study analytically has the following simplifying assumptions: (i) it contains
incomplete learning, but no incorrect learning; (ii) the lexical matrix has binary entries, which means that
associations between word forms and word meanings do not vary in strength, they are either there or not;
(iii) each individual learns the lexical matrix from one other individual, the parent. We include computer
simulations to relax some of these assumptions. In particular, we show that if the probability to create an
incorrect association while learning lexicon is small, then the attractors of the system can be described using
the analytical prediction of the simple incomplete learning model. Another extension of the model that we
consider is viewing the dynamics as a stochastic process. It turns out that the stochastic system performs
transition between stable fixed points of the corresponding deterministic system thus leading to spontaneous
changes in the lexicon. Between transitions system is found in a quasi-stationary state which (under certain
assumptions) is well described by our analytical results.

The paper is organized as follows. In Section 2 we formulate the basic incomplete learning model. In
Section 3 we consider a reduced system (language in the absence of synonyms and homonyms), find stable
equilibria and study the bifurcation diagram. Section 4 extends this result to the full system: the stable
fixed points of the reduced system remain stable against perturbations by a general lexical matrix. Computer
simulations for extended models which include incorrect learning and other more realistic assumptions are
reported in Section 5. A discussion is presented in Section 6.



2 Model description

Here we describe the basic incomplete learning model which will be solved analytically. It contains many
simplifying assumptions; the effects of relaxing some of these assumptions are discussed in Section 5.

2.1 A binary matrix and a fitness function

Each individual is characterized by a lexical matrix, A, which links referents to signals. If there are n
referents and m signals, then A is an n X m matrix. We assume that the entries, a;; are either 0 or 1. If
a;; = 1 then referent ¢ is linked to signal j. If a;; = 0 then referent ¢ is not linked to signal j. Each referent
can be linked to several signals, and in turn each signal may denote several referents. There can also be
referents not linked to any signal, and there can be signals not denoting any referent. The total number of
A matrices of size n x m is 2"™. More generally, non-negative integer-valued a;; could denote the strength
of association between referent ¢ and signal j. We sacrifice this possibility in the present section, but gain
in return a framework which is amenable to detailed mathematical analysis.

Next, we calculate fitness associated with communication. Let p;; denote the probability that an in-
dividual will use signal j when wanting to communicate about referent ¢. Conversely, let G;; denote the
probability that an individual will interpret signal j as referring to referent i. We have

m n
By = aig/ Y aigi @y =aig/ Y ay (1)
=1 i=1

The denominators have to be greater than 0, otherwise simply take p;; or ¢;; as 0. A language is completely
defined by its association matrix, A, or by the matrices p(!) and ().

Let us now consider two individuals I and J with languages A; and A ;. We define the payoff, or fitness
function, for I communicating with J as

n

m
~(J
F(Ap, Ay) =(1/2) ZZ pw qﬂ pga)qj(z))‘ (2)
i=1 j=1

The term ZJ 1 pgl)q(z) gives the probability that individual I will successfully communicate ‘referent ¢’
to individual J. ThlS probability is then summed over all referents and averaged over the situation where
individual I signals to individual J and vice versa (see also Hurford 1989, Nowak & Krakauer 1999).

There is a natural correspondence between all binary matrices and the binary numbers from 0 to 2™ —1,
obtained by reading each matrix row by row from left to right. These numbers can be recast in the decimal
form as natural numbers (we can get rid of the zero by shifting everything by 1). The function F' can then
be viewed as a mapping from N2 to Z, i.e. a rational-valued matrix. For example, in the case of n = m = 2,
we have 16 possible A matrices and find 9 discrete payoff values. For n = m = 3 there are 512 different
A-matrices that give rise to 93 discrete payoff values.

2.2 Deterministic modeling

Let us define the population dynamics for the evolution of the lexical matrix. Denote by z; the frequency
of individuals with association matrix A;. Consider the following system of ordinary differential equations:

Ir= ZfJIJQJI — ¢xr. (3)
7

The summation runs over all possible A matrices, that is 1 < J < 2™™. The fitness of individuals J is given
by
fJ:ZF(AJ,A])$[. (4)
I



This assumes that individual J talks to individuals I with probability z;. The quantity f; denotes the
expected payoff of all interactions of individual J. The average fitness of the population is given by

¢=> frer. (5)

For equation (3), the total population size is constant by definition of ¢. We set ), z; = 1. The parameter
Q1 denotes the probability that someone learning from an individual with A; will end up with A;. Thus
Q11 denotes the probability of correct learning, while @ ;; with I # J denotes learning with mistakes. We
will at first assume that the learner can miss certain associations, but cannot form new associations, i.e. the
incomplete learning scenario. If the teacher has a;; = 1, then the learner will have a;; = 1 with probability
q and a;; = 0 with probability 1 — ¢. If the teacher has a;; = 0, then the learner will always have a;; = 0.
All entries are learned independently from each other. The parameter ¢ is called the learning fidelity, or the
learning accuracy, and is the only free parameter of the system.

Equation (3) is an extension of the quasispecies equation (Eigen & Schuster 1979). Standard quasispecies
theory has constant fitness values, whereas equation (3) has frequency dependent fitness values. Thus equa-
tion (3) can be considered to be at the interface between quasispecies theory and evolutionary game dynamics
(Nowak 2000). Individuals that communicate well receive a high payoff which translates into reproductive
success: successful individuals produce more children who learn their lexical matrix. It is essential that
language performance contributes to biological fitness. Otherwise mutants who do not communicate at all
will not be selected against.

3 Non-ambiguous languages

Let us assume that there are n referents and n signals that can be used in the language. In this section, we
will restrict our analysis to non-ambiguous languages where only one or zero signals can be used for each
referent, and each signal refers to only one referent. This means that there are no synonyms or homonyms in
the language. We will further assume that all the signals (and their referents) used in all the languages, form
a non-ambiguous language (that is, the union of all the languages is a non-ambiguous language). Note that
since no erroneous entries can be made in the process of learning, the dynamics cannot create new synonyms
or homonyms. Therefore, if the union of all languages is non-ambiguous, it will remain so for all generations
in the future.

The assumption of this section (that the meanings are pre-given) is not a limitation. It is merely a way
to find some solutions of the full system. We reduce equations (3) to a simpler set of ODE’s whose phase
space we can analyze. In Section 4 we will prove that the stable fixed points found by this method remain
stable in the full, unrestricted, system.

Furthermore, we emphasize that even though in the next subsections the signals are uniquely paired with
referents, it does not violate the concept of words being “arbitrary signs”. The pairing we assume here is
absolutely arbitrary and the solutions we find for a particular set of associations will hold for any other
non-ambiguous set of associations, exactly because of this fundamental arbitrariness (see Section 3.4).

3.1 Fixed points

The lexical matrix of the perfect language is an n X n permutation matrix. By proper renumbering of signals
and referents it can be written as the identity matrix. The rest of possible non-ambiguous A matrices can
have n — 1 or fewer diagonal entries. Therefore, we can characterize every language I by a sequence of n
zeroes and ones which are the diagonal entries of the corresponding A matrix, S* = (s{,...,s.,), s] € {0,1},
where 1 < j <nand 1 <1 < 2"+ 1. The fitness function in the case of non-ambiguous languages is
just the conventional inner product of the corresponding sequences, F(Az, Ay) = (ST, S87). We will say that
language I has rank k if R(I) = Z?:l SJI- = k. All languages can be divided into n 4+ 1 non-intersecting
classes, each class has a different rank & and contains C* = n!/(k!(n — k)!) languages. We will use low
case subscripts to enumerate classes, and capital letters are reserved for numbering all the languages. The



transition probabilities ()7 are defined as

(6)

Ory = { (1= q)dS"SDgRD) - if T - s7 >0, 1<m<n,
0, otherwise,

where d(S%,87) = 3" | |s! — s/| is the Hamming distance between the two sequences. Here ¢ is learning

fidelity, i.e. is the probability to memorize one association correctly. The condition in rule (6) simply means

incomplete learning: the new language, J, does not contain new associations with respect to the language

I; learners can only lose associations. Let us enumerate the languages inside class k by the index ay,

1 < ag < CF. We denote the fraction of people who speak language ay, of class k as :L‘;CO%). The total number

k
of people whose language belongs to class k is zp = S::I CE](CO”C) .

Our goal is to find some steady-state solutions of system (3) explicitly, and then study their stability.
Let us assume that within each class, every language has an equal share, i.e.

1 2 ck
ac,(c):x,(c):...:x,(ﬁ"). (7)

Now we can define “coarse” transition and fitness matrices. The probability to go from class j to class m is
given by

Cl'(l—qf™™q™, j=m,
J— J
am=1{ j<m. ®)

and the mutual fitness of two classes m and j is found to be
Fnj =mj/n. (9)

This formula guarantees that, if (7) is satisfied, then

Fojitmty = 3, F(AG, AT )eimal), (10)
Qm , Q5
where languages Algm) (Ag-a" )) belong to class m (class j), and the summation is performed over all languages
within the corresponding classes. Formula (9) is derived from equations (10) by means of some combinatorics.
Now we can write down system (3) under assumption (7):

(m)

n .
P =™y O - q)f*m%xj — L | (m), 1<m<n, (11)
j=m

where we have introduced the notation

(m) = Z kxy (12)
k=1

for the average number of associations used by individuals. In the derivation of (11) we used the fact that
=2, Fijrizy = {m)?/n, which follows from equation (9). We do not include the equation for class 0
because it follows from the other n equations and the conservation of the number of people. Fixed points of
system (11) can be found. If (m) # 0, we can multiply system (11) by n/(m), set the left hand side to zero
and obtain an eigen-system with a triangular matrix. The eigenvalues are:

(my=(n—-0g"", 0<l<n-1. (13)

We will refer to the fixed point with [ = 0 as the optimal solution, and the fixed points with 1 <[ < n as
sub-optimal solutions. Note that the case | = n corresponds to the situation with (m) = 0, i.e. nobody has
any associations. It is shown in Appendix A that sub-optimal solutions are unstable for all values of q. Here
we will analyze the optimal solution corresponding to

(m) = nqg". (14)
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Figure 1: The components of the optimal solution for n = 10, as functions of the learning fidelity, ¢, in the region of its
existence (0.9 > ¢ > 1). Each w?pt denotes the fraction of people who know ¢ signals, 1 < i < n.

Let us denote the optimal solution as z; = :L‘;-)p t, 1 < i< n. It can be defined recursively as

= "/n'H T =j/n), (15)

Pt = (¢"™ —m/n)” Z le—q)J m/n:rpt, 1<m<n-1, (16)
j=m+1
T a
j=1

The requirement 0 < x; < 1 implies that
qg>1—1/n, (18)

which is the existence condition for the optimal solution. Solution (15-16) for n = 10 is shown in figure 1.
Note that for g ~ 1, {IJ;)pt o (1 —¢)™ 7, which means that at ¢ = 1, 2" = 1, and near ¢ = 1, the fraction
of people speaking language j decreases rapidly as j decreases. The average fitness, ¢, corresponding to this
solution, is

¢ = ng*". (19)

This quantity has the meaning of the effective lexicon size of the population. It gives the expected number
of signals that any two people will have in common.

3.2 The optimal distribution of the number of associations

Recursive formulas (15-17) give little insight into what the optimal distribution looks like. In this section
we find an analytical expression for this distribution in the limit of large n.

Solution (15-17) has a maximum at m = (m) (by construction, the average number of associations that
people know is (m) = ng™). The standard deviation can be found in the following way. From (11) we have

ah = g™y O - q)) T nad (20)

By multiplying both sides by m and performing the summation over all 0 < m < n, we have (m) = ng" on
the left hand side. In the expression on the right hand side we change the order of summation in j and m



to obtain '
n j
"y (chrqm(1q>jm> j/naf Zﬁ = (21)
Jj=0 \m=0

where the expression in brackets is the expectation of a binomial distribution. Equating both sides we obtain
that (m?) =Y _ m?aoPt = n?¢?" 1. The standard deviation is given by 02 = (m?) — (m)%:

) 22)
Recall that in the equilibrium solution, (x{’*, 2%, ..., z%?), 23" stands for the fraction of people who

have exactly k associations (that is, any associations). Let us introduce variable z,, which is the fraction of
people who know m given associations. At the optimal solution, this quantity does not depends on which
m associations are considered. In order to find the relation between xzp t and Zm, We note that in the class
T, there are C* different “configurations” (vocabularies), each of them has the fraction zP YJCk TEm >k,
there are C’,’f:% distinct vocabularies that contain the m given associations. Summing over all k, we obtain

n

Zm = Z oPt L, ok —m+1). (23)

k=m

Note that zo = 1 and z; = ¢" = (m)/n. In order to derive equations for z,,, we use equation (11). Let us
m!  (n—k)!

set the left hand side to zero, multiply these equations by TnehT ol and perform a summation over all
m. Rearranging the order of summation, we get
n ] J ml
—om (1—-¢) "CP'——= | — 2121 | nz21 = 0. 24
Z n Z q" q) L P— 1%k 1 (24)
7=0 m=0

The expression in square brackets is equal to ¢*5!/(j — k)!, and we can evaluate the summation in j:
(Fzpi1(n — k) + k¢fzp —nzizp)nz =0, 1<k<n—1. (25)
Using the expression for z; we obtain the following recursive relationship for z:

nfk_k
n—=k

nq

Zk+1 = 2k (26)

This quantity, zx, will help us find explicitly the distribution {z¢*} as n — oo. We define the generating
function of the distribution {z%*} by

=3 aphm (27)
m=0

(n=k)!

n!

and note that z;, = d—f
gives

. Then we can expand the function f in the Taylor series around ¢ = 1 which

sz W( k. (28)

The first term in this series is 1. Differentlatlng both sides with respect to t we get

n—1

szc’” (=11 =z O e+ D - 1) (29)
k=0
Now we can use relation (26) to obtain
- n—k n! k * d = k k
kzozk(nq k)m(t— =ng" szC ( ) —(t— 1)Ek2202k0n(t— 1)". (30)
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Figure 2:  The components of the optimal solution for n = 10, ¢ = 1 — 1/(2n). The diamonds denote xgpt, a:fpt, A xigé

(solution (15-16)). The continuous line is the binomial distribution found in formula (35).

Note that the summation index can be taken up to n (instead of n — 1) because the nth term has a zero
contribution. Therefore we have:

') =nas 1+ (- - 1/a ) (31)
This equation describes the generating function of distribution zg”*, 2, ..., 2%t Note that the fidelity ¢
varies in the range 1 — 1/n < ¢ <1, so that the argument of the function f in the right hand side is not too
different from ¢ if n > 1. Let us set (1 — ¢)n = «. In the zeroth approximation, we have tf’(t) = ng¢™ f(¢)
with f(1) = 1, which gives f(t) = t"?". In order to obtain the distribution {27!} we replace the argument
of f(t) by e, i.e. f(p)=e®"". The reverse Fourier transform of the function f(p) is x9P%:

2Pt = §(m — ng™). (32)

Indeed, in the limit n — oo the distribution function becomes sharper and sharper, tending to the delta-
function centered at m = (m) = ng™. In the next approximation we have

tf'(t) =ng"(f(t) + f ()1 - )t —1)/0). (33)

The solution of this equation is

ng™

F(t) = (11— 0g™) + g™ | T (34)

Again, we can replace t — e and perform the back Fourier transformation. Note that since n is large, the

quantity N = % can be taken to be an integer number. Then we can expand the power using binomial
coefficients. The result is
2P = CR(1 = ag™ (g™ N (35)

This is a binomial distribution centered at m = nq™. Its standard deviation is given by formula (22). In
figure 2, both the exact solution (the diamonds) and the distribution (35) (solid line) are shown.

3.3 Stability analysis

Stability of solution (15-17) can be easily examined in the framework of system (11), by standard methods
of a linear analysis. Namely, we perturb all the components of the optimal solution by adding ; to each
op

z; * and assuming that the norm of the vector y is small. Then system (11) is linearized with respect to

components of y, and an exponential time-behavior is assumed, i.e. §; = yjeF . The resulting system is a
homogeneous set of linear algebraic equations, which only has nontrivial solutions if the determinant of the
corresponding matrix is equal to zero. This gives an equation for the growth rate, I', with n solutions:

Ly =¢"7n(j/n—q¢"7), 0<j<n-1 (36)



In order to guarantee the stability of the optimal solution, we need to require that all the values of I" are
non-positive. If inequality (18) holds, then all I'; < 0, which implies that the optimal solution is stable with
respect to perturbations allowed by system (11). However, such analysis only deals with a restricted class
of perturbations. Namely, it only includes functions that satisfy condition (7). It turns out that general
perturbations require a more strict stability condition. This can be explained in the following intuitive way.

Let us consider the situation when nobody in the whole population knows the nth association. This
means that the last entry in all the language sequences will remain zero for all generations. In order to find
solutions of the corresponding system, we can simply forget about the last association and treat the system
as an n — 1 system. The optimal solution can be found again and it exists for ¢ > 1 —1/(n — 1). Its average
fitness can be found from formula (19) with n replaced by n — 1, and it is strictly smaller than the fitness
of solution (15-17) as long as ¢> > 1 — 1/n. Now if we go back and try to characterize the solution with
one association missing in terms of the original variables of the n-system, we will find that this is impossible
because condition (7) is violated. It turns out that it is towards such solutions (the loss of one association)
that the original solution (15-17) loses stability.

In order to find the stability criterion, we will introduce new variables. Let us separate all languages into
those which have the nth association (the corresponding fraction of people is denoted by vy) and those which
do not (the corresponding fraction of people is denoted by wy). The index k is the number of associations
that exist in the language besides the nth association. The last entry is zero in all u-languages and 1 in all
v-languages, so that language u; has rank k£ and language vy, has rank k 4+ 1. We will assume that

u,(;) = u](f), v,(:) = v,(f), (37)
which means that languages u and v are uniformly distributed within their classes. Note that condition (7)
implies (37) but not vice versa. It is easy to check that solution (15-17) can be rewritten in the new variables
as

vj =G+ D)/n. uy =2 (n—j5)/n. (38)

We will now use system (3) together with assumption (37) to find the stability of the fixed point (38). The
fitness and transition matrices have to be refined to accommodate the new variables. We have

:)rfj = Qija mJ Qmja mJ me( )a umvj =0, (39)
F2% =mj/(n—1)+1, Fi = F¥ = F% = mj/(n—1), (40)

where the superscript vv (uu) indicates that we make transitions between two u-languages (v-languages), and
the superscripts uv and vu implies a transition between groups u and v. Let us define A = 27:_11 U + vy),
B= Zl o V1. Then the system that the new variables satisfy is given by

n—1 .

. P A?

O = quZijJ]?(l—q)J k (#A—FB) — Vg (n — +BQ> , (41)
j:k ’

. o J m J

Uy = Z u;C 1 lA

; 2
+ ¢" Z v;C )i~ <%A+ B) — U, (n{ : + 5’2) (42)

with0 <k <n—1, 1 <m < n—1. One can check that solution (38), (15-16) is a fixed point of this system.
To study its stability, we perturb the optimal solution:

v = x?fl(j +1)/n+ Ve, ;= q;;pt(n —j)/n+Ujett. (43)

Note that the only perturbations of interest are those with

V}_l—i-Uj:O, 1<j<n-2, and V,_1 =0. (44)
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Figure 3: The stability diagram for the optimal solution for different values of n. Crosses are the values of qe calculated
from system (46). The solid line is ¢ = 1 — 1/n, the existence threshold, and the dotted line is ¢ =1 —1/(2n).

Indeed, if the total perturbation within each rank is non-zero, the corresponding perturbation in system (11)
is also nonzero, and the appropriate analysis has already been performed and resulted in instability criterion
(18). The only perturbations that the old system “overlooked” are the ones that sum up to zero within the
corresponding class. Therefore, we can use equations (44) to reduce the number of variables from 2n — 1 to
n — 1. Another simplification resulting from (44) is that the total perturbation of the average fitness is zero,
because

¢=A%/(n—1)+ B* = ng*", (45)

where u; and v; are defined by equations (43) and the perturbations satisfy condition (44). We obtain the
linear system

n—2 n—2
Vo =" VO (1= ) (4 1)+ Wi > Vi =ng”™ Vi, 0<m<n—2, (46)
j=m j=0

where W, = g™t 5771 rfﬂ%@m(l —¢)'™™ and ¥ comes from the equilibrium solution (15-
16). The condition that the determinant of the corresponding (n — 1) x (n — 1) matrix is equal to zero leads
to (n — 1) expressions for the growth rate, I', as functions of ¢. It turns out that all of the growth rates are
negative if ¢ is sufficiently big. In other words, there exists a value of ¢ = ¢. such that for all ¢ > g, all
the growth rates I' are non-positive. The value ¢, is the error threshold, i.e. the minimum fidelity required
for the population to maintain all the n associations in the vocabulary. The threshold fidelity values can be
found for all n, the result is presented in figure 3 by the crosses. Note that the threshold value is always
bigger than 1 — 1/n (the solid line in figure 3), i.e. there is a region in ¢ where the optimal solution exists
but is unstable. The existence condition is given by formula (18) and the stability criterion is specified by
the g. values calculated from system (41-42).

3.4 Lexical capacity and error threshold

We can find the limiting behavior of the stability criterion in the limit of large n. We know that the most
unstable perturbation, dx, does not change the value of the average fitness, see equation (45). Therefore, we
can write:

¢{x""(n) + x} = p{x"(n)}. (47)

Also we know that the optimal solution becomes unstable towards losing an association. This means that
in the space of vectors x, the corresponding perturbation points in the direction of x°P*(n — 1), the solution
where one association is missing from the vocabulary. Therefore, we have

§x = C(xP'(n — 1) — x(n)), (48)
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Figure 4: The full transition diagram. Solid lines denote stable solutions (the maximum number of associations that can be
contained in the corresponding population’s vocabulary, is marked on the right). The dashed lines represent unstable solutions.
The dotted vertical lines are ¢ = 1 — 1/(2n), they separate different regions of the diagram. In each of the regions, ng denotes
the maximum number of associations, nmaz(q), that can be stably maintained in the population.

where C' is some constant. For large values of n we can rewrite this as dx = 9x°P*(n)/0n dn. If we plug this
into equation (47) and use the Taylor expansion we obtain:

¢ O0x°P(n) _ I _
Oxopt(n)  On  On

0. (49)

Let us introduce the term lexical capacity for the maximum number of associations that can be maintained
in the population. Formula (49) shows that for a given learning accuracy, the capacity of the system is
equal to the number n which maximizes the average fitness. This is a well-known principle (Fisher 1930)
which however does not always hold for frequency dependent payoff. Using ¢ = ng>”, we obtain for capacity,
Nmaz(q) = (—2logq) L. For q close to 1, the capacity is simply given by

Nmaz(q) = 1/[2(1 = g)]. (50)

We can also use expression (49) to find the error threshold compatible with the population maintaining

a given number, n, of associations. We have ¢. = e~1/2", or, for large values of n, the stability threshold is
given by
-2 (51)
qc = on

The dotted line in figure 3 represents the function 1 —1/(2n). Note that it is always just inside the stability
region. This means that at the transition point, the solution with n associations loses stability to the solution
with n — 1 associations with a slight increase in the average fitness.

The full transition diagram is shown in figure 4. As ¢ gets larger, more and more associations can be
maintained in the population. For simplicity let us use the large n estimate for ¢. given by equation (51).
Then for a given ¢, at most n = Ny,a.(q) associations can be maintained in the population, where the
capacity Nmaqz(q) is the integer between 1/(2(1 — ¢)) — 1 and 1/(2(1 — ¢)). The interval 0 < ¢ < 1 consists
of an infinite number of sub-intervals with increasing lexical capacity (8 of them are shown in figure 4). In
each of the sub-intervals, n,,q.,(q) stable optimal solutions with n = 1, n = 2, ..., n = Nypq. coexist, and
the solution with n = n,,4, corresponds to the maximum possible average fitness. Note that the optimal
solution corresponding to M;,q.(q) also has the largest basin of attraction. The basin of attraction of the
other optimal solutions with n < n4, is of the order of n(1 — ¢), i.e. it shrinks to zero for smaller n and
larger ¢, see Appendix B. This means that starting from a vast majority of initial conditions, the system
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will relax to the stable optimal solution corresponding to n,4:(q), i-e. reach its full capacity. The average
number of associations known by people is then given by n,,q:¢"™e=. As q approaches 1 (and n — 00), this

can be simplified to
1

= s

(52)

3.5 Words are arbitrary signs

To conclude this section we will note that the total number of stable fixed points of system (3) that we
have found is very large. Each optimal solution of size n represents a family of similar solutions of size n,
each of them can be obtained from the diagonal one by interchanging rows and columns. The number of
solutions of size n is given by n!. For each given value of ¢ the solutions which have maximum fitness contain
Nmaz(q) associations, where n,,q. is the integer between 1/(2(1 — ¢)) — 1 and 1/(2(1 — ¢)). Thus there are
[Mnaz (q)]! coexisting stable solutions maximizing the fitness. This is a direct consequence of the fact that
the associations between signals and referent are arbitrary. For each non-ambiguous system of associations,
the corresponding stable solution can be found. Exactly which set of associations will become adopted in
the language depends entirely on the initial conditions of the system.

4 The fixed points are stable against perturbations by general
lexical matrices

Here we will prove that the stable fixed points found in Section 3 remain stable attractors in the full system.
The method we are going to use is as follows. We will take one of the n! stable fixed points found in the
previous section and write it down in terms of general variables of the full system (3). This means that only
the non-ambiguous matrices will have a non-zero share in the population, and the share of the others will
be set to zero. Next, we will carry out a linear stability analysis of such solution in the general system and
prove that it is stable with respect to all possible perturbations. Note that it is enough to only consider one
of the family of optimal solutions because they all are equivalent up to permutations or rows and columns.
Our analysis will show that the optimal solutions are stable in the system where all binary matrices are
allowed, including those with more than one positive entry in the same row/column. In other words, the
optimal solutions will turn out to be stable with respect to the invasion of synonyms and homonyms.

There are N = 27° different A matrices. The dynamics of language acquisition is described by the
general system (3). Let us consider the subset £ of all lexical matrices defined by the following rule: take
any permutation matrix and form all matrices that can be obtained from the permutation matrix by removing
positive entries. By the appropriate renumbering referents and signals, this set can be made identical to
the set considered in the previous section (i.e. the matrices whose positives entries are situated on the main
diagonal). The set £ only includes non-ambiguous languages. We will call all languages that do not belong
to L competing languages. This is because every such language will contain at least one entry which will
compete with the entries of the unambiguous £ languages (it could be a signal that shares its meaning with
another signal from a £ language, or/and a second referent assigned to the existing signal).

We will use low case subscripts to denote the rank of £ languages and capital subscripts for matri-
ces/languages. Let us write down the optimal solution found in the previous section in terms of the general

variables. It corresponds to the vector (z1,---,zx), such that
_ Oa AJ ¢ E,
e { aP'/CE, Aje L, R(Ay) =k, (53)

where 7" tis given in (15-17). For this solution, in the whole population only one signal can be used for

each referent, only one referent corresponds to each signal, and the distribution is the one found before. A
straightforward substitution suggests that this is a fixed point of system (3). Note that there are n! of such
fixed points (as many as there are permutation matrices, see Section 3.4), all of them can be reduced to
solution (53) by renumbering referents and signals.
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Let us perform a stability analysis of solution (53). As usual, we will perturb each component of xy, with
yrel® and linearize around the fixed point. First of all we note that the equations for #; where Ay ¢ L
decouple from the equations for the £ languages. This is a consequence of the fact that the (unperturbed)
share of the competing languages is zero. Therefore, equations for competing languages will not contain
perturbations of the £ languages. This simplifies the analysis because it is sufficient to consider only the
equations for competing languages. The analysis for the £ languages has already been performed. Thus, the
system of linear equations is

Tyr= > fysQu —vyséb Ar¢L (54)

As¢c

(the shorthand subscript for the sum means that the summation is performed over all matrices .J such that
Ay ¢ L£). In (54), the unperturbed fitness of the language Ay is f;7 =>4, F(As, Ax)zK, and the average
fitness is given by equation (19). Since we do not allow for errors which lead to forming new entries in the
A matrix (only to losing old ones), Q7 = 0 whenever the language A has positive entries which were not
present in the language A ;. Therefore, we have @ ;j; = 0 whenever I > J for all competing languages; this is
the consequence of our numbering procedure. Thus, the matrix of linear system (54) is triangular, with all
the entries above the main diagonal being identically zero. To ensure the existence of non-trivial solutions,
the determinant of this matrix has to be zero, which gives

I -T—¢-1:Qs5) =0. (55)

As¢L

This equation has to be solved for I'. The condition which guarantees stability of solution (53) is that all
the values of the growth rate, I', are non-positive. This leads to the following inequality:

f1Qs5 < ¢, ¥J such that Ay ¢ L. (56)

Our task is to show that the fitness of each competing languages cannot exceed the average fitness of the
population with the optimal distribution of languages. To show that this is indeed the case, we will need to
use the fact that the fitness of each of the £ languages is defined by

fK = kqn, A € L, R(AK) = k. (57)

To prove the above equality, let us consider the language Ax € £ which has rank k (i.e. it has exactly k
positive elements). Tts fitness is given by

Ix = Z F(Ag, Ay )z (58)
AmeEL
It is convenient to rewrite this as
n C
fe =YY F(Ag, Agm)zlem), (59)

where the first summation is performed over all ranks, and the second summation goes through all the £
)

. @ . .
languages of the current rank m. Using z;, ™ = z%' /C™ for all avy,, we can perform the inner summation:

cm min(m,k)
> F(Ak, Agr) = > IGOTT = kO (60)
am=1 =0
Then we have
n 01711 k n ,
_ opt n—-1 _ ™ opt __ n
fK—mZZOxT,fk o —nmzzomxm = kq", (61)

which completes the proof of statement (57).
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Let us consider the matrices of competing languages and count the number of their positive diagonal
elements. If language A; has j diagonal elements, we will say that it has rank j, i.e. R(Ay) = j. We will
now show that if Ay ¢ £, Ax € £ and both languages have rank j then

Ji < Ik (62)

;From equation (58) it follows that it is sufficient to show that F(Ay, Ay) < F(Ag, Ay for all Ay € L.
In order to obtain F(A,, Apr) with Ay, € £, we need to form string vectors out of diagonal entries of
matrices p(¥) and ¢(/) and then take a conventional inner product of these vectors with the diagonal of the £
language M. Then F(Ay, Ayr) is the average of these two inner products. Now let us compare F(Ay, Apr)
with F(Ag, Anr), where the matrix of the language Ax € L consists of all the diagonal entries of the
language Aj, but has no off-diagonal entries. Obviously, FI(Ay, Ay) < F(Ak, An), because the presence
of off-diagonal elements can only make the positive diagonal elements of the corresponding p and ¢ matrices
smaller than 1 (and thus reduce the fitness). Inequality (62) follows immediately.

Next, we note that Qs for Ay ¢ L satisfies Qs5 < ¢ where R(Ay) = j. Indeed, language A; has at
least j elements which all have to be memorized with probability ¢. Now it is clear that f;Q ;s < fx¢®, and
if we show that

kq"tF < ng®", (63)

then inequality (56) holds automatically (in expression (63) we used formula (57)). Inequality (63) holds as

long as q¢ > ¢, where
L\ 7%
qg = — . 64
q (n) (64)

The function G(k) increases with k, and limy,_.,, § = e~ /", i.e. § < e /™. For large n we have § < 1 —1/n.
Therefore, inequality (56) holds as long as (18) is satisfied. This means that solution (53) is stable with
respect to competing languages in the whole domain of its existence.

We can conclude that when all languages are allowed in the system, those which are described by any
permutation matrix A, and all the matrices obtained from A by removing positive entries, are stable. This
can be viewed as an extension of the result of Trapa & Nowak (2000), who have shown that permutation
matrices are the only strict Nash equilibria of a language system with the fitness defined by (2). We have
made a connection with an evolutionary dynamics and proved that these languages form evolutionary stable
states even if the learning ability is not perfect (¢ < 1).

Remark. The above analysis proves the stability of optimal solutions which contain no homonyms or
synonyms. It does not show that those are the only stable fixed points of the full system. However, we
believe that the latter statement is nevertheless true because no numerical simulations (see the next section)
revealed any other stable solutions of the system.

5 Stochastic simulations of extended models

In this section we will demonstrate how our analytical results can contribute to the understanding of more
complicated and more realistic models. In many cases we do not have exact analytical tools to obtain
solutions of such models. Therefore, we need to use computer simulations. Below we will describe some
model extensions and the simulation results, but first we would like to emphasize the importance of stochastic
modeling when studying language evolution.

There are several reasons why stochastic, rather than deterministic, models should be considered. First,
the number of deterministic ODE’s (system (3)) grows like 2° where n is the matrix size. Therefore, it is not
conceivable to simulate deterministic equations for n larger than, say, 3. Besides this mundane reason, we
note that deterministic equations of the type (3) cannot be written down in the case of positive real-valued
A matrices. On the other hand, stochastic modeling can handle this important case. Finally, stochastic
language learning is what in fact happens in reality, and the deterministic equations only approximate this
process in the limit of a very large population size. Finite population size effects can be significant and lead
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to some interesting features which are suppressed in the deterministic model, such as spontaneous language
changes.

In this section we will present a brief report of preliminary numerical results that we have obtained and
show that the analysis given above is an important first step towards our understanding of the full model.

5.1 Incomplete learning

In this subsection we set up a stochastic model and test it in the case of incomplete learning, where its
behavior can be directly compared with our analytical results. Let us consider a population of size N.
Each individual is characterized by an A matrix. The fitness is evaluated according to equation (2). Every
individual talks with equal probability to every other individual and their fitness is evaluated. For the
next generation, individuals produce children proportional to their payoff, i.e. successful communication is
rewarded. Children learn the language of their parents. The average payoff of the population is given by

1

The summation is over all individuals so that I = 1,.., N and J = 1,..,N as long as I # J. The quantity
¢ describes the expected number of referents that a random individual can successfully communicate to
another random individual. Therefore, ¢ can be interpreted as the effective lexicon size of the population.
In the limit of N — oo this quantity coincides with the average fitness defined in equation (5).

We describe lexicon learning as a probabilistic process. The learner starts off with an A matrix that has
all entries set to zero. Then the teacher’s A-matrix is copied into the learner’s matrix in such a way that all
the positive entries have the probability ¢ to be copied as “ones”, and the probability 1 — ¢ to be copied as
“zeros” .

This stochastic model corresponds exactly to the previous model in the limit N — oc. Finite population
effects play a role, but the analytical results obtained in the previous sections can still be used to describe
the behavior of the system. The long-time dynamics of the stochastic process can be viewed as a series of
transitions between stable fixed points of the deterministic system. For instance, let us suppose that the
system starts off with 7,44 (q) signals. For a number of generations the population will remain in a vicinity of
the optimal solution corresponding to nmqz(q), and then the system will jump into a state which corresponds
to the optimal solution with 7 = 7m4.(¢) — 1. The (time-averaged) fitness will lower from 7,,4::¢°"™* to
(Nmaz — 1)q2("mm_1), and one association will be lost entirely from the population. The system will spend
some time in this state until another jump will happen with a loss of another signal. Between transitions
the systems exhibits a quasi-stationary behavior. On average, the time spent at each of the fixed points gets
longer and longer as n decreases. Eventually (after n,,q, jumps), all lexical entries will be lost. An all-zero
A-matrix is the only absorbing state of this system, because there is no chance to create new lexical entries.
The time it takes to reach this absorbing state can of course be extremely long.

Figure 5 presents an example of an evolutionary process for a population of N = 40 individuals with
learning accuracy of ¢ = 0.99. As the initial condition we chose a state close to the n = 6 optimal solution.
We can see that as time goes by, signals are lost from the vocabulary of the population. Between the
transitions, the system oscillates near the optimal solution of the deterministic system and has fitness near
¢ = ng*" (the dotted horizontal lines). The time-evolution of the lexical matrix depends crucially on the
number of people in the population. The larger the population size, the longer is the average time spent at
each of the quasistationary states.

We have carried out a number of runs with random initial conditions, so that in the beginning, the
individuals had different randomly chosen binary matrices. The system always converged to a non-ambiguous
quasi-stationary state. Note that no quasistationary solutions with synonyms of homonyms have been
observed in the stochastic system. This confirms our hypothesis that if no associations can be created by
mistake, then the optimal non-ambiguous solutions are the only stable equilibria of the system.

5.2 Incorrect learning

Now let us extend the model of the previous section to incorporate a possibility of a different kind of
mistake. Before, when learning, the children could lose some of the associations of their parent’s matrix. No
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Figure 5: The average fitness of the population for a stochastic model as a function of time. The population size is N = 40,
and ¢ = 0.99. Quasi-stationary states are observed which correspond to optimal solutions of the deterministic model with
n =6,...,n = 3. At each of these states, the average fitness oscillates around the theoretically calculated value, ¢ = ng>",
plotted with dotted lines. Eventually, all signals will be lost, but this can take a very long time. For practical purposes, the
population will maintain a certain set of lexical items.
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Figure 6: The average fitness of the population for a stochastic model as a function of time, for three different population
sizes; p = 1072, pg = 10~%. The dotted lines are the levels ng".
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new entries were allowed to be made by mistake. Now, let us suppose that erroneous associations can be

memorized by children during the learning stage. If the teacher has a;; = 0 then the learner will have a;; = 0

with probability go, and a;; = 1 with probability po = 1 — go. Thus, the probability to create an association

which was not there in the teacher’s matrix, or the error rate of incorrect learning, is py. As before, the

probability to keep a positive entry is ¢. We will call the probability to lose a positive entry the error rate

of incomplete learning, p = 1 — ¢q. With pg = 0 this new model is reduced to the incomplete learning model.
If the error rate of incorrect learning is much smaller than the error rate of incomplete learning,

po K P, (66)

then the dynamics can still be described by using our results for the pg = 0 case. As in the case of the
incomplete learning stochastic process, the system performs transitions between stable fixed points of the
corresponding deterministic system. Since the error rate pg is very small, the quasistationary states can be
well approximated by stable fixed points of the deterministic system with py = 0. However, the fact that py
is bigger than zero plays an important role in the long-term dynamics of the system. Recall that before, the
transitions were always made in one direction, namely, towards a loss of an association. In the case of pg = 0,
once an association is lost from the population, it cannot be gained back. If pp > 0 (incorrect learning),
the situation changes and with a finite probability, a state with n associations can give way to a state with
n + 1 associations. This is illustrated in figure 6, which shows three examples of evolutionary runs for a
system with p = 1072 and po = 10™* for three different population sizes: N = 10, N = 40 and N = 70. For
each of the runs, we can see that as generations go by, the system attends the states with n =6,...,n =1,
gaining or losing associations. At each of the states, the average fitness is well approximated by ¢ = ng?”,
the formula derived under the assumption that py = 0.

Let us now take a closer look at the behavior of the stochastic system once it is in a quasistationary
state. For comparison with the deterministic system, it is convenient to introduce the average lexical matrix
of the population,

I
If the system is at an optimal solution, we have
APt = "1, (68)

where ¢ is the accuracy of learning, n is the maximum number of associations that people know; this quantity
is defined by the fixed point the system is at, and I, is a permutation matrix with n positive entries. Not
surprisingly, if condition (66) is satisfied, then the average lexical matrix of the stochastic process in a
quasistationary state is very close to that of the deterministic pg = 0 process. As an illustration, let us
consider the average lexical matrix for the run in figure 6 with NV = 40, taken for the quasistationary state
between generations 2700 and 3300. The time-averaged A and the corresponding A°P* are, respectively,

P e F ) e R ©
o © O ° O
o o . . O .

here the radius of each circle is proportional to the strength of the association. We can see that the average
lexical matrix, A, is largely dominated by a permutation matrix. In contrast with the pg = 0 case, all
matrices may have a non-zero share, thus A has extra non-zero elements besides the dominating permutation
“skeleton”. However, the fraction of matrices with “extra” elements (what we called competing matrices in
Section 4) is very small. Therefore, it still makes sense to talk about a lexicon size.

As long as condition (66) is satisfied, the average fitness of quasistationary states oscillates around the
average fitness of the corresponding optimal solutions with py = 0, as illustrated by figure 6. As py becomes
larger, this is no longer the case, see figure 7. For the three runs here, the population sizes and the error
rate of incomplete learning, p, were taken the same as in the previous figure, but the probability to create an
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18



TN
=
T

Fraction of C
o
N

0 200 400 600 800

Fraction of D
oo
= S
S WH‘H\‘H\
g \H‘\H‘H\‘\H‘\

200 400 600 800

Fraction of B

8
8
g i mmim

Fraction of A
o
»

0 200 400 600 800
Generations

Figure 9: Spontaneous changes in lexicon. For this run, N = 40, p = 4- 102 and pg = 10~3. The time-evolution of four
entries in the average lexical matrix, formula (70), is presented. The rest of the associations remain very weak and are not
shown.

erroneous association was increased, so that pg = 1073. In this intermediate regime, the average fitness of
each of the quasistationary states is lower than the expected fitness of the fixed points of the deterministic
system with po = 0. The average lexical matrix is still close to a permutation matrix, but the share of other
elements is larger than it was for runs with pg = 10™* < p.

As the error rate of incorrect learning becomes significant, it gets harder and harder to determine the
lexicon size by looking at the average association matrix. When py ~ p, the competing matrices have a
considerable share, which can in fact be larger than the share of non-ambiguous matrices. In figure 8 we
performed stochastic runs with py = p = 1072, As a result of a large probability to create new entries, the
coherence is lowered significantly; too many erroneous entries are accumulated during the learning process.
A more detailed description of the regimes of figures 7 and 8 goes beyond the scope of the present paper and
will be addressed elsewhere.

5.3 Spontaneous changes of lexicon

The simple model described above gives rise to stochastic changes in lexicon over time. This is a phenomenon
which is observed in historical linguistics; our model demonstrates that it may be a consequence of finite
population size effects.

We know that stable equilibrium solutions of the deterministic model consist of non-ambiguous languages
(and may contain a small share of competing languages if pg is very small). There are n! different ways to
associate n signals with n referents which gives the total number of non-ambiguous solutions. These solutions
coexist in the phase space. In equations (3), once the system has reached one of the equilibrium solutions,
no further changes are possible. However, a finite size plays a role of a finite perturbation that constantly
acts in the system. Once in a while it may become sufficient to kick the system out of a stable equilibrium
and bring it over to the attractor of another stable equilibrium. Then, a spontaneous change in lexicon takes
place. The smaller the population size, the more likely such transitions are to occur in a given length of
time.

It is interesting to follow the time-evolution of the average lexical matrix. As an example we consider a
system with N = 40 people and p = 4 - 1072, po = 1073, The average lexical matrix of this system for a
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particular run looked like

o D o o

1 A o [ o

A= B . (70)
o o C o

where by small circles we denoted entries whose values were less than 0.1 for generations 1 through 1000.
Associations A, B, C and D are those of interest. Their evolution is plotted in figure 9. In the beginning,
a population adopts a non-ambiguous language which consists of three associations, A, B and C. Then,
around generation 400, one of the signals disappears from the language and gets replaced by another signal,
which stands for the same referent. Thus the total number of associations is still three. Around generation
800, one of the associations is briefly lost from the vocabulary, so that for a while there are only two of them
maintained. However, this association is gained back shortly afterwards. We can depict the spontaneous
changes in lexicon observed here as

O
!
O

o o o o o o
o o o o o o o o
— — O (71)
o o o o o o
o o o o

Note that in this simulation, a small fraction of synonyms and homonyms is always present because of a
finite probability of incorrect learning, but we can still observe that the dominant language is non-ambiguous.

o o O o o o

6 Discussion

We studied the population dynamics of the acquisition and evolution of the lexical matrix. We assumed
that information exchange between individuals leads to a payoff which contributes to fitness. Successful
individuals are more likely to transfer their lexical matrix to others. We considered two different types of
mistakes that children can make during the learning acquisition: (i) incomplete learning, where one or more
of the teacher’s associations are lost, and (ii) incorrect learning, where children create erroneous entries in
their lexical matrices.

In the case of incomplete learning, we analyzed how accurate the acquisition of the lexical matrix must
be for a population to maintain a coherent (non-ambiguous) lexical matrix of a given size. If ¢ denotes the
probability that a learner acquires a specific entry of the lexical matrix of the teacher, and n is large, then
q has to exceed the threshold value

1
e=1——. 72
q 5 (72)
For a given ¢, the lexical capacity of the system is defined by
Mumaz (@) = [2(1 = )] 7" (73)

This value of n maximizes the average fitness for a given ¢. Not everybody in the population knows all the
associations. The average number of associations known by a person is given by (m) = ng™. For n = npmas,
we obtain

(m) = Nmaz/Ve. (74)

The standard deviation is 02 = n2,, ¢*"me=~1(1 — q). The distribution of the number of associations known
to individuals is nearly binomial in the case of large nmq... The effective lexicon size, ¢, is defined as the
average number of associations that any two individuals have in common. We find that ¢ = ng®". For
N = Nmaz(¢) we obtain

@ = Npmaz/e. (75)
For given values of ¢, equations (74) and (75) can be rewritten as
(m) = [2V/e(1 — )], ¢ =[2¢(1—q) " (76)

We can also rewrite the condition for ¢., formula (72), in terms of a minimum number of learning events
per learner. Let b denote the number of learning events that a learner has during its language acquisition
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period. Hence b specifies the number of times a correct entry is made in the lexical matrix of the learner. If
all referents occur at the same frequency, we have

g=1-(1-1/n)". (77)

There are b independent events. In any one event, one of n referents is chosen at random. Equations (72)
and (77) lead to
b>b. =nln(2n). (78)

A more realistic model includes incorrect learning, where learners can by mistake form associations
that are not present in their teacher’s matrix. A full analysis of this situation is still missing. In the
present, paper we have considered the situation where the probability to create new associations is small.
Numerical simulations have demonstrated a good quantitative agreement with our analytical predictions. The
populations tends to converge to a quasi-coherent state, where the averaged lexical matrix of all individuals
contains dominant non-ambiguous entries, the share of synonyms and homonyms is rather small and the
average fitness is well described by formula (76).

As the population size tends to infinity, the analytical results obtained for the deterministic system hold
exactly. However, finite population effects may play a role. For instance, spontaneous changes of language
have been observed in stochastic simulations for populations of a finite size. In the course of evolution, new
associations have been observed to gradually replace old ones. The dynamics of the stochastic system can
be viewed as a series of transitions between stable attractors of the corresponding deterministic system.

Throughout this paper we have assumed that each individual learns its lexical matrix from one teacher.
We have also simulated the situation where individuals learn from more than one teacher (see also Nowak et
al. (1999, 2000) and Nowak (2000)). The teachers are chosen randomly but proportionally to their payoff in
the population. In this case, we obtain similar results provided the lexical matrix has integer valued entries
that are not restricted to 0 and 1. Whenever a learner receives a referent-signal pair, the learner increases the
corresponding entry in his association matrix by one point. With this extended mechanism, the population
can evolve and maintain coherent lexical matrices. If, however, we keep the entries of the lexical matrix
restricted to 0 and 1, then a population, where individuals learn from several teachers, does not maintain a
coherent lexicon even for small error rates. We note that a population where individuals learn from one or
more teachers that are randomly chosen irrespective of their payoff cannot evolve a coherent lexical matrix.
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A Appendix: Sub-optimal solutions

For the sake of completeness, we will consider fixed points of system (11), corresponding to the eigenvalues
(m) = (n—1)g" " with 1 <1 <n. We have 2, = 25,1 = ... = 1,41 = 0, and the system for the rest of
the variables is exactly (11) with n replaced by n — I. All the sub-optimal solutions (for each [, 1 <1 < n)
can be written down:

Ty = 0, n—I4+1<m<n, (79)
n—l—1

oo = U0 ] @ =i/m=0), (80)
J=0
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l
—m/n—1)" Z C’mlfq)J Mim—lz;, 1<m<n—-1-1, (81)
Jj=m+1

n
rog = 1-— ZZEJ'. (82)
Jj=1

n—l—m

Tm = (¢

These solutions correspond to the situation where all the n signals are present in the language of the
population, but no one knows all of them. There are n such non-optimal solutions. The value of n — [ is the
maximum number of associations known to a single person.

To check stability let us perturb these solutions by yre'®, 0 < k < n and linearize equations (11). The
equations for &,, with n —Il+1 < m < n do not contain terms y; with 0 < k <n —1[, and can be considered
separately. It is easy to show that these nl equations lead to the growth rate I' = (n — 1) /ng>" D[(n — 1 +
1)g — (n — l)q], which means that the solution is unstable for ¢ > 1 — (n —1)/(n — 1 + 1). On the other
hand, the equations for &,, with 0 < m < n — [ can also be decoupled from the rest of the equations if we
take yr, = 0 for n — 1+ 1 < k < n. The corresponding system is exactly the perturbed system (11) where
n is replaced by n — [. It suggests instability for all ¢ < 1 — 1/(n — ). Moreover, for the correct instability
criterion, the variables zj with 0 < k < n —[ have to be perturbed in a more general way, see equation (37)
and the argument below. Such perturbations lead to the instability for all ¢ < g. = 1—1/(2(n—1)). The two
regions of instability intersect and cover the entire interval 0 < ¢ < 1, which means that solutions (79-82)
are unstable.

This proves that out of the n + 1 fixed points of system (11) corresponding to (m) = (n —1)¢" !, 0 <1 < n,
only one can be stable. The stable fixed point, or the optimal solution, corresponds to the largest eigenvalue
(m) =ng", i.e. 1 =0.

B Appendix: The basin of attraction of optimal solutions

Here we will show that if ¢ is close to 1, then optimal solutions with low values of n have a very small domain
of attraction. We will use the system (41-42) with n — 1 replaced by n:

SR W (%A+B>vk (%HSZ), (33)
. B e m
Um = q ZU‘J ‘A

J A
+ q" Z v;C e (E.A—l- 5’) — U, (7 + 15’2) (84)

with 0 < k < n, 1 < m < n to estimate the domains of attraction of various solutions. Here vy is the
fraction of people who knows the (n + 1)st signal plus any other k signals; w,, is the fraction of people who
do not know the (n 4 1)st signal but know m other signals. System (83-84) is convenient for testing the
stability of the optimal solution (15-17) with respect to adding new signals to the population’s vocabulary.
Indeed, a fixed point of the system is the solution vy, = 0, u, = %% 0 < m < n, where z%" is solution
(15-17). This means that the maximum number of signals people know is n, and we consider the possibility
of the (n + 1)st signal introduced in the language. Let us perturb the optimal solution:

m =04+ Vi, U = 2P + Uy,. (85)
For the purposes of a linear stability analysis, we can set V,, = v,(,i)er t Uy = u,&?eF t. This results in the

stability criterion ¢ > 1 — 1/n, i.e. for these values of ¢ the solution with n signals is stable. Let us look at
the growth rate of the optimal solution with n signals. From equation (83) for kK = n we obtain:

oM = ¢?vMn(g—1). (86)
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This is satisfied by vg) =0 or

I'=g¢*"n(qg—1). (87)
It is the latter solution that we will concentrate on. The growth rate, I', is always non-negative. For
|1 —¢| ~ 1/n it is of order one, |I'| ~ 1. However for |1 —¢| < 1/n, |I'| < 1, and I' = 0 for ¢ = 1. In the
limit of absolute learning accuracy, this solution is neutrally stable, and its perturbations are only slightly

damped when ¢ is close to 1.
In order to get a crude estimate of the attraction domain let us assume that ¢ is very close to 1, i.e.

1—q| < 1/n. (88)
It is convenient to introduce a small parameter,
8=n(1-q). (89)

Let us assume that V,,, ~ 8 and U,,, ~ 3 for all m. Then the expression on the right hand side of equation
(86) is of order 3% and for consistency one must keep quadratic terms. Since the resulting equations are
nonlinear, we cannot assume an exponential time-dependence of the perturbation anymore. We have up to
the second order in 3:

n

Vo= —*"Vo+ Vs {qn (Z W +w) + z”: Vz) —2¢"! Zn: Wt + Vl)} - (90)

=0 =0 =0

The right hand side is a function of ¢. Because of condition (88), we can replace ¢ by 1, and the error will
be or order (3, i.e. can be ignored in the current approximation. We have

Vi = —¢""Vo B+ Vu(AB — AA), (91)

where AB and AA are perturbations of the quantities B and A around their value at the optimal solution,
i.e.

n n
AB=) Vi, AA=Y IU+WV). (92)
=0 =0
Here (V1,...,Vn, Uy, ... Uy,) is the eigenvector of the linearized problem corresponding to the eigenvalue

(87). Once again, this eigenvector is a function of q. We can expand it around ¢ =1 by V; = qu:1 +0(3%),
Uy = V=" +0(6?). The correction will not contribute to equation (91) because it gives rise to terms of the
order of 3. Hence, we only need to find the eigenvector of the linear problem with ¢ = 1, corresponding to
I’ = 0. In other words, we need to rewrite system (83-84) for ¢ = 1, substitute the solution in the form (85)
with I' = 0 and solve for the eigenvector. We have:

Visl=0 = ViEYE —n), (93)
U =0 = Uk —n)+ 2P AAT(k —n)/n—1], 1<k <n. (94)
;From equations (93) it follows that V=" = 0 for k < n. Therefore from (92) we have ABI=! = V=1 Next,
we remember that for ¢ = 1, 27” * = 8. From equations (94) we obtain AAY=! = 0. Finally, we can rewrite

equation (91) as '
Vn =0V + V. (95)

It follows that if V,, > 3 then the perturbation grows, that is the optimal solution with n signals becomes
nonlinearly unstable. Therefore, the domain of attraction for the optimal solution with n signals is of the
order of n(1 — q), i.e. it shrinks to zero as ¢ approaches one.
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