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The language acquisition period in humans lasts about 13 years. After puberty it becomes increasingly
di¤cult to learn a language. We explain this phenomenon by using an evolutionary framework. We
present a dynamical system describing competition between language acquisition devices, which di¡er in
the length of the learning period. There are two selective forces that play a role in determining the
critical learning period: (i) having a longer learning period increases the accuracy of language
acquisition; (ii) learning is associated with certain costs that a¡ect ¢tness. As a result, there exists a
limited learning period which is evolutionarily stable. This result is obtained analytically by means of a
Nash equilibrium analysis of language acquisition devices. Interestingly, the evolutionarily stable learning
period does not maximize the average ¢tness of the population.
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1. INTRODUCTION

The ability of language acquisition in humans lasts
roughly until the onset of reproduction, which happens
approximately at the age of 13 (Lenneberg 1967). During
this period children can learn a language (or several
languages) with relative ease; after the age of 13 it
becomes increasingly hard to acquire a language, and the
result of learning becomes less and less perfect (Ingram
1989). Various explanations of this fact have been
suggested, including the maturation of language circuits
during a child’s early years (Huttenlocher 1990; Bates
et al. 1992; Locke 1993; Pinker 1994). It is important,
however, to develop an evolutionary description of this
phenomenon. Several recent studies have addressed this
problem.

Hurford (1991) developed a numerical model where
each individual was characterized by a certain language
acquisition pro¢le. A genetic algorithm was employed to
evolve the most e¤cient pro¢le. Knowing a language had
a positive correlation with the individual’s reproductive
success. The language was assumed to have a certain
s̀ize’, and if an individual had acquired all of the
language by a certain age, no further language acquisi-
tion was possible. As knowing `more’ of the language
increased the person’s ¢tness, learning all of the language
during the ¢rst (non-reproductive) stage of the indivi-
dual’s life was selected for. Keeping up the theoretical
ability to learn the language after the whole of the
language had been learned did not change the person’s
lingual abilities. It was therefore evolutionarily neutral
and could be eliminated by a random drift. As a result,
most individuals learned their language by puberty as a
result of this evolutionary process.

In the study by Hurford & Kirby (1999), the same
approach was modi¢ed to include the possibility of
innovation, i.e. expanding the language size by some
individuals in the process of evolution. As a result, the
amount of language available to individuals grew, and

so did the speed of language acquisition. Forced by
natural selection, the age of full language acquisition
(de¢ned as size/speed) reached puberty and then
remained constant throughout generations. In these two
papers no costs of learning were included in the simula-
tions, which led to a somewhat puzzling result of an
unbounded growth of both the language size and the
speed of acquisition.

The role of learning costs has been studied by many
authors (see, for example, Mayley (1996)). In Cecconi
et al. (1996), the costs of learning were incorporated in a
genetic algorithm which modelled the evolution of
learning behaviour in a group of agents (neural
networks). The age of reproduction of the agents was
assumed to coincide with the end of their learning period.
The gene for the age of reproduction onset was passed
down the generations, and the learning cycle of immature
individuals was modelled explicitly. The agents’ ability to
learn, and some other features of their phenotype such as
characteristics of the neural network architecture, were
also inherited genetically. An empirical ènergy’ para-
meter was introduced, and all functions of agents, e.g.
reproduction, parenting and learning, were assigned a
cost which was subtracted from their initial energy level
throughout their lives. As a result of non-zero learning
costs, there was an evolutionary pressure to keep the
maturation period short. Because the morphology of the
neural nets was allowed to change via mutations, after a
certain (large) number of generations the ability to learn
was outcompeted by the corresponding in-built charac-
teristics of the organisms; i.e. the Baldwin e¡ect, or
assimilation, was taking place. In the present study we
shall not include the possibility of replacing adaptive
characteristics by inherited features, assuming that this
process takes much longer than the time-scale considered
in our model.

In this paper we introduce an evolutionary model
that incorporates some of the above ideas in a very
simple way (see also Cavalli-Sforza & Feldman (1981)).
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Namely, we assume that:

(i) successful communication increases an individual’s
biological ¢tness;

(ii) the ability to learn is genetically inherited;
(iii) learning is costly;
(iv) there is no assimilation of learnable characteristics

on the time-scales of interest.

The model presented below is amenable to an analytical
treatment. The main result is the existence of a critical
learning period that is an evolutionarily stable strategy
(ESS), or Nash equilibrium (Nash 1950; Maynard Smith
1982). It is de¢ned by two competing forces: if the
learning period is too short, then the result of learning is
too far from perfect, which reduces the individual’s
¢tness; if the learning period is too long, it reduces the
reproduction rate because keeping up the ability to learn
is very costly (for the learning individual, its parents or
both). There is a learning period that optimizes the inter-
play between these two factors, yielding an evolutionary
equilibrium which cannot be invaded by any other
learning period. The evolutionarily stable learning period
does not optimize the average ¢tness of the population.

In the next section we shall describe the model, in ½ 3
we present the results, while ½ 4 is reserved for conclusions
and discussion. Most of the details of the analysis are
presented in Appendix A.

2. LANGUAGE ACQUISITION DEVICE AND

EVOLUTIONARY DYNAMICS

We consider a group of individuals that has a constant
size. The individuals reproduce according to their
language-related ¢tness, and the children learn the
language of their parent (for simplicity, asexual repro-
duction is assumed). The learning procedure is de¢ned by
means of a language acquisition device (LAD), which is
genetically inherited.

The framework developed here can be adopted for
studying the critical period for acquisition of various
aspects of human language, such as phonology, lexicon
and grammar, as well as animal communication systems.
In this work, we shall concentrate on grammar acquisi-
tion. For our purposes the terms `language acquisition
device’ and `universal grammar’ (Chomsky 1980, 1993)
can be used synonymously.

Universal grammar (UG) speci¢es the range of gramma-
tical hypotheses that children entertain during language
acquisition (see Wexler & Culicover (1980); Lightfoot
(1982)). Many linguists believe that universal grammar is
the consequence of speci¢c genetically encoded structures
within the human brain (Hornstein & Lightfoot 1981;
Pinker & Bloom 1990; Jackendo¡ 1997). It is important to
note the di¡erence between universal grammar and the
grammar of the spoken language. The former is a hard-
wired property of the child’s brain, whereas the latter is
the speci¢c grammar that the child learns during its
maturation phase.

Let us denote all possible spoken grammars by
G1, : : :, Gn, where n is some ¢nite integer. During the
language acquisition phase, each child has to `decide’
which grammar is the actual grammar of its parent,
based on a ¢nite number of the input sentences, b, that

the child receives during the language acquisition period
(see Osherson et al. (1986); Lightfoot (1991, 1999); Niyogi
& Berwick (1996, 1997); Niyogi (1998)). Note that the
number of candidate grammars can also be in¢nite,
provided that children have a prior probability distri-
bution specifying that some grammars are more likely
than others. In this paper, however, we shall restrict our
analyses to the case of a ¢nite search space, where all
candidate grammars are equally likely at the beginning of
the learning process.

Mistakes in learning take place. Denote by Q ij(b) the
probability that a child learning from a parent with
grammar Gi will end up speaking grammar Gj. The
matrix Q (b) ² ‰Q ij(b)Š is equivalent to the mutation
matrix in quasi-species theory or population genetics
(Eigen & Schuster 1979; Aoki & Feldman 1987), except
here it is not connected with the genetic inheritance, but
rather with the learning (copying) precision, or learning
accuracy. The value of b is a convenient measure of the
length of the learning period, if we assume that the input
sentences are delivered at a roughly constant rate. The
existence of an evolutionarily stable value of b will suggest
that there is a natural selection for a critical period of
language acquisition.

Formally, each LAD is characterized by:

(i) a search space of a ¢xed size, i.e. the sets
G1, : : :, Gn; each of the grammars can be the spoken
grammar of the language ;

(ii) the number of learning events, b;
(iii) and a learning mechanism, which gives the matrix

Q (b).

The value of b has two important consequences for the
evolution of learning. Firstly, the matrix Q (b) can be
explicitly calculated if the grammars G1, : : :, Gn and the
learning mechanism are speci¢ed (Komarova et al. 2001).
For the present study we do not need to specify the
precise form of Q (b); the only important property that
we are going to use is the following: limb!1 Q ii(b) ˆ 1
for all 14 i4 n. This means that the larger the number of
input sentences, the better are the chances of learning the
grammar perfectly.

The second e¡ect of b is the reproductive rate, r(b). This
quantity includes implicitly all the costs of learning that
depend on the length of the learning period (Mayley
1996). It may consist of several components. We can
conceive that while the individual is concentrated on
learning, the resources (which are always limited) are in
some sense taken away from the reproductive function.
More precisely, (i) time and energy get directly invested
in learning; (ii) the ability to memorize linguistic items
requires a sophisticated memory storage system, which
needs constant maintenance ; and (iii) the brain has a
limited capacity for processing information, i.e. intensive
learning may decrease the individual’s performance in
other areas of life (see Dukas (1998)). Also, if an indivi-
dual needs a lot of `help’ in learning from its parent, this
means that the parent cannot go on reproducing while its
child is still in the maturation stage. In any case, the
longer the learning period lasts, the more energy it uses,
which could otherwise be spent on reproduction. The
corresponding reproductive rate, r(b), re£ects these
mechanisms. Again, the exact form of this function is not
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important for the qualitative results provided it decays
with b. An example of a simple empirical parameteriza-
tion will be considered in the next section.

Because the purpose of this work is to understand the
selection of a critical language acquisition period, we
shall assume that all the LADs present in the population
only di¡er in the number of learning events, b, and they
are identical otherwise. This means that all of the LADs
consist of the n grammars G1, : : :, Gn. The strategy we
are going to use is as follows. First we shall assume that
there are only two di¡erent LADs present in the popula-
tion, and perform the analysis of the corresponding
system. The result of this analysis will reveal which one of
the two LADs will be selected (in other words, which of
the values of b will invade when the two of them are
present). Then it will be possible to ¢nd the LAD that
cannot be invaded by any other LAD, i.e. the evolutiona-
rily stable b. Note that the size of the search space (i.e.
the parameter n) and the grammars G1, : : :, Gn are
assumed to be ¢xed in this model and do not evolve.

We shall denote the two LADs present in the popu-
lation by U1 and U2. Let the vector x ˆ (x1, : : :, xn)
stand for the fraction of people who speak grammars G1

through Gn of U1, and the vector y ˆ ( y1, : : :, yn) denote
the fraction of people who speak grammars G1 through
Gn of U2. The total population size is scaled to unity:

n
iˆ1 (xi ‡ yi) ˆ 1. The language acquisition devices are

inherited genetically. The system of 2n equations
describing the coexistence of U1 and U2 is as follows
(Nowak et al. 2001):

_xi ˆ r(b1)
n

jˆ1

xj f
(1)
j Q ji(b1) ¡ ¿xi, (1)

_yi ˆ r(b2)
n

jˆ1

yj f (2)
j Q ji(b2) ¡ ¿yi, i ˆ 1, : : :, n: (2)

The left-hand side of these equations contains the time-
derivative of the frequency of each grammar. We shall
now explain the terms in the right-hand side of equations
(1) and (2).

First we note that the grammars G1, : : :, Gn do not
have to be speci¢ed precisely for the purposes of the
present study. However, we do need to use the informa-
tion about the pairwise intersections of the grammars.
Denote by aij the probability that a speaker who uses
grammar Gi formulates a sentence that is compatible with
grammar Gj. Hence, the matrix A ˆ ‰aijŠ contains the
pairwise relationship among the n grammars. We have
04aij4 1 and aii ˆ 1.

We assume that there is a reward for mutual under-
standing. The pay-o¡ for an individual using Gi commu-
nicating with an individual using Gj is given by
F(Gi, Gj) ˆ (1/2)(aij ‡ aji), which is just the average
probability of mutual understanding. Note that
F(Gi, Gi) ˆ 1 (hence, all n grammars are equally
powerful and allow the same level of communication).
The average ¢tness of individuals who use grammar Gj

(of U1 and U2 respectively) is found by

f (1)
j ˆ 1/2

n

kˆ 1

(ajk ‡ akj)xk ‡
n

mˆ1

(aj, n‡ m ‡ an‡ m, j)ym ,

(3)

f (2)
j ˆ 1/2

n

kˆ1

(an‡ j, k‡ ak, n‡ j)xk ‡
n2

mˆ1

(an‡ j, n‡m‡ an‡ m, n‡ j)ym .

(4)

Here the pairwise relationship matrix A has the size
2n £ 2n because we have two sets of n grammars which
belong to U1 and U2. In the present study, the two sets of
grammars are identical, and we can set

f (1)
j ˆ f (2)

j ² fj ˆ 1/2
n

kˆ1

(ajk ‡ akj)(xk ‡ yk), (5)

for all j. Someone who uses a grammar that is understood
by others has a better performance during life history in
terms of survival probability or reproductive success.
Individuals who communicate successfully leave more
o¡spring (thus the factors fj in equations (1) and (2)),
who in turn learn their language. This puts the problem
of grammar acquisition in an evolutionary context
(Nowak & Krakauer 1999; Nowak et al. 1999, 2000).

Finally, the quantity ¿ in equations (1) and (2) is the
average ¢tness of the population. It is the average prob-
ability that a sentence said by one person is understood
by another person (or the grammatical coherence), weighted
by the individuals’ reproductive rate:

¿ ˆ
n

jˆ1

(r(b1)f
(1)
j xj ‡ r(b2)f

(2)
j yj): (6)

The analysis of system (1)^(2) is presented in Appendix
A. In ½ 3, we shall outline the main results and present
some examples.

3. AN EVOLUTIONARILY STABLE LEARNING PERIOD

As was argued before, the reproduction rate, r(b),
decays with b, and the learning accuracy for each
grammar, Q ii(b), grows with b, so the functions
r(b)Q ii(b) have a maximum. Let us de¢ne b¤

i as the value
of b that corresponds to the maximum of the function
r(b)Q ii(b). The following result holds: if b¤

m corresponds
to the highest among the maxima of functions r(b)Q ii(b),
then the LAD with b ˆ b¤

m is evolutionarily stable with
respect to any other LAD with a di¡erent number of
sampling events. The spoken grammar in this case is Gm.
More generally, if Gi is the spoken grammar, then under
some mild conditions the evolutionarily stable LAD has
b ˆ b¤

i . These results are exact in the limit of large values
of n.

Intuitively speaking, as b increases, two things happen:
(i) the learning accuracy increases, and (ii) the repro-
ductive rate decreases. These are the natural requirements
that should guarantee that there is a selection for inter-
mediate values of b.

To illustrate this we chose the memoryless learner algo-
rithm of grammar acquisition to de¢ne the learning accu-
racy function (Niyogi 1998). This algorithm describes the
interaction between a learner and a teacher. Suppose the
teacher uses grammar Gk. The learner starts with a
randomly chosen hypothesis, Gi. The teacher generates
sentences consistent with Gk. Provided that these
sentences are also consistent with Gi, the learner main-
tains his hypothesis. If a sentence occurs that is not
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consistent with Gi, the learner picks at random a di¡erent
hypothesis, Gj. After b sample sentences, the process
stops, and the learner remains with his current hypoth-
esis. This learning algorithm de¢nes a Markov process.
The transition probabilities depend on the teacher’s
grammar and on the aij values.

At equilibrium, all the individuals in the population
have the same LAD (the one with b ˆ b¤

k). The corre-
sponding stable solution of system (1)^(2) is a ¢xed point
which can be described as a one-grammar solution
(Komarova et al. 2001). This means that the majority of
the population have the same grammar (say, Gk, which is
called the dominant grammar). Furthermore, there are small
fractions of people who speak any of the other grammars
(secondary grammars), G1, : : :, Gk¡1, Gk‡ 1, : : :, Gn. The
frequencies of these grammars are small in comparison
with the frequency of the dominant grammar, Gk. The
exact proportion of the dominant grammar is de¢ned by
the learning accuracy, Q (b¤

k). The higher the learning
accuracy, the closer the frequency of Gk is to unity. If
Q (b¤

k) is an identity matrix, the entire population has
exactly the same grammar, Gk.

(a) Fully symmetrical systems
Let us impose the following symmetry condition on the

pairwise intersection matrix A: Aij ˆ a for all i 6ˆ j. The
Q matrix in this case is also symmetrical: we have
Q ii ˆ q for all i, and in the case of a memoryless learner
algorithm we obtain (Komarova et al. 2001)

q(b) ˆ 1 ¡ 1 ¡ 1 ¡ a
n ¡ 1

b n ¡ 1
n

: (7)

This is a monotonically growing function of b. Our choice of
the reproduction rate dependence on b is r(b) ˆ (c1 ‡ c2b)¡1,
where c1;2 are some positive constants. This function
monotonically decreases with b. The function q(b)r(b) is a
one-humped function (see ¢gure 1, solid line). The

maximum of this function corresponds to the value b¤,
the number of sampling events that cannot be invaded by
any other LAD.

Let ¿0 denote the average ¢tness of the population at
equilibrium. It is equal to the grammatical coherence of a
one-grammar solution multiplied by the reproductive
rate. The function ¿0 is plotted in ¢gure 1 with a dashed
line. The maximum of ¿0 gives the number of sampling
events, b, which leads to the maximum average ¢tness.
Note that the maxima of the functions qr and ¿0 do not
coincide. This means that the number of sampling events
that guarantees the evolutionary stability of the corre-
sponding LAD, does not in general lead to the maximum
possible ¢tness of the population.

Now we ask the question: does the value b¤ de¢ned
above always give an evolutionarily stable LAD? It turns
out that a further restriction must be imposed. In the
example of ¢gure 2 we changed the parameters c1 and c2,
so that the value of b that maximizes the function qr
decreased below the coherence threshold, bc. It can be shown
that if b < bc, the only equilibrium solution of system (1)^
(2) is a uniform solution, where all grammars are spoken
with similar frequencies. In contrast to one-grammar
solutions, this solution does not correspond to any degree
of coherence in the population. The value of b¤ in this
case optimizes the learning accuracy^reproduction curve,
but it is too small to support coherence. The evolution-
arily stable duration of the learning period (the optimal
b) in the case when b¤ < bc is given by bc.

(b) Asymmetric systems
Now let us consider a system where the coe¤cients aij

are arbitrary numbers between zero and unity. The func-
tions r(b)Q kk(b) for an n ˆ 7 case are shown in ¢gure 3.
We used the memoryless learner algorithm to calculate
Q ii(b), and set r(b) ˆ (c1 ‡ c2 exp(gb))¡1. The values b¤

k
are found by maximizing functions r(b)Q kk(b). As in the
fully symmetrical case, the values b¤

k may fall below the

1192 N. L. Komarova and M. A. Nowak Criticalperiod of language acquisition

Proc. R. Soc. Lond. B (2001)

0 10 20 30

maximum fitness

r(b)q(b)

f

40 50

 learning period (in sample sentences),  b

 bc

 b* = ESS

0.2

0.4

0.6

0.8

1.0

 f
itn

es
s

Figure 1. The evolutionary selection of the number of sampling events in the case of a fully symmetrical system; a ˆ 0:5, n ˆ 40,
c1 ˆ 1, c2 ˆ 0:001. The value of b which corresponds to the ESS coincides with b¤.



coherence threshold. Let us denote as bk the threshold
value of b such that for b5bk, the one-grammar solution
with Gk as the dominant grammar exists. It is convenient
to introduce the functions

¬k(b) ˆ
r(b)Q kk(b), b5bk

0, otherwise.
(8)

In general, the values b¤
k are de¢ned to maximize the

functions ¬k(b).
For the choice of coe¤cients in ¢gure 3, b¤

1 corresponds
to the highest of the maxima of the functions ¬k(b). This
means that the one-grammar solution with G1 as the
dominant grammar and b ˆ b¤

1 cannot be invaded by any
other LAD. Thus b¤

1 de¢nes the selected period of
grammar acquisition for grammar G1.

For Gk that correspond to other (lower) maxima of
functions ¬k(b), the criterion of stability is as follows. If
the inequality

fk(b
¤
k)¬k(b¤

k)5 fj(b
¤
k)¬j(b

¤
j ) (9)

holds for all j 6ˆ k, then the grammar Gk with b ˆ b¤
k is an

ESS. This condition involves knowing the ¢tness of the
spoken grammar Gk and the secondary grammar Gj

evaluated at the one-grammar solution with Gk as the
dominant grammar. If the values b¤

i for all i are well
beyond the coherence threshold, i.e. b¤

i ¾ bi for all i, then
we have a much simpler condition for the stability of
grammar Gk with b ˆ b¤

k :

¬k(b
¤
k)51/2(akj ‡ ajk)¬j(b

¤
j ), 8j. (10)

This means that the one-grammar solution with Gk as the
dominant grammar and b ˆ b¤

k may only be unstable
towards a grammar that is very similar to Gk but is more
e¤cient, i.e. it has a higher reproduction^accuracy
curve. In the example of ¢gure 3, condition (9) is satis¢ed

for all b¤
i , i.e. all the grammars can be ESS if the optimal

b is used.

4. CONCLUSIONS

It has been shown that an evolutionarily stable value of
the number of sampling events, b, can be found for the
evolutionary language game where the LADs have the
same ¢nite search space and learning mechanism but
di¡er by the parameter b. The optimal b can be obtained
by maximizing the functions r(b)Q ii(b) (the product of
learning accuracy and reproductive rate), where each
function r(b)Q ii(b) is restricted to the existence domain of
the one-grammar solution with the dominant grammar
Gi.

The main result of the paper, i.e. the existence of the
number of learning events, which is an ESS, can be
reinterpreted more generally. So far we have used the
number of sampling events, b, as a convenient way to
parameterize the family of LADs that we considered.
Higher b corresponded to higher learning accuracy and
lower reproductive rate. The optimization problem of the
accuracy of learning versus its costs can be considered in
a more general setting. It is instructive to contrast the
following two strategies (LADs). The ¢rst assumes that a
lot of energy gets invested in learning (this might depend
on the time of learning, intensity of learning, the brain
size or the existence of some sophisticated hard-wired
imitation machinery). As a result, the learning accuracy
is very high. The price to be paid for this learning preci-
sion is increased learning costs, which reduce the repro-
duction rate, r. The second strategy invests less energy in
learning, and more energy is used for reproduction. The
question that arises is still the same: is there an ESS, and
if so, how can we ¢nd it?

The answer is obtained directly by generalizing our
previous results. For each of the strategies (out of a
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Figure 2. The evolutionary selection of the number of sampling events in the case of a fully symmetrical system. The parameters
are as in ¢gure 1 except c1 ˆ 0:3 and c2 ˆ 0:1. The value b¤ is below the error threshold, so the ESS is the value bc.



discreet or a continuous family), let us ¢nd the product of
its learning accuracy and the reproduction rate. The
winner is the strategy that maximizes this quantity.
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APPENDIX A: ANALYSIS OF THE EVOLUTION

EQUATIONS

Here we outline some details of the analysis of
equations (1) and (2). Let us suppose that nobody in the
population has U2 (i.e. yj ˆ 0 for all j), and consider
equation (1). Let us list some qualitative features of the
dynamics for n ¾ 1. Coherent communication can exist
only if the the accuracy of learning is su¤ciently high,
that is if the matrix Q is not too far from the identity
matrix. This means that we have Q jj ¹ 1 and Q ji ¹ 1/n
for j 6ˆ i. There can be n stable one-grammar solutions. If
the dominant grammar is Gk, then we have xk ¹ 1 and
xj ¹ 1/n for all the secondary grammars. This means that
the shares of secondary grammars are very low, even
though the sum of the shares of those grammars might be
signi¢cant, i.e. j6ˆk xj could be of the order of xk. It is
useful to rewrite equation (1) for xk neglecting all the
terms of order 1/n:

_xk ˆ r(b1)xk fkQ kk(b1) ¡ ¿xk. (A1)

At equilibrium we have

¿0 ˆ r(b1)fkQ kk(b1), (A2)

where ¿0 is the average ¢tness corresponding to the one-
grammar solution.

If only one LAD is allowed in the population, one-
grammar solutions are stable given that b is higher than a
threshold value. Let us consider the stability of one-
grammar solutions with respect to general perturbations
of system (1)^(2), including invasion of users of U2. Initi-
ally, the share of users of U2 is very low, so the equations
for yj decouple from the equations for xj and can be
considered separately. Neglecting all terms that are small
in 1/n, we can write the linearized equations:

_yk ˆ ‰r(b2)fkQ kk(b2) ¡ ¿0Š yk, (A3)

_yj ˆ ‰r(b2)fjQ jj(b2) ¡ ¿0Š yj, j 6ˆ k: (A4)

Combining equations (A2), (A3) and (A4), we obtain the
following conditions for stability of the one-grammar
solution with Gk of U1 against users of U2 :

r(b1)fkQ kk(b1)5 r(b2) fjQ jj(b2), 14 j4 n. (A5)

This allows us to ¢nd the conditions for the stability
of the Gk with b ˆ b1 against the invasion of any other
b. We have
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Figure 3. The evolutionary selection of the number of sampling events in the general case; aij are chosen from a uniform
distribution between zero and unity, n ˆ 7, and r(b) ˆ (c1 ‡ c2 exp(gb))¡1 with c1 ˆ 1, c2 ˆ 0:0005, g ˆ 0:02. The ¢rst plot presents
the functions r(b)Q ii(b), the solid lines correspond to ¬i(b). The second plot shows the average ¢tness corresponding to one-
grammar solutions, for di¡erent dominant grammars. Each value bi denotes the coherence threshold corresponding to the emer-
gence of the one-grammar solution with the dominant grammar Gi. All the values b¤

i in this example correspond to ESS.



fk(b1)r(b1)Q kk(b1)5 fj(b1)r(b)Q jj(b) 14 j4 n, 8 b. (A6)

Here, the ¢tness fi is evaluated from equation (5) at the
one-grammar solution with Gk the dominant grammar
and with b ˆ b1. The more general condition is given by
inequality (9),

fk(b1)¬k(b1)5fj(b1)¬j(b1) 14 j4 n, 8 b, (A7)

where each function r(b)Q ii(b) is only considered within
the domain of existence of the corresponding one-
grammar solution. The average ¢tness of the users of the
dominant and secondary grammars cannot be calculated
explicitly; thus it is not easy to verify whether the stability
condition holds. However, we can simplify this condition
in certain cases.

(a) Fully symmetrical systems
Let us consider an example of a system where one-

grammar solutions can be found explicitly. We assume
that the intersection matrix, A, is fully symmetrical, i.e.
aij ˆ a for all i 6ˆ j. Then (for any reasonable learning
mechanisms) the matrix Q also contains symmetries and
is given by

Q ij(b1) ˆ
q(b1), i ˆ j,
(1 ¡ q(b1))/(n ¡ 1), i 6ˆ j,

Q ij(b2) ˆ
q(b2), i ˆ j,
(1 ¡ q(b2))/(n ¡ 1), i 6ˆ j.

(A8)

The concrete form of the function q(b) is given by the
learning mechanism.

If the entire population uses U1, there are n identical
one-grammar solutions corresponding to each of the
grammars Gk (Komarova et al. 2001; Nowak et al. 2001).
These solutions exist only if q(b1)5qc, where the
threshold value of q is given by

qc ˆ
2 a
p

1 ‡ a
p ‡ O(1/n). (A9)

The one-grammar solutions have the form

xk ˆ X , xi ˆ (1 ¡ X)/(n ¡ 1), for i 6ˆ k; yj ˆ 0 8j,

(A10)

where X is given in terms of a, n and q. Also we can show
that for a one-grammar solution with Gk as the dominant
grammar,

fk5fj 8j. (A11)

Using these inequalities and condition (A5), we can see
that if

r(b1)q(b1)5r(b2)q(b2), (A12)

then the one-grammar solution with b ˆ b1 is stable with
respect to the invasion of users of U2. Similarly, for the
stability against any other LAD we need to have

r(b1)q(b1)5r(b)q(b) 8b. (A13)

This is satis¢ed for b1 ˆ b¤, the value that maximizes the
function r(b)q(b). The LAD with b ˆ b¤ is stable with
respect to any other b. Note that because of the symme-
tries of this system, the optimal number of input

sentences, b¤, does not depend on k, i.e. it is the same for
all grammars.

(b) General A matrices
Now let us consider systems where the o¡-diagonal

entries of the A matrix are arbitrary numbers between
zero and unity. Again, let us suppose that there are two
LADs, with the numbers of sampling events b1 and b2.
The stability conditions for the one-grammar solution
with the dominant grammar Gk of U1 is given by inequal-
ities (A7). We can use fk5 fj to write down a su¤cient
condition for stability:

¬k(b1)5¬i(b2), 14 i4n. (A14)

From this condition it is possible to ¢nd a LAD that is
stable with respect to the invasion of any other LAD. Let
us consider the functions ¬i(b) for all 14 i4 n, and
assume that each of these functions has one maximum.
Let us ¢nd the value, b¤

m , which corresponds to the highest
maximum among the maxima of the functions ¬i(b). We
have

¬m(b¤
m)5¬i(b), 14 i4 n, 8 b. (A15)

For a LAD with b ˆ b¤
m, the one-grammar solution with

the dominant grammar Gm is stable with respect to inva-
sion of any other b. Thus the value b¤

m gives the optimal
length of the learning period for grammar Gm.

For other grammars, the optimal number of sample
sentences can be found explicitly if we assume that b¤

i ¾ bi

for all i, i.e. if the maxima of the functions ¬i(b) are well
within the domain of existence of one-grammar solutions.
In this case, we have fk º 1 and fj º 1/2(akj ‡ ajk), which
leads to condition (10) (see ½ 3).
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