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Grammar is the computational system of language. It is a set of rules that specifies how to
construct sentences out of words. Grammar is the basis of the unlimited expressibility of
human language. Children acquire the grammar of their native language without formal
education simply by hearing a number of sample sentences. Children could not solve this
learning task if they did not have some pre-formed expectations. In other words, children have
to evaluate the sample sentences and choose one grammar out of a limited set of candidate
grammars. The restricted search space and the mechanism which allows to evaluate the sample
sentences is called universal grammar. Universal grammar cannot be learned; it must be in
place when the learning process starts. In this paper, we design a mathematical theory that
places the problem of language acquisition into an evolutionary context. We formulate
equations for the population dynamics of communication and grammar learning. We ask how
accurate children have to learn the grammar of their parents’ language for a population of
individuals to evolve and maintain a coherent grammatical system. It turns out that there is
a maximum error tolerance for which a predominant grammar is stable. We calculate the
maximum size of the search space that is compatible with coherent communication in

a population. Thus, we specify the conditions for the evolution of universal grammar.

1. Introduction

Many sentences a person utters during life are new
combinations of words appearing for the first time
in the history of the universe. Hence, language is
not simply a repertoire of memorized responses,
but instead the brain has a powerful recipe book
to construct sentences out of words (Chomsky,
1959; Pinker & Prince, 1988). This recipe book is
called mental grammar. Children acquire the men-
tal grammar of their native language rapidly and
without formal education. When it comes to ap-
plying grammatical rules then 3-year old children
are more than 90% on target.

Noam Chomsky (1965, 1980, 1993) points out
that the mental grammar of a person (or “the
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computational system” of the language)’ is a rich
and complex structure which is hopelessly under-
determined by the fragmentary evidence avail-
able to the child. In other words, the sample
sentences available to the child are not nearly
enough to recreate all of the underlying gram-
matical rules. This is what linguists call the
“poverty of input” and the “paradox of language
acquisition” (Jackendoff, 1997; Hornstein &
Lightfoot, 1981). Nevertheless, children growing
up in the same speech community correctly de-
duce the underlying grammatical rules and con-
sistently develop the same language. For many
linguists this observation provides conclusive
evidence that children must employ highly re-
strictive principles that guide the development of
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their grammar. This restriction is called universal
grammar.

The acquisition of mental grammar is therefore
not seen as a process where children simply try to
memorize all syntactic structures they encounter.
Instead it is conjectured that children have a set
of candidate grammars available to them. Sub-
sequently, they evaluate the environmental input
(i.e. the sentences they hear from their parents
and others) in order to determine which of the
candidate grammars is being used. Universal
grammar provides the restricted search space of
all candidate grammars and perhaps the learning
mechanism which allows to evaluate the sample
sentences (Sorace et al, 1999; Prince &
Smolensky, 1993; Wexler & Culicover, 1980;
Lightfoot, 1991; Niyogi & Berwick, 1996, 1997).
Universal grammar is therefore not learned but
must be available to the child when the learning
process starts. In other words, universal grammar
is innate.

It is believed that universal grammar is the
product of some special neuronal circuitry within
the human brain, which is called “language
organ” by Chomsky and “language instinct” by
Pinker (1994, 1999). All humans, but no animals
have a language instinct (Bickerton, 1990; Dea-
con, 1997; Hauser, 1996; Brandon & Hornstein,
1986; Pinker & Bloom, 1990).

The purpose of this paper is to develop a math-
ematical theory for the evolutionary and popu-
lation dynamics of grammar acquisition (Nowak
et al., 2001). In accordance with mainstream lin-
guistic theory, we assume that children have
a search space that consists of n candidate gram-
mars, Gy, ..., G,. Then they hear sample senten-
ces and decide which of the possible grammars to
use. Note that the number of candidate gram-
mars can also be infinite, provided that children
have a prior probability distribution specifying
that some grammars are more likely than others.
In this paper, however, we will restrict our ana-
lyses to the case of a finite search space, where all
candidate grammars are equally likely at the be-
ginning of the learning process. The extension to
infinite, but biased, search spaces will be treated
elsewhere.

One way to visualize this learning scenario is by
imagining that the mental grammar is determined
by principles and parameters. The principles

are hardwired and innate. The principles restrict
the infinitely large set of all conceivable gram-
mars to a finite set of relevant grammars,
{Gy,...,G,}. The parameters, on the other hand,
need to be learned. A particular choice of para-
meters corresponds to one specific grammar, G;.
If, for example, the parameters are k independent
Boolean variables (binary switches), then n = 2~
Learning k independent parameters means iden-
tifying the right grammar among 2* different al-
ternatives. In principle, the child needs to hear
sufficiently many sampling sentences to (uniquely)
determine the setting of these k parameters (Gib-
son & Wexler, 1994).

A different approach is optimality theory.
There are k constraints. A grammar is given by
a particular ordering of these constraints.
Hence, in total there are »n = k! candidate
grammars, but many of them might be equiva-
lent. The difference between constraints and
parameters is as follows: parameters have to hold
for all constructions of a given grammar, while
constraints have to hold unless they are over-
ruled by higher ranked constraints. Thus, for
natural languages it is possible to specify simple
constraints, while parameters are often complic-
ated (Prince & Smolensky, 1997; Tesar &
Smolensky, 2000).

Furthermore, we assume that communication
among individuals has an effect on fitness.
Someone who uses a grammar that is under-
stood by others has a better performance
during life history in terms of survival probability
or reproductive success. Individuals who com-
municate successfully leave more offspring, who
in turn learn their language, which puts the prob-
lem of grammar acquisition in an evolutionary
context (Hashimoto & Ikegami, 1995, 1996;
Nowak & Krakauer, 1999; Nowak et al., 1999,
2000).

Learning theory (Vapnik, 1995; Valiant, 1984;
Niyogi, 1998; Haussler et al., 1997; Osherson
et al., 1986) often asks the question how many
sample sentences are needed for an individual
learner to acquire the correct rule from a single
teacher with a certain probability. In contrast, we
study the following question: what are the condi-
tions for the learning process which allow a popu-
lation to evolve or maintain a unique grammar?
To this end, we ask what is the maximum size of
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the search space for a specific learning algorithm,
given the number of sample sentences. More
generally, we calculate the minimum learning
accuracy that is compatible with the whole
population converging to a predominant
grammar.

We will explore two different learning algo-
rithms that represent opposite extremes of how
much memory capacity is required during lan-
guage acquisition. The memoryless learner holds
at any one time a specific hypothesis (one of the
n grammars). It switches at random to a new
hypothesis should a sentence occur that is not
consistent with the current hypothesis. The batch
learner memorizes all sample sentences and deci-
des at the end of the learning period which of the
n grammars fits best. We assume that the learning
mechanism employed by humans lies somewhere
between these two extremes.

We will show that for memoryless learners,
each child needs a number of sample sentences, b,
which is greater than a constant times n, the
number of possible grammars. For the batch
learner we find that b must exceed a constant
times logn. If these conditions are fulfilled, then
there will be a predominating grammar that is
used by most individuals in the population.
Clearly, this is a requirement for the evolution
of a coherent language. Hence, the conditions
b > Cinorb > C,logn, where C, , denote some
constants, specify how restrictive the search space
has to be, that is how small the number of candi-
date grammars, n has to be compared to the
number of sample sentences, b, for universal
grammar to work (to evolve). Conversely, the
capacity of the learning mechanism (which can
also be seen as being a part of universal grammar)
is specified by b and whichever algorithm is being
used for evaluating the sample sentences.

Section 2 outlines the general model for the
population dynamics of grammar acquisition.
Section 3 provides a detailed bifurcation analysis
of a special case where the relationship among
the n candidate grammars is completely symmet-
ric. Section 4 describes the memoryless learning
algorithm together with a number of specific
examples. Section 5 describes the batch learner.
The conclusions are presented in the final section.
Some examples of search spaces are worked out
in Appendices A and B.

2. General Model

Mathematically speaking, a grammar mediates
a mapping between form and meaning. The
countably infinite number of possible linguistic
expressions can be represented as strings over
some finite alphabet, 2. The set of all possible
strings of X'; is denoted by X% . In our context, we
can think of the alphabet as all words. Then
a string would be a sequence of words, i.e. a sen-
tence. A grammar specifies which sentences are
valid and which are not. Sometimes it is conve-
nient to consider a “compressed” alphabet con-
sisting, for example, of nouns and verbs. In this
case, a string is a sequence of nouns and verbs
and can be seen as a sentence type. The exact
interpretation of what is meant by the basic al-
phabet is not important for our analysis, and we
will use the terms “sentence” and “sentence type”
interchangingly.

On the other hand, grammar does not only
specify whether a sentence is valid or not, but also
conveys meaning. Hence, more generally, we
have to see a grammar as a mapping between
syntactic forms and semantic forms. Let us enu-
merate all possible meanings as strings over
a primitive semantic alphabet X,. Therefore,
2% is the set of all possible linguistic expressions
and X% is the set of all possible meanings.
A grammar G; generates a subset of X7 x 2%, that
is a (potentially infinite) set of sentence-meaning
pairs. Each grammar, G;, represents a measure
w; on XF x X%, Such measure specifies how often
each grammar may use a certain syntactic con-
struct to express a given meaning.

Let us assume that there are n possible gram-
mars, G4, ...,G,. Matrix A relates grammars to
each other. Let us define a;; = 1:(G;nG;) to be
simply the proportion of sentence-meaning pairs
that G; and G; have in common. Hence, a;; is the
probability that a user of G; speaks an utterance
that a user of G; can understand. We have a;; = 1
and 0 < a;; < 1. In general, a;; # a;;. The matrix
A plays an important role in the dynamics of
grammars, because it defines the fitness of indi-
viduals and the probability of making mistakes in
learning.

Let us consider a population of constant size.
Each person uses only one grammar. The frac-
tion of people who speak grammar G; is denoted
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as x;. We have Y- ;x; = 1. Individuals repro-
duce according to their fitness, and children learn
the language of their parents. For simplicity, we
assume that each person has only one parent, i.c.
each child learns from one teacher. We define the
fitness of an individual with grammar G; as

fi=hot3 ¥ @rax. )

Here, f; is the background fitness which does not
depend on the person’s language. The language-
related fitness depends on the individual’s ability
to communicate, i.e. the number (or fraction) of
sentences he has in common with other people.
Note that in this model, every grammar is as
good as any other, and the ability to communic-
ate depends only on the fraction of sentences that
can be exchanged with other individuals.

We allow for mistakes during language ac-
quisition. It is possible to learn from a person
with grammar G; and end up speaking grammar
G;. The probability of such transition is denoted
as Q;;. The matrix Q depends on the matrix
A because the latter one defines how close differ-
ent grammars are to each other (and therefore,
how easy it is to confuse them with each other).
The dependence of Q on 4 can be modeled if we
make assumptions on how exactly the learning
process takes place (see Sections 4 and 5).

The dynamics of a population (xq,...,X,) can
be captured by the following general system of
ordinary differential equations:

Xj = ZfixiQij —¢x;, 1<j<n, (2)

where ¢ = Y -1 fmXn is introduced to ensure
the conservation of the population size. ¢ has the
meaning of the average fitness of the population,
and its language-dependent part is the grammati-
cal coherence: it defines the probability that a sen-
tence said by one person is understood by another
person. Equation (2) is similar to a quasi-species
equation (Eigen & Schuster, 1979), but has fre-
quency-dependent fitness values (Nowak, 2000).

3. Dynamics of a Fully Symmetric System

In order to investigate system (2), we need to
specify the matrices 4 and Q. Let us consider the

simplest case where all g;; = a, a constant, for all
i #j,and a; = 1. We will refer to such a matrix as
a fully symmetric A matrix. It corresponds to the
situation where all grammars have the same dis-
tance from each other. The fitness in this case is
simply

f,-z(l—a)x,--l-a-i-fo. (3)

Next, we introduce the notion of a learning accu-
racy, q, which is the probability to learn grammar
G; given that the teacher speaks G;. Our assump-
tion of an equidistant configuration of grammars
suggests that all G; are equally easy (or hard) to
confuse with each other. Namely, if a mistake is
made, then it is equally likely that the person will
speak Gj, j # 1, for any j. The probability to be
taught G; and learn G; is u = (1 — q)/(n — 1), for
each j # i. The quantity u is called the error rate
of grammar learning. Thus, the Q matrix is
defined by

Qi=q, Qj=u=(1-q/n—-1), i#] 4)
The learning accuracy satisfies 1/n<g <1,
where ¢ = 1 means that no mistakes are made
and ¢ = 1/n means that it does not matter what
the teacher’s grammar is, the choice of the result-
ing language is completely random. With these

assumptions, system (2) becomes

. 1—gq
4= _a)[_x;+x§q+ v ﬁ(m_xj)}

i#j

_(a+fo)d —q)(nx; — 1) 5)

n—1

forall 1 <j<n

3.1. FIXED POINTS

To begin, we will look for fixed points of sys-
tem (5). Let us set x; = X, x, = (1 — X)/(n — 1),
m # [. This corresponds to the case where all
grammars except one are used with the same
frequency. Without loss of generality, we can take
I = 1. From system (5) with a zero left-hand side,
we obtain n equations for the unknown X. They
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are compatible, because the equations for
X5, X3, ..., X, are identical, and their sum is just
the equation for x; (due to the conservation of
the number of people). In other words, each of the
equations from the second to the last one is noth-
ing but the first equation divided by n — 1. There-
fore, we only need to solve the first equation,

1 —X)? l1—g¢q
X3 —Xx? 1= Xr X —
4+ n—1 < n—1>

(1 —q)(a+fo)(nX —1)
(1 —am—-1)

= 0. (6)

It has three solutions. One of them is
Xo=1/n (7)

and corresponds to the uniform distribution (i.e.
all grammars occur in the population equally
often). The other two solutions are

—(l—a)(1l+(n—2)q) F/D

Xy = 20— Dn—1) :

®)

where

D=4[—1—an—2)=fo(n =11 —g)(n—1)
x(1—a)+ (1 —a*[l +(n—2)q]*> )

These two solutions describe a less symmetrical
situation, when one grammar is the most (least)
preferred one and is used with frequency X , , and
the rest of the grammars are used equally often.
These solutions only exist if D > 0. Therefore, the
existence condition is ¢ > ¢, where

44 2W(n—1)*? —2fo(n — 1)> — 3n — a(2n®> — Tn + 6)

where
p= o (a0 4 fo) @+ o). (12)

We observe (see Fig. 1) that y is a monotonically
increasing function of a and it is equal to 1 when
a=1.Ifaiscloseto1,sothata=1—¢and e — 0,
we have y=1—¢/(4(f, + 1)) + O(c?). The coef-
ficient y also grows with f, reaching 1 as f, — oo.
More precisely, we have y =1 — (1 — a)/(4 fo) +
O(1/fe).

In the special case of a = f, = 0, the existence
condition looks like

42— 12— 3n
= (n—2)

(13)

For n>1 we obtain ¢; = Z/ﬁ + O(1/n), i.e. the
asymptotic behavior is quite different.

Solution (8) is shown in Fig. 2. For all values of
a and fy, at g =1 we have X, =1 and X_ =0.
At the point where the solution first appears
(q = q1), the value is X , = /a/(1 + /a).

We note that because of the choice of the
A and Q matrices, system (5) is highly symmet-
rical and its solutions are degenerate. Namely,
by relabeling variables, we can pick any of
the n grammars to be the “chosen” one, and
then we will have n equivalent solutions of the
form

1—-X
RAR

X1=X,

where X = X,

X, or X_ Vj#lI (14)

L (1 —a)n—27

and W = /(1 + fo)[1 + a(n — 2) + fo(n — 1)]. In
the special case of n = 2, g, isgivenby ¢g; =(3 + a
+ 410)/(4(1 + fy)). For n>»1/(a + f,), we have

1
gy =7y + 0(%)’ (11)

for any [ such that 1 <[ < n. Perturbations of the
A or Q matrix will in general lift the degeneracy,
which may result in the following changes: (i) in
general, all values of x;, j # [, will be different
from each other, and (ii) solutions of form (14)
will have different shapes for different values of
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FI1G. 1. The threshold value, 7, of learning accuracy, in
the limit of large values of n. For ¢ > g, ~ y, asymmetric
solutions become possible. The coefficient y is plotted as
a function of a for different values of the background
fitness, fo.
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FIG. 2. The solutions X = X,, X, and X_. Here,
a=0.5,f, =1and n = 10. Stable solutions are represented
by solid lines, and unstable ones by dashed lines (sce
Section 3.2).

[ (in other words, X,, X+ and X _ will depend
on ).

In the next section, we will prove that solution
(14) with x; = X _ is always unstable and the one
with x; = X (the uniform solution) loses stability
as g grows. Only solutions with x; = X, remain
stable for high values of learning accuracy. When
the A matrix is not fully symmetric, the X . -type
solutions have a more complicated form, but
one important feature persists. Namely, these
solutions can be characterized by one grammar
whose share grows as g approaches unity, where-
as the frequency of other grammars decreases.
We will refer to such solutions as one-grammar
solutions. G; will be called the preferred, or

“chosen”, grammar and the grammars G; with
j # l—secondary grammars.

We would like to emphasize that the fixed
points found in this section are not the only
possible fixed points of system (2). In Appendix
A.1 we demonstrate the existence of other classes
of steady-state solutions. It turns out that for
fully symmetric systems such solutions are al-
ways unstable. In the rest of this section, we only
concentrate on the three fixed points found
above.

3.2. STABILITY OF THE FIXED POINTS

Let us check the stability of solution (14); we
will take [ = 1. Following the well-developed
techniques of a linear stability analysis, we per-
turb the solution by taking x; =X + ji,
X;j=1—X)/(n—1)+7J;, j>1 (here X can be
Xo, X + or X _). We substitute this into system (5)
and linearize with respect to j;. Next, we assume
the exponential behavior of the perturbation, i.e.
(F1s-es ) =€ (1, ..., y,)". The system of lin-
ear equations for y;, ..., y, has the form

ayi +b ) yu=0, cy;+d > ym+ey; =0
m>1 m>1
m#j

2<j<n, (15)
where a, b, ¢, d and e are constants. Because of
the conservation of the number of people, we
have ¥%_,y; =0. Replacing y; by — 37 _;Vm,
we obtain

(a—Db) Z Ym =0, (16)
m=2

c—d)yj+d—e Y ym=0 2<j<n (17
m=2

Here, the first equation is the sum of the other
(n — 1) equations [by construction of eqn (2)]
and is therefore satisfied as long as the other
(n — 1) equations are satisfied. To ensure the
existence of non-trivial solutions of linear system
(17), we require that the determinant of the corre-
sponding (n — 1) x (n — 1) matrix is zero. The
matrix [M;;] has the form M;=c—d,
M;;=d —e for i#j, and its determinant is
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given by

(c—dy *(c—e+m—2)(d—e). (18)
The expressions for ¢, d and e are

1—X\° 1—-X 5

c-a_1+(n—|—1)<—n_1> —2q—n_1 + X

n(a + fo)(1 — g)

m—1)1—-a)’
L I=Xg-X) X —-X)
d=2 17 , e=2 1

Determinant (18) is zero if ¢ = d (the correspond-
ing I' is denoted as I'y) or if c —e+(n—2)
(d — e) = 0 (the corresponding I" is denoted as
I',). Note that in the special case of n = 2 we only
have the latter condition. By examining the sign
of I'y ,, we can study the stability of solutions
Xo, X+ and X _. If at least one of the growth
rates is positive, the corresponding solution is
unstable.

3.2.1. The Uniform Solution
For X = X, = 1/n, we have

1
nn—1)

—n*(1 = q)(fo + a)].

[(n(2¢ —1) = 1A —a)

(19)

This gives a threshold condition for learning ac-
curacy. Namely, for ¢ > ¢,, I'; , become positive
and the uniform solution loses stability. The
value ¢, is given by

_n(fo+a)+m+ 1)1 —a)
= (e + @) + 201 — a)]

(20)

The value ¢, corresponds to the point where
X _ = X,. Thus, the uniform solution loses stab-
ility at the point g where it meets solution X _.
For large n (n>1/(a + fy)), we have

1/1—a 1
1—;<a+f0>+0<ﬁ>-

42 = 21

Note that in the case a=f, =0, we have
q> =1/2 +1/)(2n).

3.2.2. The Asymmetric Solutions

First, we examine the case n > 2. The growth
rate for the two asymmetric solutions is present-
ed in Fig. 3. It turns out that for the solution X ,,
both I'y and I', are non-positive for all g > ¢,
(the solid lines in Fig. 3). This means that the
asymmetric solution X . is stable everywhere in
the domain of its existence. Thus, for higher
values of learning accuracy, the system prefers
a state where one of the grammars is used very
often, whereas the rest of them have an equal (and
small) share.

For X _, the situation is different. In the do-
main ¢; < ¢ < 1, one of the growth rates is posit-
ive whereas the other is negative (at the point
q = q» they are both zero, the dotted lines in
Fig. 3). This means that the solution X _ is unsta-
ble (it is neutrally stable for ¢ = ¢,). It is instruc-
tive to compare the eigenvectors corresponding
to the eigenvalues I'; and I',. The former one has
y1 = 0, and the latter one has y; # 0. For g > ¢,
I'; > 0, which means that the solution X _ loses
stability in such a way that x; stays the same, but
the rest of the grammars fail to keep a uniform
distribution.

For completeness we consider the value n = 2.
In this special case, g, coincides with ¢;. There-
fore, for g < gy =¢q,, the uniform solution
X1, = 1/2 is stable, and for higher values of
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FI1G. 3. The growth rates for the one-grammar solutions
X ( ) and X _(----), as functions of g. Here, a = 0.5,
fo=1and n=20.
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learning accuracy, it loses stability. We have
a pitchfork bifurcation with two equivalent stable
solutions, (xq,X,) =(X4+,X_-) and (xq,Xx,) =
(X*’ X+)

3.3. THE BIFURCATION SCENARIO

To sum up the bifurcation picture (Fig. 2), we
note that for 0 < ¢ < ¢, the only stable solution
is the uniform solution 1/n, then between ¢; and
q> both the uniform solution and solutions (14)
with X ; (the one-grammar solutions) are stable,
and finally, for ¢ > ¢, the uniform solution loses
its stability and the one-grammar solutions
remain stable.

At the point g = ¢;, where the non-uniform
solutions first appear, the corresponding average
fitness (assuming that n is large) is

b ) o=

1—a

(22)

whereas the average fitness of the uniform solu-
tion (for large n) is

d)unif =da +fo. (23)

One can see that as the system goes to a
one-grammar solution, the average fitness
(and the grammatical coherence) experience
a jump, Af = (1 — a)(y/2)* + O (1/n), see Fig. 4.
Note that if a =1 —¢, then Af ~¢/4. As q in-
creases to 1, the total fitness of the one-grammar
solution monotonically increases to 1 + fo,
whereas the fitness of the uniform solution stays
constant.

It is convenient to present the stability dia-
gram in terms of the error rate, u (see Fig. 5).
Clearly, as n grows, it becomes harder and
harder to maintain one grammar. Also,
one can see that there is always a bistability
region where the uniform solution and X, co-
exist. Indeed, for the existence of a one-grammar
solution we need

usuy=cy/n, ci1=1—1. (24)
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FIG. 4. Total fitness of the stable solutions of a system
with a fully symmetric 4 matrix, as a function of learning
accuracy, q. Parameters of the system are as in Fig. 2.
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FIG. 5. The stability diagram in terms of the error rates,
uy . Here, a = 0.5, fo = 1.

For the uniform solution to lose stability we
need

u<uy =cafn?, ¢ =(1—a)a+fo) (25)
The above inequalities are derived in the case of
large n and a + f, > 0.

4. Memoryless Learning

In this section, we will consider a particular
learning algorithm, namely, the memoryless
learner algorithm. It will allow us to relate the
entries of the 4 matrix to the error rate. Then we
will present some examples, where some or all
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symmetries of the A matrix are broken and the
0O matrix is determined according to the mem-
oryless learner formulation. The first example
assumes that all but one grammars are in some
sense equivalent, which means that certain
symmetries remain in the system, even though
the corresponding A matrix is no longer fully
symmetric (Section 4.2). In Section 4.3, we de-
scribe a very general system where no symmetries
remain. As a result, a very interesting bifurcation
diagram is observed, where some of the
grammars are suppressed and others are en-
hanced. Appendices A.2 and B present more
examples.

4.1. THE ALGORITHM

As an example of a simple learning mechanism,
we will use the memoryless learner algorithm
(Niyogi, 1998). We suppose that the learner starts
by (randomly) choosing one of the n grammars as
an initial state. Then b sample sentences are re-
ceived from the teacher. For each sampling, the
learner compares the sentence uttered by the
teacher with his own grammar. If the sentence is
consistent with the learner’s grammar, no action is
taken; otherwise, the learner randomly picks a dif-
ferent grammar. The initial probability distribu-
tion of the learner is uniform: p©© = (1/n, ..., 1/n)",
i.e. each of the grammars has the same chance to
be picked at the initial moment. The discrete time
evolution of the vector p® is a Markov process
with a transition matrix, T'(k), which depends on
the teacher’s grammar, k. This matrix is defined
by T(k);;=0—ay/(n—1) for i#j and
T (k); = ay;. After b samplings, the k-th row of
matrix Q is the string-vector (p®)T obtained with
the transition matrix T(k). Therefore, we can
write

Qi = [(P(O))TT(i)b]j- (26)

This expression models the connection between
matrices 4 and Q. For instance, if we assume that
the off-diagonal entries of the 4 matrix are con-
stant and equal to each other (the fully symmetric
case), then, according to eqn (26), the off-diagonal
entries of the Q matrix are also equal to each
other, and eqn (4) holds. Expression (26) can be
used to evaluate the learning accuracy and the

error rate in terms of a:

q:1_<1_1—a>bn—1’ 27)

n—1 n

u=10—}_ﬂf. (28)
n n—1

Note that lim,..,.q =1 for any fixed n and
0 < a < 1. This means that the more samplings
are available, the more precise the learning pro-
cess becomes. Also, when a =1 (no difference
between grammars), ¢ = 1/n which is the lowest
possible value of learning accuracy. We can use
results of the previous section to find conditions
for b, the number of sampling sentences per indi-
vidual, which would allow the population to
maintain a particular grammar. We will assume
that the number n is large and use inequalities
(24) and (25). In order for solution X . to exist, we
must have

1
" log—. (29)
C1

b>b1=1—a

The uniform solution loses stability if

b>by =—1

n
log —. 30
l_aogc2 (30)

The constants ¢; and ¢, are defined in formulas
(24) and (25). Now we turn to some examples.

4.2. BREAKING THE SYMMETRY OF THE 4 MATRIX

The A matrices that we have considered so far
possessed such symmetries that all one-grammar
solutions were identical for all grammars G;. This
is not the case in general. All non-symmetrical
perturbations of a fully symmetric A matrix lead
to the effect of suppressing some grammars and
enhancing others. For instance, if we take a fully
symmetric 4 matrix and replace one element
a;; = a with a + £, we will observe the following
picture. The branch of the stable asymmetric
solution X, corresponding to the grammar
G; will split off from the other one-grammar
solutions, whereas solutions with grammars G,
I #1i, | #j, will stay together (the one-grammar
solution with G; as the preferred grammar will
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FI1G. 6. The growth rates for the asymmetric matrix
A with all off-diagonal a;; = 0.5 except a;, = 0.1. The solu-
tion with the G; as the preferred grammar is advantageous
in comparison with the rest of the one-grammar solutions, it
has a higher coherence and comes into existence for smaller
values of b. The grammar G, is slightly suppressed.

deviate ever so slightly from the rest of the gram-
mars). It turns out that if & > 0, the grammar
G; will be suppressed (and the grammar G; will be
very slightly advantaged), and if ¢ < 0, the gram-
mar G; will be enhanced (and G; will be slightly
suppressed). This means that for ¢ < 0, the solu-
tion with grammar G; will come into existence
earlier (for smaller values for ¢ and b) and will
have a larger total fitness (see Fig. 6, where i = 1,
j=2,a=0.5 and ¢ = — 0.4). This makes sense
because negative (positive) values of ¢ means that
the grammar i has a smaller (larger) intersection
with the rest of the grammars than the rest of
them. When this grammar becomes preferred, it
stands out more (less) than other grammars
would in its place, i.e. it corresponds to higher
(lower) values of X, and has a larger (smaller)
total fitness.

4.3. RANDOM OFF-DIAGONAL ELEMENTS

Another example of a non-symmetrical system
is the case of an A matrix with random elements,
see Fig. 7. We take the off-diagonal elements of
the A matrix to be random numbers uniformly
distributed between zero and one. If the conse-
quence, no symmetries are left in the system. If
the number of learning events, b, is high, there are
still n stable one-grammar solutions (17 of 20 can
be seen in Fig. 8). The difference with the fully
symmetric case is that here, one-grammar
solutions with different dominant grammars

e
X
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FI1G. 7. The fitness of the system with the A matrix con-
sisting of uniformly distributed random numbers
0 < a;; < 1. The number of grammars is n = 20, and f, = 0.

correspond to different values of ¢, the
grammatical coherence of the population.
Thus, each of the solutions is represented by
a separate line. The number of stable one-gram-
mar solutions grows with b. Some of the gram-
mars become advantaged and have a lower
threshold of existence. Some are suppressed until
much higher values of b. Such behavior was al-
ready present in the example of Section 5.5. The
value of b at which the first bifurcation takes
place can be roughly predicted by using formula
(29) with a = 1/2, i.e. the average value of the
elements a;;.

Another interesting feature that can be clearly
observed in Fig. 7 is that the lowest fitness solu-
tion (which corresponds to the uniform solution
of the fully symmetric case) flows smoothly into
one of the one-grammar solution (the “second
best” one for this particular realization of 4). This
effect can be predicted from the standard bifurca-
tion theory. Namely, general perturbations of
a pitchfork-like bifurcation will lead to smooth-
ing out sharp edges and avoiding cross-sections,
and might also cause the disappearance of
“knees” (bistability regions) like those in Fig. 2.

We have performed computer experiments
with different distributions of the elements a;; of
random A matrices and observed the following
dependencies:

e The first bifurcation point b at which a coher-
ent grammar emerges can be roughly estimated
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with formula (29) where we use the average
value a = <{a).

e The width of the interval over which various
grammars bifurcate increases with the width of
the distribution of the a;; values, and also it
becomes larger as {a) grows.

We conclude that systems with random 4 ma-
trices behave in a predictable way, and many
of the eclements of the dynamics can be
understood from the analysis of symmetrical sys-
tems and their perturbations. However, an ex-
tended study of a system with randomly chosen
a;; 1s still needed to describe the full bifurcation
picture.

5. Batch Learning

Another example of a learning algorithm is
given by the so-called batch learner pattern
(Niyogi, 1998). According to this algorithm, the
learner receives a set of b sentences from the
teacher and then decides which grammar he will
use. The resulting grammar has to be consistent
with all of the sentences uttered by the teacher. If
all the b sentences happen to be consistent with
more than one grammar (say, with » grammars),
then the learner can pick any of the r grammars
with probability 1/r. We will show that this
mechanism is much more effective than mem-
oryless learning.

Let us derive equations relating the learning
accuracy, ¢ and the error rate, u, with the number
of sample sentences, b, a batch learner’s equiva-
lent of eqns (27-28). It turns out that the informa-
tion given by the 4 matrix is not sufficient to give
estimates for the learning accuracy. The 4 matrix
only reflects intersections of pairs of grammars,
but it does not specify the intersections of three or
more grammars. The following example demon-
strates that for the same A matrix, different con-
figurations of grammars lead to very different
learning accuracies for a given number of samp-
ling sentences.

Consider a set of n grammars with a fully
symmetric A matrix, a;; = a. Let us assume that
the teacher speaks grammar G, so that the b sen-
tences received by the learner are all consistent
with G,;. Let us denote the intersections
GinG;=D;, i # 1. The size of D; is p[D;] = a.

Now, let us look at two cases:

(1) All the sets D; coincide, i.e. D; = D; for all
2<i,j<n,
(i) D;nD; =0 for all 2 <i,j <n.

Note that in the second case we need to assume
that a(n — 1) < 1. It is easy to see that the prob-
ability to learn the teacher’s grammar in the two
cases is given by

n—1

b
1n=1—a 5
n

case (i) (31)

—1
Qi =1—a"—.

3 (32)

case (ii)

For the same values of a, n and b, the learning
accuracy in the first case is much higher than it is
in the second case.

Let us now consider a random configuration of
grammars. Again, we have n — 1 sets D; of size
a inside the set G, of size 1. The learning accu-
racy, ¢, can be calculated as

M=

q= ), p(j)Jj (33)

J

1

where p(j) is the probability that all of the
teacher’s sentences belong to an intersection of
j different grammars G, ..., G,; (and to no other
grammars). All of the sample sentences by defini-
tion belong to the “correct” grammar. The prob-
ability that b sentences belong to one of the n — 1
“wrong” grammars is a’. The probability to be-
long to exactly j “wrong” grammars simulta-
neously is (a?)’(1 —a®"~17J, and there are

S i =m—=1j))n—1—j)! ways to choose
j grammars out of the lot of n — 1 grammars. We
have

noo (@) T —ah)nd
g= > Ci2} .
jgl ! J
1—(1—a)"
- G4

The error rate is given by u = (1 — ¢)/(n — 1). For
a — 0 we have ¢ — 1, and for a = 1, the learning
accuracy is ¢ = 1/n. Note that in the limit of
small values of a we recover eqn (32) for “sparse”
grammars.
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The random configuration of grammars is not
the hardest one to learn. We can design an
example where for the same values of parameters,
the learning accuracy is even lower. Imagine the
situation when the sets D; form a neat N-layer
tiling of the set G;. In other words, let us assume
that the number N = a(n — 1) is integer, and that
exactly 1/a “wrong” grammars compose each of
the layers. The layers have no gaps, i.e. within
each layer, Ui, D, = Gy, and D,nD; = (. Then
the learning accuracy is given by

b—1\N+1
oo ) (35)
a (N +1)
This value of ¢ is slightly smaller than the one
defined in formula (34) for all 0 < a < 1.

On the other hand, case (i) above describes the
easiest possible configuration of grammars for
batch learning. This follows from eqn (33) and the
inequality }'5_, p(j) = a. The case when p(j) =0
for all 2<j<n—1 and p(n) = a [i.e. case ()]
minimizes the right-hand side of eqn (33) under
the above restriction.

Finally, we will give an estimate for the bifurca-
tion point, by, for the batch learner algorithm.
The result is implicit and for n>1/(a + f;) it can
be written as

log (x/n)

by = loga (36)
where x is the solution of the equation
1 — xq; —exp™ * =0 (for the estimate of b, we
need to replace ¢q; by ¢, in the equation for x).
Since ¢;>1/n, we have x«n, and therefore its
contribution in formula (36) can be neglected. We
have

_ logn
' log(1/a)

(37)

We can see that the number of sample sentences
needed for a community of batch learners to
develop a coherent language grows as logn,
whereas memoryless learners need b oc n senten-
ces [formula (29)]. This is a consequence of the
fact that batch learners have a perfect memory,
whereas memoryless learners only remember one
sentence at a time.

6. Conclusions and Discussion

We have studied an evolutionary model of
grammar learning. It has been shown that gram-
matical coherence is possible if the learning accu-
racy of children is sufficiently high. This is a gen-
eral result; the details of the threshold condition
depend on the assumptions on the learning pro-
cedure that children use. For a memoryless
learner we find that the total number of sample
sentences, b, that a child receives during the lan-
guage acquisition phase, must exceed a constant
times n, the number of candidate grammars. For
a batch learner, we obtain that b has to exceed
a constant times the logarithm of n. The mem-
oryless learning algorithm makes the minimum
demands on the cognitive abilities of the indi-
vidual. The batch learner represents the other
extreme; it remembers (a fraction of) all sentences
and then chooses a grammar that is consistent
with all memorized sentences. The human strat-
egy of grammar acquisition will be somewhere
between these two limiting cases. If the threshold
condition is satisfied, then a community of indi-
viduals can maintain a coherent grammatical
system.

These results can also be discussed in terms of
the principles and parameters framework pro-
posed by Chomsky (1981). Universal grammar is
specified by genetically inherited principles which
limit the number of candidate grammars. The
candidate grammars differ in terms of parameter
settings which have to be learned. If these are
k independent, binary parameters, then the num-
ber of candidate grammars is n = 2*. For the
memoryless learner we require that k is less than
a constant times the logarithm of b. For the batch
learner we need k to be less than a constant times
b. The innate principles have to reduce the num-
ber of parameters to fulfill these conditions. If
these conditions are not fulfilled then a popu-
lation of individuals cannot maintain or evolve
a consistent grammar.

The dynamics of grammar acquisition strongly
depend on the parameter b. If b is below the
threshold, all grammars are used in the popu-
lation with a roughly similar frequency, and the
resulting average fitness is low. As the number of
learning events, b, increases beyond its threshold
value, the system experiences a spontaneous
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symmetry breaking. The average fitness increases
(often discontinuously) to reach a new, higher
value. This means that one of the grammars be-
comes dominant, and as a result most of the
people in the population can communicate suc-
cessfully. An interesting part is that in principle,
any of the given grammars that constitute the
search space, can become dominant, if the num-
ber of learning events is sufficiently high. The
system has multiple (up to n) stable equilibria.
Which grammar becomes preferred in the
population depends on the initial distribution of
grammars.

An alternative approach to the problem of the
evolutionary selection of coherence is stochastic
modeling. Computer simulations can be carried
out where in a population of individuals, children
receive b sentences from their parents, and de-
duce the correct grammar using some learning
algorithm. This process is described by the deter-
ministic equations (2) exactly if the number of
people in the population tends to infinity. For
smaller population sizes, stochastic effects play
a role. In fact, we expect that they may introduce
some qualitatively new behavior which is sup-
pressed in the deterministic model. From our
analysis it follows that once the deterministic
system has relaxed to one of the stable fixed
points, no further change is possible. On the
other hand, in a stochastic system, finite size
effects act as perturbations to the smooth dynam-
ics of eqns (2) and might lead to spontaneous
changes in the grammatical system in time. Even
if one of the grammars dominate the population
for some time, it may happen that the system will
be kicked out of this state and relax to a different
one-grammar solution. Results of such simula-
tions will be reported elsewhere.

Another interesting extension of the frame-
work developed here is to look at the competition
among different universal grammars. An exist-
ence of coherent solutions is clearly a necessary
condition for the evolvability of universal gram-
mar. Once universal grammar is in place, a co-
herent language will be maintained in the
population. However, in order to demonstrate
that universal grammar has come about by
means of Darwinian evolution, it is important to
look at competition of different types of universal
grammars. Equations of type (2) can be used. The

first step has been made in Komarova & Nowak
(2001), where a one-parametric family of univer-
sal grammars was considered. All the universal
grammars were identical (had the same search
space and the same learning mechanism) except
for the number, b, of sampling events available to
children during the grammar learning phase. As
a result, an intermediate value of b was selected
which maximized the reproductive rate times
learning accuracy. The next step will be to find
out what evolutionary pressures act on the selec-
tion of the learning mechanism.

Finally, we note that in the current model, no
spatial variations have been taken into account.
Equations (2) can be easily modified to describe
diversity of languages by including space-de-
pendence. Then, at different regions, different
grammars can become dominant and some inter-
esting spatial dynamics at the grain boundaries
may be observed.
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Appendix A
m-Grammar Solutions
A.l. A FULLY SYMMETRIC SYSTEM

A wider class of steady-state solutions of sys-
tem (2) can be found if we assume that m of the
n grammars are used with frequency X™ and
the other n —m grammars—with frequency
(1 —mX™)/(n — m). Obviously, solution (14) is
a special case of this family with m =1. We
can choose the m grammars out of n in
Cy =nl/im!(n —m)!) ways which will give us
C; equivalent solutions. Without loss of general-
ity we will take

x;=X™ 1<I<m and

xi=1=—mX™)/n—m), m+1<j<n (A1)
In order to find X™ we can write eqn (3.1)
generalized for m # 1. Obviously, for m =0
or n, the only solution is the uniform one,
X©-0 = X = 1/n, and there are three solutions
for X™ with 1 <m<n—1: Xo=1/n, X1 and
X, Solutions X! are given by eqn (8). For
general m, we will describe general properties of
solutions without giving explicit expressions.
Solutions X4 have an obvious symmetry prop-
erty, namely, X4 ™™ = (1 — mX™)/(n — m). These
solutions exist for g > ¢{", the behavior of ¢{™ is
shown in Fig. Al. One can see that the lowest
threshold value corresponds to m=1 (or
m = n — 1). The asymptotic behavior of ¢{™ is as
follows. If n>1/(a + f;) and lim,.  m/n =M,
a constant between 0 and 1, we have

1 1 —a 1
Y aa—joma—m " ° <F> (A42)

q1 =
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FIG. Al. The threshold value ¢{™ as a function of m;
other parameters are n = 20, a = 0.5 and f, = 1.

and in the case when lim,_ ,m/n =0, we have
eqn (11) with

p= o (mla + L) 0+ am — 1)+ mfy

—m(a + fo)),

which is a generalization of formula (12). When
qg=1, we have X =1/m and X™ =0.
This means that the maximum fitness reached by
such m-grammar solutions is (1 — a)/m + a + fo.
Stability of solution (A.1) can be investi-
gated. The system for the perturbations can be
written as

(A.3)

Ay+B Y, y»=0, 1<I<m, (A4
léi;élm
Cy;j+D Y y»=0, m+1<I<n,
m+1<i<n
i#1

(A.5)

where coefficients A-D depend on parameters of
the system and I', the growth rate. The above
system can have non-trivial solutions if the deter-
minant of the corresponding matrix is zero,
which gives the following conditions: C =0
(which results in an expression for I'{"™),
A+(m—1)B=0 (which gives I'!"), 4=0
(which gives I'S"”) and C +(n —m —1)D =0,
the latter condition is redundant because
the equations of system (A.4-A.5) are not all
independent due to the conservation of the num-
ber of people.
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FIG. A2. The growth rates for the solutions X% (——)
and X® (----- ), as functions of q. The other parameters
aren=20,a=05,f,=1and m =4.

The growth rates’ dependence on ¢ is shown in
Fig. A2. The behavior of I'{"™ and I'S" is similar
to the behavior of the growth rates in the case of
m = 1, see Fig. 3. On the other hand, '™ is a new
feature. It turns out that for m =1, I'{" = ",
but for all values of m larger than 1, I'{" > 0 for
the solution X ¢, i.e. it is unstable. We conclude
that for fully symmetric 4 matrices, m-grammar
solutions are unstable for all m > 1.

A.2. A BI-DIAGONAL 4 MATRIX

We will now briefly discuss the example of
a system where m-grammar solutions can be
stable. This is a system with a bi-diagonal A-
matrix. The 4 matrix is given by

a; =1, aj=a, j#i, j#n+1—1i and

Ain+1-i=ad +C (A.6)
for all i. In other words, the main diagonal of the
A matrix consists of ones, and the other diagonal
has elements a + ¢, whereas the rest of the ele-
ments are all a. In Fig. A3 we can see the bifurca-
tion diagram for such a system. We can see that
a bi-diagonal system supports not only the
uniform solution and the one-grammar solutions,
but also solutions where two grammars are used
equally often, whereas the others are distributed
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FIG. A3. The total fitness of a system with the matrix
A given by eqn (A.4), as a function of b. The values are
a=0.5¢=035n=8andf, =0.

uniformly. Such solutions are similar to solutions
(A.1) of the previous section with m =2. In
systems with ¢ = 0, these solutions were always
unstable and only existed for ¢ > ¢;. For gen-
eral values of ¢, two-grammar solutions can be
stable. More precisely, there is a critical value ¢’
such that if ¢ > ¢’ >0, then ¢¥ < g4, ie. two-
grammar solutions appear earlier than one-
grammar solutions (see Fig. A3), and they are
stable. At the point where a two-grammar
solution meets a one-grammar solution, it loses
stability, and the system experiences the second
bifurcation, to the solution of the X . type. There
are n two-grammar solutions which look like
X =Xp1=XP, 1<I<n.

Appendix B
n Equivalent Grammars

Here we work out an example where the
A matrix is not fully symmetrical, but the n gram-
mars are nevertheless equivalent to each other.
We will show that symmetries in the configura-
tion of the search space will lead to degeneracies
in the space of equilibrium solutions.

Let us assume that the total number of senten-
ces that each of the n grammars has is N (normal-
ly we think of grammars as being able to generate
an infinite number of sentences, this is reached by
taking N to infinity). Further, we suppose that
each of the sentences can be formed in only two
different ways, a and b. Therefore, each grammar

can be represented as a sequence of N symbols
chosen from the set {a, b}. There is a natural
correspondence between such grammars and all
binary numbers (just take a =0 and b =1),
which gives a convenient way to order all
the grammars. There are n=2" competing
grammars in total. The A matrix in this case is
defined as follows: g;; is the total number of
positions at which grammars G; and G; have the
same symbol, divided by N. For N = 3, this
matrix is

1 2/3 2/3 1/3 2/3 13 13 0
23 1 13 2/3 13 23 0 13
23 13 1 23 13 0 23 13
13 23 23 1 0 13 13 2/3
23 13 13 0 1 23 23 13|
13 23 0 13 253 1 1/3 2/3
13 0 23 13 23 13 1 2/3
0 1/3 1/3 2/3 1/3 2/3 2/3 1

(B.1)

One can see that A4 is not fully symmetric but it
still contains certain symmetries (e.g. reflection
with respect to both diagonals). It can be shown
that the Q matrix in the case of the memoryless
learner algorithm has the same structure as the
A matrix. One can check that system (2) can be
satisfied if we substitute

X1 =0, x2=x3=x5=,3,

Xg =0 (B.2)

X4 = Xe = X7 =7,

with o + 3(f + ) + 0 = 1. One of the solutions
is then « = f§ =y =0 = 1/8 which corresponds
to the uniform solution of Section 3. The other
(asymmetric) solutions are hard to find analyti-
cally because three (instead of one) cubic equa-
tions for ¢, f and y have to be solved (for linear
properties of fitness landscapes like eqn (B.1)
see Rumschitzky, 1987). Numerical simulations
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F1G. Bl. The average fitness as a function of b for the
system of n = 32 grammars consisting of N = 5 sentences.
Each sentence can be formed in two ways.

(see Fig. B1) show that there exists a stable one-
grammar solution. It resembles the X ; solution
of Section 3 in the following sense: as g becomes
larger, the value of « grows and approaches unity.
This means that the first grammar is the preferred
one, whereas the other grammars are used less
frequently. The difference is that the secondary
grammars are not all used with the same fre-
quency (i.e. f # 7y, y # 0, B # 0).

Next, we notice that system (2) in this case is
invariant with respect to relabeling the variables
in a certain way. For instance, we can set x, = a,
X1 =X4=X¢=p,x3=x5 =xg=7and x; =9,
and obtain exactly the same equations for a,
p and y, as we had for solution (43). There are
exactly 2° = 8 ways of relabeling variables which
lead to the same equations, and they can all be
found just by looking at the 4 matrix. Let us form

another matrix by replacing 1 in the 4 matrix by
o, 2/3 by B, 1/3 by y and 0 by 6. We obtain:

X1 X2 X3 X4 X5 Xeg X7 Xg
Gi: « B B vy B v v 0
Gy B ooy By B 0 v
Gy By o B v o B
Gy y B B o« o y y B
Gs: By v o o« B B
Ge: y B oy B ooy P
G y o By By o P
Gyg: o vy vy B v B B

(B.3)

The first row of this matrix gives solution (B.2),
where grammar G, is the preferred one. Each
subsequent row gives another possible solution
of system (2). Obviously, this is a consequence of
symmetry of matrix 4. Such symmetry reflects
the fact that all grammars in this simple model
are equivalent. Each of them shares 2/3 of its
sentences with 3 other grammars, 1/3 sentences
with three different grammars and does not inter-
sect with the last grammar. Each of the grammars
can become preferred, and leads to the same
value of the total fitness.

The above argument can be easily extended to
general values of N. In the numerical simulation
presented in Fig. B1 we used the value N = 5. All
of the n = 2% = 32 equivalent one-grammar solu-
tions are represented by the upper branch. The
uniform solution is the horizontal line.
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