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Abstract. This paper describes a study in the use of digital evolution to produce
cooperative communication behavior in a population of digital organisms. The
results demonstrate that digital evolution can produce organisms capable of dis-
tributed problem solving through interactions between members of the population
and their environment. Specifically, the organisms cooperate to distribute among
the population the largest value sensed from the environment. These digital or-
ganisms have no “built-in” ability to perform this task; each population begins
with a single organism that has only the ability to self-replicate. Over thousands
of generations, random mutations and natural selection produce an instruction se-
quence that realizes this behavior, despite continuous turnover in the population.
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1 Introduction

The increasing interaction between computing technology and the physical world re-
quires that systems with different characteristics and capabilities be able to reliably
communicate, regardless of changing environmental conditions [1]. Similar to how liv-
ing organisms have evolved remarkable methods (audible, visual, stigmergic) for com-
munication, we can usedigital evolution [2] to evolve communication strategies for
distributed computing systems. By utilizing an evolutionary process that incorporates
many of the hazards to communication (packet loss, node failure), solutions that would
not otherwise be apparent to human designers may be discovered.

Our work uses the AVIDA platform for digital evolution [2] to investigate the evolu-
tion of cooperative communication behavior. In AVIDA , a population of self-replicating
computer programs exists in a user-defined computational environment and is subject to
instruction-level mutations and natural selection. Over thousands of generations, these
“digital organisms” can adapt to and even thrive under extremely dynamic and adverse
conditions. AVIDA has previously been used to conduct research in the evolution of
biocomplexity, with an emphasis on the evolutionary design process in nature [3, 4].
However, digital evolution can also be used to address complex problems in science
and engineering [5,6], often revealing unexpected and clever solutions.

Biologically-inspired approaches and evolutionary computation have been applied
to a variety of cooperative communication problems. Examples include mimicking the



social behavior of insect colonies in robotic foraging [7]and using chemotaxis to facili-
tate robust network routing [8]. In addition, a variety of studies have been conducted to
better understand the evolution of cooperation and communication. Examples include
the evolution of a common vocabulary [9,10], using the Prisoner’s Dilemma to examine
the evolution of cooperation [11], the effect of communication and indirect reciprocity
on the evolution of cooperative strategies [12–14], and how information flow between
agents is shaped by interaction with the environment [15,16].

This study focuses on the evolution of a distributed problem solving task [17],
specifically, where the population must determine the largest value sensed by any indi-
vidual. Such behavior could provide a means for a population to perform leader elec-
tion [18], or could be used to obtain the maximum sensed value in a wireless sensor net-
work. Our results show that digital evolution can produce this behavior, and therefore
has promise as a tool to be used in the design of future distributed computing systems.
Like natural organisms, those systems will need to adapt to the environment, self-heal,
and evade attackers. After reviewing the AVIDA system, we describe our experiments,
present results, and analyze the dominant genome of a population that evolved the de-
sired behavior. Finally, we present conclusions and discuss future work.

2 The AVIDA System

Figure 1 depicts an AVIDA population and the structure of an individual organism.
Each digital organism comprises a circular list of instructions (its genome) and a virtual
CPU, and “lives” in a common virtual environment. AVIDA instructions are similar in
appearance to traditional assembly language instructions. They enable an organism to
perform simple mathematical operations, such as addition, multiplication, and bit-shifts,
as well as interact with the organism’s environment, for example, by sending a message
to a neighboring organism, or outputting a number to the environment. Instructions are
executed by the organism’s virtual CPU; the one used here contains three registers, two
stacks, and fourheads, which are similar to program and stack pointers [2].

The AVIDA environment comprises a number ofcells, each of which can contain
at most one organism; organisms cannot live outside of cells. Each cell has a circular
list of directedconnectionsto neighboring cells. These connections define the topol-
ogy of the environment. A single connection, thefacing, defines the orientation of the
resident organism. The facing of a cell may be sensed and manipulated by the resident
organism using theGET-FACING andROTATE-{L ,R} instructions, respectively. Finally,
each cell in the environment has an associated identifier, a unique random 32-bit in-
teger, termed thecell-ID. A resident organism may obtain its cell-ID via theGET-ID

instruction. Organisms in AVIDA can communicate with each other by sending and re-
ceiving messages in the direction currently faced. If the sending organism is facing a
neighboring organism, the message is deposited in that neighbor’s inbox. If the sender
was facing an empty cell, the message is lost. The recipient of the message must exe-
cute aRETRIEVE-MSG instruction to extract the message from its inbox. Organisms are
not able to determine if they are facing an occupied cell, nor do we provide an explicit
mechanism for them to identify neighbors (though it may be evolved).

A population starts with a single organism that is capable only of replication, and
different genomes are produced through random mutations that occur during replica-



tion. The first step in replication is for the parent to allocate space for the offspring’s
genome. The parent then executes its “copy-loop,” where instructions are copied in-
dividually from the parent’s genome to the offspring’s. Finally, the parent organism
executes anH-DIVIDE instruction, creating the offspring. Each time an instruction is
copied, a mutation may be introduced according to a predefined probability. These mu-
tations may take the form of a replacement (substituting a random instruction for the
one copied), an insertion (inserting an additional, random instruction into the offspring’s
genome), or a deletion (removing the copied instruction from the offspring’s genome).
When an organism replicates, a target cell that will house the new organism is selected
from the environment. Different models to select this target cell are available, including
MASS-ACTION (select at random from among all cells) andNEIGHBORHOOD (select
from cells adjacent to the parent), among others. In every case, an organism that is
already present in the target cell isreplaced(killed and overwritten) by the offspring.
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Fig. 1.An AVIDA population (left), and the structure of an individual organism (right).

During an AVIDA experiment, themerit of a given digital organism determines
how many instructions its virtual CPU is allowed to execute in relation to other or-
ganisms, similar to a priority-based scheduling algorithm. Since digital organisms are
self-replicating, a higher merit results in an organism that replicates more frequently,
spreading throughout and eventually dominating the population. Unlike fitness in ge-
netic programming, merit in AVIDA is not evaluated only at discrete time intervals, but
rather updated asynchronously based upon performedtasks. Tasks are designed by the
user and are used to reward desirable behavior (they may also punish undesirable be-
havior), thereby driving natural selection. Tasks are defined in terms of an organism’s
externally visible behavior, orphenotype(for example, messages that are sent), rather
than in terms of CPU-level actions. This approach is intended to allow maximum flex-
ibility in the evolution of a solution for a particular task. The solution might not be
optimal when considering the task in isolation, but it may have other properties that
make it well-suited for its environment – resilience to mutation, for example. Multiple
tasks can be used in conjunction to reward complex behaviors. For example, one task
may reward organisms for sending a message, while another may reward for a specific
message payload. Rewards for performing multiple tasks are, by default, multiplicative.

3 Experiments and Results

We present three different sets of experiments. Each uses different combinations of
AVIDA tasks, however all are focused on evolving the same behavior: proliferation of



messages that carry the largest sensed value. For this study we use cell-IDs for the
sensed values, thus the desired behavior is that all organisms send messages containing
the largest cell-ID. Taking into account population turnover and mutations, we consider
the solution to have been found when 95% of messages carry the largest cell-ID. The
first set of experiments investigates the basic communication capabilities of digital or-
ganisms, focusing on the evolution of message filtering. The second set introduces a
penalty, where each time that a digital organism sends a message that does not contain
a cell-ID, the sender’s merit is reduced. Finally, the third set of experiments investigates
the ability of the population to recover from resetting the largest cell-ID. We note that
organisms do not have an inherent ability to identify messages that contain a cell-ID;
both the messaging behavior, as well as the grammar, must be evolved.

Experimental setup.For this study we configured AVIDA as follows. The environ-
ment comprises3600 cells in a60×60 torus. Experiments are run for 100,000updates,
a standard unit of time in AVIDA ; an update averages 30 virtual CPU instructions per or-
ganism. The copy mutation rate is set to0.75% per-instruction, while the insertion and
deletion mutation rates are set to5% per-replication; these parameters correspond to the
default AVIDA configuration. We developed a set of tasks, summarized in Table 1, to
reward organisms for various communication behaviors. To account for the stochastic
nature of evolution, 20 separate AVIDA trials were performed for each experiment.

Table 1.Descriptions of the AVIDA tasks developed for this study.

Task Name Description

SEND-SELF Rewards sending a message containing the sender’s cell-ID.
SEND-ID Rewards sending a message containinganycell-ID.
MAX -KNOWN Rewards sending a message containing the largest value

known, defined asMax(self,Max(msg0, ...msgn)), where
{msg0, ...msgn} is the set of all messages received by that or-
ganism. The sender must have received at least one message
prior to being rewarded for performing this task.

SEND-NON-ID Penalizes the sender of a message that does not carry a cell-ID.

3.1 Filtering Messages

In the first set of experiments, we tested the hypothesis that rewarding organisms for
sending messages containing cell-IDs, where the cell-ID carried is greater than the or-
ganism’s own cell-ID, will eventually result in all messages in the population carry-
ing the largest cell-ID. Experiments were conducted using different combinations of
the tasks defined in Table 1. In every case, experiments that used theMAX -KNOWN

task produced organisms sending messages containing cell-IDs greater than their own.
However, none of these experiments resulted in the proliferation of the largest cell-ID.

Figure 2(a) depicts average messaging behavior for an experiment uses theMAX -
KNOWN and SEND-ID tasks. Five different values are plotted over the previous 100
updates: Total, the total number of messages sent; Carry, the number of messages sent
that carry a cell-ID; ID, the number of messages sent that carry the sender’s cell-ID; and
>ID, the number of messages sent that carry a cell-ID greater than the sender’s. Here



we see that more than half of all messages sent do not carry an ID, indicated by the dif-
ference between Total and Carry - these are “junk” messages, produced when organisms
send values that are easy to calculate or when aSEND-MSG instruction has been mutated
into the genome. We also see that greater than 75% of ID-carrying messages contain
the sender’s cell-ID. Finally, very few messages contain an ID that is greater than the
sender’s cell-ID. Figure 2(b) shows the average number oforganismsthat performed
the MAX -KNOWN andSEND-ID tasks during the same AVIDA trials. Here we see that
whenMAX -KNOWN task is used in combination with theSEND-ID task, not only do all
(allowing for genetic drift) organisms perform theSEND-ID task, but a large number
of organisms (2600) also perform theMAX -KNOWN task. We note that organisms can
perform theMAX -KNOWN task by sending their own ID once they have received any
message carrying a smaller value.
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Fig. 2.Data filtering withMAX -KNOWN andSEND-ID tasks; average of 20 trials.

3.2 Encouraging ID-Carrying Messages

Our next experiments investigated ways to reduce the number of “junk” messages being
sent, under the supposition that the large number of non-ID carrying messages might be
preventing the population from determining the largest cell-ID. We tried two different
approaches, one where we actively penalized organisms for sending junk messages,
and another where we increased the cost (in virtual CPU cycles) of theSEND-MSG

instruction. Both of these approaches resulted in the desired behavior, with the penalty
evolving a solution more quickly than the additional cost approach. Here we discuss
only the former; details of the cost experiments can be found in a technical report [19].

In this experiment, a task,SEND-NON-ID, was defined such that the sender of a mes-
sage that does not carry a cell-ID is docked 75% of its merit. TheSEND-NON-ID task
is similar to an unseen predator, or hostile and unpredictable environment, in biological
systems. We tried two different configurations withSEND-NON-ID, one that included
MAX -KNOWN andSEND-ID, and another that includedMAX -KNOWN andSEND-SELF.
Initial experiments that used theSEND-NON-ID penalty performed similarly to those
described in Section 3.1. However, when we also changed the replacement strategy
from MASS-ACTION to NEIGHBORHOODperformance improved dramatically. The rea-
son for this improvement is related tokin selection[6], which occurs when parent and



offspring work together on cooperative tasks. In this case, parent and offspring are ge-
netically similar, and thus likely to cooperate on the rewarded tasks, while avoiding
the SEND-NON-ID penalty. We note thatNEIGHBORHOODreplacement alone, without
using either a penalty or cost, did not achieve the desired behavior.

Figure 3 shows messaging behavior using the tasksMAX -KNOWN, SEND-ID, and
the penaltySEND-NON-ID. In addition to the values plotted in Figure 2(a), we also plot
MaxID, the number of messages sent that carry the largest cell-ID in the population.
Figure 3(a) shows the average messaging behavior of 20 different trials, and Figure 3(b)
is a detail of a single trial that shows improvement in the types of messages present in
the population. Here we see that the number of junk messages has been dramatically
reduced, and that the number of messages containing IDs greater than that of the sender
is increasing, although slowly. Still, very few messages contain the largest cell-ID.
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Fig. 3.Messaging behavior with a penalty.

Figure 4 shows messaging behavior using the tasksMAX -KNOWN, SEND-SELF, and
the penaltySEND-NON-ID. Figure 4(a) shows the average behavior of 20 different tri-
als. For the first time, we see evidence of the convergence of message types, where
the number of messages carrying an ID greater than the sender’s approaches the total
number of messages sent. However, we observe that due to theSEND-SELF task, each
organism sends its own ID at least once. We also see a significant number of messages
that carry the largest cell-ID. Figure 4(b) plots details of a particular trial where nearly
all messages contain cell-IDs greater than that of the sender. Moreover, those contain-
ing the largest cell-ID (MaxID) represent 98.3% of all sent messages. It is this behavior,
where nearly all sent messages converge to the largest cell-ID, that we sought. We note
that the drop in total number of sent messages corresponds to the evolution of filtering;
a genome that exhibits this same behavior is described in Section 3.3.

3.3 Recovery from ID Reset

Having determined that populations of digital organisms could cooperate to determine
the largest cell-ID, we next investigated whether the population could react to a change
in that ID. Using the penalty-based task configuration described earlier, we added an
event,RESET-ID, that when executed, resets the largest cell-ID in the population to a
smaller random value. Figure 5 shows messaging behavior with theRESET-ID event



0 2 4 6 8 10

x 10
4

0

2

4

6

8
x 10

5

Update

M
e

s
s
a

g
e

 c
o

u
n

t

 

 

Total Carry ID >ID MaxID

(a) Average of 20 Trials

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2
x 10

6

Update

M
e

s
s
a

g
e

 c
o

u
n

t

 

 

Total Carry ID >ID MaxID

(b) A Sample Trial

Fig. 4.Messaging behavior with a penalty, usingSEND-SELF.

configured to occur at update50, 000, and using tasksMAX -KNOWN, SEND-SELF, and
SEND-NON-ID. Figure 5 shows the average of 20 different trials, while Figure 5(b)
shows the details of a single trial that recovered from changing the largest cell-ID. In
these figures, we see that the populations are not only able to recover from the change
to the largest cell-ID, but that they exceed their pre-reset levels within 10,000 updates.
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Fig. 5.Recovering from a change to the largest cell-ID.

Figure 6 shows keys stages of messaging behavior from Figure 5(b). (The full video
of this trial, with additional description, is available at the URL:http://www.cse.
msu.edu/thinktank/maxval .) Figure 6 comprises snapshots of the population
during the evolution process. Each snapshot identifies which organisms are sending
the largest cell-ID, which are sending the second-largest cell-ID, and which send both
during their lifetime. By frame (d) nearly all organisms are sending messages carrying
the largest cell-ID; a few organisms near the cell with the second-largest ID are sending
both IDs. The largest cell’s ID is reset just prior to frame (e). As shown, the transmission
of the (old) largest cell-ID dies out quickly. The population, however, is able to recover
and quickly proliferate messages that carry the new largest cell-ID.

Figure 7 shows the genome responsible for the behavior in Figures 5 and 6. In this
figure we have identified neutral mutations as well as those parts of the genome that
are relevant to determining the largest cell-ID and the replication cycle. This particular
genome comprises84 instructions, of which12 are responsible for the desired behavior,
22 are responsible for the organism’s replication cycle,1 instruction is shared, and51



Sent both cell-IDs

(b)(a) (c) (d)

(h)(g)(f)(e)

Sent largest cell-ID Sent second-largest cell-ID

Fig. 6. Eight frames excerpted from an AVIDA trace, demonstrating the evolution of
distributed problem solving.

instructions, or61% of the genome, are neutral mutations. An interesting feature of this
particular genome is that its replication is dependent upon it receiving a message that
carries a cell-ID larger than its own. In other words, organisms with this genome have
evolved to the point where they depend upon the behavior of other organisms for their
very survival. Specifically, if these organisms do not receive a message that has a data
field larger than their own cell-ID,they will not reproduce.

It should be noted that one of the forces at work in evolving this behavior is the
natural selection of organisms that donot perform theSEND-NON-ID task. As soon
as theRESET-ID event is triggered, any organism that sends the original largest cell-
ID is subject to the penalty for sending a junk message. Even in the absence of an
explicit penalty, organisms that send the original largest cell-ID would still not receive
the reward for theMAX -KNOWN task. It is theseselective pressuresthat are primarily
responsible for the distribution of the largest cell-ID. Moreover, an organism cannot be
rewarded for sending a message containing the new largest cell-ID without first having
been sent that ID in a message (unless, of course, the organism lives in that cell). In other
words, to survive a change in the largest ID, the organisms depend on cooperation.

4 Conclusions and Future Work

We have demonstrated that digital evolution can produce populations capable of dis-
tributed problem solving, specifically distributing the largest cell-ID among the popula-
tion. Further, we have shown that in the presence of selective pressures, populations of
organisms are able to recover from changes in their environment, and that this behavior
emerges from simple localized interactions between neighboring organisms. In other
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Fig. 7.Dominant genome sending messages that carry the largest cell-ID.

work, we have used group selection to evolve organisms that perform leader election
by identifying unique characteristics of individuals [20]. We are also using AVIDA to
study the evolution of other distributed operations, such as data gathering, and to evolve
organisms that generate UML state diagrams for dynamically adaptive systems. Finally,
we have recently developed an instruction set that includes simple motor control primi-
tives and sensors. We expect to use this platform to evolve individuals that can traverse
obstacle courses, elude predators, and catch moving targets.

Further Information.Papers on digital evolution and the AVIDA software are avail-
able athttp://devolab.cse.msu.edu . Information on evolving cooperative be-
havior can be found athttp://www.cse.msu.edu/thinktank .
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