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Abstract

This paper presents a learning-via-compression approach to unsupervised acquisition of
word forms with no a priori knowledge. Following the basic ideas in Solomonoff’s theory of
inductive inference and Rissanen’s MDL framework, the learning is formulated as a process
of inferring regularities, in the form of string patterns (i.e., words), from a given set of data.
A segmentation algorithm is designed to segment each input utterance into a sequence of
word candidates giving an optimal sum of description length gain (DLG). The learning
model has a lexical refinement module to exploit this algorithm to derive finer-grained word
candidates recursively until no more compression effect is available. Experimental results on
an infant-directed speech corpus show that this approach reaches a state-of-art performance
in terms of precision and recall of both words and word boundaries.

1 Introduction

Studies on lexical learning is concerned, in general, with how a learner exploits its innate

learning mechanisms, existing knowledge, if any, and other available facilities, like supervision

of various kinds, to acquire more knowledge about words – the very basic units in a language

to make up utterances for human communication. The most essential lexical knowledge is word

forms, with which some syntactic and semantic properties (e.g., part of speech, meaning) are

associated so as to make our utterances meaningful. In this sense, word forms are the carrier

of meaning. Therefore, a lexical learner must have some means at the very beginning of lexical

learning to infer the word forms before they can associate any meanings with them.

In this research we take a computational approach to study the lexical acquisition problem

with a focus on unsupervised learning of word forms, involving no other lexical (such as syntactic

and semantic) properties. Unsupervised learning assumes no prior knowledge at the starting

point of the learning and no supervision available during the learning. Different approaches

assume the learner to have different initial ability, i.e., the innate learning mechanisms. A very

interesting assumption for this study is that the learner has an initial mechanism to do little

more than string counting. It does not know there are words to learn. And it does not “learn”,

in a sense, but just attempts to derive a least-cost representation for the input data in terms of

the string counts, each of which gives an indication of how many bits can be saved via extracting

a string as a lexical item.

This minimal initial ability is interesting. It follows, in a sense, Chomsky’s thoughts on the

minimality of grammar for natural language and his arguments for the minimally necessary
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innate structure (and ability) for language learning faculty, scattered in his linguistic theories

from [5] to [6]. One may take is as a piece of evidence against his assumption of a powerful

universal grammar, if unsupervised learning starting from this initial point could succeed. Our

purpose here, however, is simply to demonstrate the power of our learning approach: a counting

machine can learn words to a great extent of success. The minimality of initial ability is

important in that between two learning approaches achieving a similar learning performance,

the one with less initial ability (and knowledge) indicates a more effective learning.

The theoretical inspiration for this research comes from algorithmic information (or Kol-

mogorov complexity) theory [24, 13, 4, 14], including (1) Solomonoff’s inductive inference theory

[24] – the first of the three origins of the algorithmic information theory, (2) the MDL and MML

principles by Rissanen [20, 21, 22] and by Wallace and colleagues [29, 30], respectively1, (3)

Vitányi and Li’s formulation of the ideal MDL in terms of Kolmogorov complexity [27, 28]

and, in particular, their idea (or “intuition”, in their own terms) on how to conduct inductive

inference via compression on a given data set by squeezing out the embedded regularities piece

by piece [14] (p.351). In a sense, the work reported here can be thought of as an attempt to

formulate and implement this nontrivial “intuition”.

An important theme in the studies of learning is to study how to trace the underlying

machinery that has generated the data, via detecting the regularities in the data. Compres-

sion is argued to be an effective approach for an optimal approximation to the generally non-

computable Kolmogorov complexity over a given data set [28, 27]. In the context of lexical

learning, the data set consists of utterances, each of which is a sequence of atomic symbols in

the language in question, i.e., phonemes in sound or letters in script. Ideally, learning from a

data set is to retrieve an achievable minimal representation for the data, extracting all regu-

larities from the data, and the final result, consequently, cannot be further compressed. Since

this minimal representation is not reachable in general, the best we can do is to compress the

data as much as possible under some constraints, e.g., the ones imposed by the representation

format allowable in the learning.

Following Solomonoff’s insight into the duality of compression and regularities [24], i.e.,

anything that can compress the data is a piece of regularity and any regularity can (be used to)

compress the data, we may state that a model that can compress the data to a greater extent

is a better model in general, in the sense that it captures more regularities in the data and thus

reaches closer to the true machinery that has generated the data. In this sense, unsupervised

learning is a process of inductive inference to derive the optimal set of regularities from the

data that can compress the data the most. Notice, however, that it is a different issue whether

the regularities so learnt are to be applied to carry out the compression. In this learning-via-

compression approach to lexical learning, the compression is more a way of thinking about the

computation involved in the learning process than a real procedure for compressing the input

data.

As in other more cognition oriented studies on language learning, we also adopt the assump-

tion that the lexical learning follows the least-effort principle [31] to learn from the natural

language data generated by human language behaviors that are observed to be governed by

the least-effort principle in language production. However, instead of interpreting the effort

1The subtle difference between MDL and MML is not critical to our research here. A lengthy discussion
on the difference of the two can be found in a special issue of The Computer Journal (Vol.42, No.4, 1999) on
Kolmogorov complexity. More important to our research is the undelrying philosophy they share. Thus, the
abbreviation MDL is assumed to subsume both within this paper, for the sake of simplicity.
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as the energy consumed by the learning process, we think of it as the cost in terms of the

number of bits in the representation for the data. This point is critical, because from the point

of view of a learning-via-compression approach, learning is merely the process to derive an

economic representation for the data, and the regularities (e.g., string patterns) so resulted are

both the by-products, in a sense, of this derivation and the means towards a more compact

representation.

Computational studies on lexical learning fall into different categories, e.g., connectionist

(or neural network) approaches, genetic algorithms and probabilistic models. Many probabilis-

tic models adopt, in one way or another, the basic idea of learning-via-compression and the

MDL principle. Representative ones of these models include the word grammar by Olivier

[18] – a noticeable piece of early work on lexical learning, the distributional regularity (DR)

model by Brent and Cartwright [3], the concatenative model by de Marcken [8, 9], and Brent’s

probabilistically-sound model and its implementation – the MBDP-1 system [2], among many

others. Olivier’s work demonstrated the formulation of lexical learning as an optimisation pro-

cess in terms of an objective function with dynamic programming techniques. The work of de

Marcken’s outputs impressive tree structures, most of which appear to be consistent to morpho-

logical structures, but only about two out of a dozen are real words, rather close to the recall

of the random baseline used in Brent’s work [3, 2]. Brent’s MBDP-1 system gives a learning

performance with a balanced precision and recall, both above 70%, demonstrating the state of

the art of computational studies specifically devoted to lexical learning. Venkataraman’s recent

work [26] shows that this performance can be achieved by available n-gram language modelling,

and the learning curves also look highly similar. Our leaning model presented here achieves

a slightly better performance, and our approach appears significantly simpler, most likely due

to our straightforward formulation of the idea of learning via compression within the MDL

framework.

In this paper we report on our recent work in unsupervised lexical learning via compression

to derive a least-effort representation within the theoretical framework of inductive inference

following the MDL principle. The purpose of the research on lexical learning is multi-fold.

First, it aims to test the hypothesis that there is a mechanism underlying language acquisition

that seeks for the least-effort representation for the input data. Secondly, it explores machine

intelligence with a focus on examining how much a computer can learn from natural language

data given that it has only a minimum innate capacity, that is, the capacity to differentiate

between signals or, equivalently, characters in texts, together with other related capacities

derived from this basic capacity, such as counting distinct signals and strings in a given corpus.

It is remarkable to demonstrate that a counting machine can learn words from natural language

data with little prior knowledge and supervision. However, what is more important to show is

not that such success is resulted form the power of the learning mechanism involved. Instead, it

is that linguistic regularities in real language data can be captured statistically and information-

theoretically by a counting machine. Thirdly, the research is expected to lead to a better

understanding of the nature of the human language acquisition device that is assumed to have

a minimally necessary innate structure and ability, in the hope that the research on machine

learning of natural language, especially when a minimum innate capacity is assumed, can shed

light on the mechanism of human language acquisition: if machine learning indicates that

linguistic regularities embedded in language data play a critical role in facilitating language

acquisition in addition to the innate mechanisms, it is understandable that they may play a



4 Unsupervised Lexical Learning as Inductive Inference via Compression

similar role to enable human infants to learn a language so easily.

The rest of the paper is organized as follows. Section 2 formulates the goodness measure

for the compression effect of extracting a substring as a word candidate from a given set of

data. Section 3 presents a Viterbi algorithm to give an optimal segmentation for each input

utterance in terms of the goodness measure, and Section 4 a three-phase lexical learning model

based on this algorithm. In Section 5 we present testing data for evaluation and corresponding

learning results output from the learner, including word clumps as intermediate results showing

how the learner works towards finer-grained lexical items. In Section 6, we define a number

of measures, including word, word boundary and word type precision and recall, as a compre-

hensive evaluation for the learning performance, and report the evaluation results in terms of

these measures. A number of interesting problems encountered in the learning are discussed in

Section 7, before we conclude our work in Section 8.

2 Goodness Measure

When a learning problem is formulated as an optimisation problem, an objective function is

needed to guide the learning. In order to enable our unsupervised learning approach through

compression to carry out the optimisation, a goodness measure is required to evaluate the

benefit from extracting each possible word candidate from the input corpus and putting it into

the lexicon.

A such goodness measure, termed description length gain (DLG), was formulated in [12]

and [10] to compute the compression effect of this kind. Its formulation is as the following:

given a corpus X = x1x2 · · · xn as a sequence of linguistic tokens (e.g., characters in our case),

the DLG from extracting a subsequence xixi+1...xj (also denoted as xi..j) (i < j), from X as a

rule in the form r → xi..j is defined as

DLG(xi..j ∈ X) = DL(X) − DL(X[r → xi..j] ⊕ xi..j) (1)

where X[r → xi..j] represents the resultant corpus from the operation of replacing all instances

of xi..j with the new symbol r throughout X, and ⊕ denotes a string concatenation operation

with a delimiter inserted in between, and DL(·) is the empirical description length that can be

estimated by the Shannon-Fano code or Huffman code as below, following classic information

theory [23, 7].

DL(X) = |X| Ĥ(X)

= − |X|
∑

x∈V

p̂(x) log2 p̂(x)

= −
∑

x∈V

c(x) log2

c(x)

|X|
(2)

where | · | denotes the length of a corpus, c(·) the frequency of a token in the corpus, and p̂(·)

the relative frequency that is conventionally estimated as c(·)
|X| . Straightforwardly, the average

DLG of xi..j, i.e., the compression effect of extracting each individual instance of xi..j, is

DLGav(xi..j ∈ X) =
DLG(xi..j ∈ X)

c(xi..j)
(3)
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A significant benefit from the above formulation is that we need not carryout the transfor-

mation to compute DL for the new corpus X ′ = X[r → xi..j] ⊕ xi..j. Following (2), it can be

formulated straightforwardly as below in (4), using the new count c′(x) in the new corpus X ′.

DL(X ′) = −
∑

x∈V ∪{r,⊕}

c′(x) log2

c′(x)

|X ′|
(4)

where c′(·) is a token count in X ′. The focus of this computation is thus on how to derive c′(·)

in the new corpus X ′ without deriving X ′. Notice that in order to derive X ′ we must carry out

the costy transformation by the extraction, replacement and concatenation. This is what we

do not want. Instead, we prefer to drive c′(x) for any x directly from the known counts c(x)

and c(xi..j) in the original corpus X. c(xi..j) is the count of an ngram of arbitrary length.

Actually, this derivation is quite straightforward, as given below in (5), where c(·) and

c(· ∈ xi..j) denote an n-gram count in X and in xi..j, respectively.

c′(x) =















c(xi..j) if x = r;
c(⊕) + 1 if x = ⊕;
c(x) if x 6∈ xi..j;
c(x) − c(xi..j)c(x ∈ xi..j) + c(x ∈ xi..j) if x ∈ xi..j.

(5)

The first three cases are trivially simple. In the last case, i.e., the general case, the second

item is the number of x’s reduced by the extraction of xi..j and the third item is the number

of x’s remaining in the only instance of xi..j in the model part. Consequently, the length of the

updated corpus after the transformation for extracting xi..j is

|X ′| = |X| − c(xi..j)|xi..j | + |xi..j| + 1 (6)

where the second item on the right-hand side is the length reduced by the extraction, the third

item is the length of the extracted pattern xi..j, which is concatenated to the updated corpus,

and 1 is for the delimiter introduced by the concatenation.

Since all fragments of the input can be a word candidate. The learning needs to examine

all of them, i.e., all n-gram items, in the corpus. Although n-grams of arbitrary lengths in

a large-scale corpus are known to be huge in number, we have developed the Virtual Corpus

(VC) system [11], based on the suffix array data structure [17], as a fairly efficient approach to

handling them, including counting, storing and retrieval.

3 Algorithm

With the aid of the DLG formulated above, the unsupervised lexical learning becomes an opti-

mal segmentation problem seeking for the sequence of word candidates over an input utterance

with the greatest sum of DLGs. Given an utterance U = t1t2 · · · tn as a string of some linguistic

tokens (either characters, phonemes or syllables) in a given corpus C, the optimal segmenta-

tion OS(U) over U such that the sum of DLGs over the word candidates is maximal can be

formulated as below2

OS(U) = arg max
s1···sk s.t. U=s1⊕···⊕sk

k
∑

i=1

DLGav(si) (7)
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t1 t2 t3 · · · · · · · · · · · · · · · · · · tk · · · · · · tj tj+1 · · · ti ti+1 · · · · · · tn

BS[j]

BS[k]

[tj+1 · · · ti]

Figure 1: An illustration for the Viterbi segmentation

for 0 < k < |U |.

Accordingly, an algorithm to implement this optimization is formulated with the aid of dy-

namic programming, following the basic idea of Viterbi algorithm It uses a list of intermediate

variables BS[i] (for i = 1, 2, · · · , n) to store the best segmentation over t1t2 · · · ti. A segmen-

tation is a list (or chain) of adjacent segments (i.e., word candidates). The DLG over a list of

segments, e.g., DLG(BS[j]), is the sum of the DLG of the individual segments in the list, as

defined in (8).

DLG(BS[j])
.
=

∑

s∈BS[j]

DLG(s) (8)

Following the illustration in Figure 1, the optimal segmentation (OS) algorithm is as

straightforward as follows, with ] denoting the operation of joining two lists.

1. Starting from i = 1,

2. Once BS[i − 1] is derived, let BS[i] = BS[j] ] {[tj+1 · · · ti]} for

j = arg max
k<i

DLG(BS[k] ] {[tk+1 · · · ti]}) (9)

3. Repeat the above step until i = n.

To speed up this algorithm, we can set an empirical condition c([ tk · · · ti]) > f
min

(usually,

1) for the search at each step, to lead the algorithm to avoid fruitless iterations on strings with

a two low frequency, in particular, 1. Notice that all strings with a count c = 1 have a negative

DLG, and they are all long strings that can be (or have been) broken into shorter ones with a

positive DLG.

4 Learning model

The learning model for unsupervised lexical learning exploiting the above Viterbi segmentation

consists of two phases, as depicted in Figure 2, each of which involves an application of the

algorithm to infer lexical units at different granularity. Another phase is word segmentation

using the lexicon resulted from the learning. It is post-learning application of the segmentation

algorithm to identify individual words for later process of language understanding.

2We denote DLG(si ∈ C) and DLGav(si ∈ C) as DLG(si) and DLGav(si), respectively, in discussion
concerning only a default corpus C, for the sake of simplicity.
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Figure 2: The model of lexical learning behind our lexical learning algorithms

1. Induction of lexical candidates by optimal segmentation on input utterances,

2. Lexical refinement by optimal segmentation on individual lexical candidates, and

3. Word segmentation by optimal segmentation using the lexicon acquired.

The optimal segmentation algorithm is the underlying mechanism supporting all the three under

different circumstances of learning. The first two constitute the process of the lexical learning for

word form discovery, and the last step uses the learned lexicon to perform word segmentation for

language understanding. A rationale beneath this learning model is that it would be redundant

to have distinct cognitive mechanisms for word discovery and word segmentation. The word

segmentation is regarded as a special case of word discovery to determining word forms with

a lexicon that is presumed to be adequate. Cognitively, once out-of-vocabulary words are

encountered during word segmentation, the mechanism for word discovery will be invoked to

infer unseen words. In our experiments, we get the final results from the last phase for the

evaluation of the learning performance.

For the purpose of exploring human lexical learning mechanisms with this computational

approach, it is reasonable to assume that only those n-gram items containing at least a vowel can

be a word candidate. It is known that syllables are the basic units of speech representation and

every word must contain at least a syllable, that is, a word contains at least a vowel (character).

It is rather straightforward to implement this constraint upon the optimal segmentation process:

every chunk in the segmentation must contain at least a vowel character. From now on we will

denote the optimal segmentation with the vowel constraint as OS+V and the one without as OS.

In the case that we specify that the apostrophe [’] is an equivalent to a vowel character, in

addition to [aeiouy], we denote the algorithm as OS+V’. Clearly, it is a less constrained version

of OS+V. This specification is to enable the learning algorithm to recognise the bound morphemes

like [-n’t] and [’ll] as individual lexical items in English. Without this specification, the

OS+V algorithm will have no chance to show its ability to learn these morphemes, because it

always has to adhere them to lexical items with a vowel under the vowel constraint.

We can also iterate these two algorithms, in the essence of the EM algorithm, to test their

learning capacity – we will see how far they can go in lexical learning on their own. The

implementation is very simple: repeat each of the algorithms again and again and update the

frequency of the n-grams according to the segmentation result in each iteration. It can be
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expected that the learning performance will be improved iteration by iteration, until there

is no more improvement, then we stop. We refer to these algorithms as OS+EM, OS+V+EM and

OS+V’+EM, and the experimental results of these algorithms will be presented in the next section.

5 Testing Data and Learning Results

In this section we will present the input data to our lexical learner for testing and the learning

results it outputs. It is based one this output that the learner’s performance is evaluated. We

will first give some rationales for selecting a text corpus of child-directed speech transcription

as testing data, and then present the details of data preparation, with samples of the input

and output and intermediate results of learning. The intermediate results also show how the

learner works at each phase of learning.

5.1 Input Data

It is understood that written text corpora like the Brown corpus and the PTB corpus are not

appropriate for testing an unsupervised lexical learning approach that is aimed at exploring the

language-learning infants’ lexical learning mechanisms. Instead, we have to use the language

data that the children really receive in their language-learning environments. The CHILDES

database [16, 15] is a collection of such data, contributed by a large number of scholars in

the field of language acquisition. The Bernstein corpus [1], a naturally-occurring child-directed

speech corpus, from the CHILDES collection is the most suitable data set for the purpose of

testing our lexical learner’s performance.

Another reason for choosing the Bernstein corpus, instead of other corpus from CHILDES, is

that we intend to compare our work with the state-of-the-art approach that Brent has recently

reported in [2], where the Bernstein corpus was used as testing data. The input data will

be illustrated below in detail with examples. It is a corpus of plain text transcribed from

child-directed speech. Figure 3 presents an exemplar fragment of the original transcription of

a mother’s speech to language-learning children in the Bernstein corpus from the CHILDES

collection.

However, this is not yet the input for our lexical learner. We have to do some pre-processing

to filter out the noise in the data. First of all, it is necessary to filter out the non-speech content

in the data, including commentary notes, punctuation marks3, etc. Next, we convert all capital

letters into lowercase ones, except the initial letters in proper names, to prevent the learner from

making an unnecessary distinction between a word and its capitalised version. Also, we add a

special end-of-utterance symbol “#” to each utterance, to tell the learner where an utterance

ends. This symbol is not part of the data on which the learner will perform the learning. It

is necessary because we intend to feed the data to the learner utterance by utterance. After

these steps, we have a text corpus consisting of a list of utterances, each of which is a sequence

of characters ended by ”#”. Below in Figure 4 is the counterpart of the data in Figure 3 after

the pre-processing.

This text corpus contains spaces as word delimiters between words. In order to test the

3The only exception is apostrophe [’]. It is not removed from the input corpus, because it is used to represent
a reduced vowel in bound morphemes in English orthographic texts, e.g., [-n’t] and [-’re]. In order to enable
lexical learner with a vowel constraint to detect individual bound morphemes, we have to inform the learner that
an apostrophe is an equivalent vowel character. See later sections for more discussion.
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*MOT: She’s really into books right now. *MOT: Get it.

*MOT: You want to see the book? *MOT: Get it.

*MOT: Oh, look there’s a boy with his hat. *MOT: Get it.

*MOT: And a doggie. *MOT: Is that for the doggie?

*MOT: Oh, you want to look at this? *MOT: Can you feed it to the doggie?

*MOT: W’ look at this? *MOT: Feed it +...

*MOT: Have a drink. *MOT: Oh # put it in OK.

*MOT: OK now. *MOT: OK.

*MOT: Oh what’s this? *MOT: What are you gonna do?

*MOT: What’s that? *MOT: I’ll let her <play with these>

[//] play with this for a while.

Figure 3: A fragment of the original transcription of a mother’s speech from the Bernstein
corpus of the CHILDES collection

she’s really into books right now # get it #

you want to see the book # get it #

oh look there’s a boy with his hat # get it #

and a doggie # is that for the doggie #

oh you want to look at this # can you feed it to the doggie #

w’ look at this # feed it #

have a drink # oh # put it in ok #

ok now # ok #

oh what’s this # what are you gonna do #

what’s that # i’ll let her play with this for a while #

Figure 4: A fragment of the input corpus after pre-processing to filter out non-speech content



10 Unsupervised Lexical Learning as Inductive Inference via Compression

she’sreallyintobooksrightnow# getit#

youwanttoseethebook# getit#

ohlookthere’saboywithhishat# getit#

andadoggie# isthatforthedoggie#

ohyouwanttolookatthis# canyoufeedittothedoggie#

w’lookatthis# feedit#

haveadrink# oh#putitinok#

oknow# ok#

ohwhat’sthis# whatareyougonnado#

what’sthat# i’llletherplaywiththisforawhile#

Figure 5: A fragment of the input corpus with spaces deleted

learning ability of an unsupervised learning algorithm, we have to make such word delimiters

unnoticeable to the learner. A good way to hide the spaces from the learner is to delete them

from the input data, as in Figure 5. The spaces are artificial delimiters in written texts, in the

sense that there is nothing in continuous speech corresponding to such spaces. Removing them

from the input corpus appears to be the right thing to do for the purpose of testing a learner’s

ability of learning the orthographic transcription of speech. A spaceless text such as the one

in Figure 5 is also known as an unsegmented text; its counterpart with spaces is accordingly

called a segmented text. We will use an unsegmented corpus of child-directed speech to test

our lexical learner’s performance. It is not easy for a human speaker to read off the words in an

unsegmented text as the one in Figure 5. Without a certain learning capacity an unsupervised

learner would not be able to infer words from a corpus of this type with an acceptable degree

of success.

A question one may ask about the testing data is, why use orthographic text as input, not

speech input? In order to answer this question, several points need to be clarified. First, we do

not really need the speech input in the form of sound waves as input data for out study. We

know that human infants’ categorical speech perception turns the speech signals they receive in

a sequence of sounds, known as phones, for each utterance. Our research is aimed at exploring

the learning mechanisms (or strategies) that the language-learning infants may exploit to map

the sound sequences to lexical items at the early stage of lexical learning when they have no

knowledge about words in their languages. Involvement of too much speech processing details

would not help highlight the purpose of our study. Furthermore, for technical reasons, all speech

data suitable for computational studies of language learning are actually in text format as some

kind of transcript, e.g., phonetic transcript.

So why don’t we use phonetic transcripts as input? The only reason is the unavailability.

If they were available, we would use them for the test with no hesitation. However, we are also

happy with testing on the orthographic transcripts of the same corpus, for the following reasons.

First, our learning approach is aimed at exploring the general learning mechanisms that human

infants may use for learning words from language data, no matter what format the data is in

and what distributional regularities that data may have. We are not interested in a learning

mechanism that can deal with input data in one format but not others or in one language but

not others. We believe all human infants use similar learning mechanisms, regardless of the
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language involved, to deal with the lexical learning problem at the initial stage of language

acquisition.

Second, our learning approach works through detecting regularities in the input data. Lan-

guage data from different languages exhibit different regularities, and no matter what regular-

ities there are in the input, our learning approach must be able to capture them; otherwise, it

is not really a general approach. We know that both the phonetic and orthographic transcripts

are transcribed from the same speech data, and that most regularities in the original speech

data are well maintained in both types of transcript, in different form though. Furthermore,

in comparison with an artificial phonetic transcription scheme, the orthographic transcript is

more natural because it has evolved for thousands of years. The orthographic transcript carries

its own inconsistency with the speech data and its own irregularities (e.g., \ e\ appears as -er,

-or, -ur, -ir or in some other forms in orthographic texts). All these provide more challenges

to, and therefore are a more creditable test for, our learning algorithms.

The orthographic transcripts of the Bernstein corpus have to undergo some necessary pre-

processing before being input to the lexical learner as testing data. The main purpose of the

pre-processing is to filter out the non-speech content from the corpus and do some necessary

adjustment. We follow an essential principle in the data pre-processing, that is, we only do the

minimally necessary adjustment.

The job of pre-processing that we have carried out includes the following aspects:

• Filtering out the non-speech content, including punctuation marks and commentary notes

in square brackets;

• Converting capitalised words, except for proper nouns, to lowercase ones;

• Adjusting some special forms of words or abbreviated words (e.g., the abbreviated form

of negation) back to standard orthographic forms, e.g., “i (the)m” → “i am”, “ wouldn

(i)t” → “wouldn’t”.

Notably, the speech-related marking symbols, mainly braces and colons inside words, e.g., as in

(a)n(d), beau:ti:ful, fa:v(o)rite and tel:e:phone are all filtered out. Table 1 summarises

a number of problems in the original corpus and the adjustments that have been carried out

by the pre-processing process.

However, many non-standard word forms remain in the data, e.g., w’ (we), y’ (you), ya

(you), whatcha (what do you) and whatchya (what do you). This kind of inconsistency really

plays a critical role in testing the learner’s learning ability.

Also, we allow one non-speech symbol, “+”, to remain in the data, as in peek+a+boo and

bye+bye, because it reflects the corpus constructors’ intention that these strings should be

considered as individual words or word-like compounds instead of as several words. And the

unknown words in the form xxx, incomplete words such as wh, onomatopoeia (e.g., woof woof

woof) and interjections (e.g., oh, ooh and uh) are also kept, contrary to how Brent prepared his

testing data. If all these irregularities were cleaned up, the lexical learner would have a better

performance.

The entire testing corpus of child-directed speech extracted from the Bernstein corpus is

of 9702 utterances, 35K words and 143K characters. The average utterance length is 14.7

characters and 3.6 words; the average word length is 4.1 characters.



12 Unsupervised Lexical Learning as Inductive Inference via Compression

Problem Example Freq. Adjustment Result

: dog:gie 6 Removal doggie

kit:ties 6 kitties

kit:ty 4 kitty

() (a)bout 18 Removal about

(a)n(d) 15 and

an(d) 12 and

d(o) 34 d

(doe)s 8 does

goin(g) 3 going

(i)s 29 is

(i)t’s 24 it’s

(it’)s 4 it’s

(it)’s 8 it’s

(o)k 14 ok

(o)kay 2 okay

(th)at 6 that

(th)em 37 them

wan(t) 26 want

y(ou) 11 you

() + ’ (doe)’s 1 Removal does

(i)’s 5 is

wha’(t)s 1 what’s

wha(t)’s 2 what’s

-n (i)t aren (i)t 16 Transformation aren’t

can (i)t 22 [-n (i)t] → [-n’t] can’t

couldn (i)t 2 couldn’t

doesn (i)t 42 doesn’t

don (i)t 151 don’t

don (i)tcha 2 don’tcya

don (i)tchya 1 don’tchya

hasn (i)t 1 hasn’t

haven (i)t 5 haven’t

isn (i)t 17 isn’t

mustn (i)t 1 mustn’t

shouldn (i)t 1 shouldn’t

wasn (i)t 1 wasn’t

won (i)t 5 won’t

wouldn (i)t 2 wouldn’t

(the)m i (the)m 86 Transformation i am

[(the)m] → [am]

Table 1: A summary of problems in the orthographic transcripts of the Bernstein corpus and
their adjustment in the pre-processing
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[she’s][really][int][o][book][sright][now] [getit]

[youwantto][seethe][book] [getit]

[ohlook][there’s][abo][ywith][his][hat] [getit]

[and][a][doggie] [isthat][for][thedoggie]

[oh][youwantto][lookatthis] [canyou][feeditto][thedoggie]

[w’][lookatthis] [feed][it]

[havea][drink] [oh][putitin][ok]

[o][know] [ok]

[oh][what’sthis] [whatareyou][gonnado]

[what’sthat] [i’ll][le][ther][playwiththe][se]

[playwithth][isfor][a][whi][le]

Figure 6: A fragment of the output from the optimal segmentation of the Bernstein corpus

5.2 Learning Result

The unsupervised lexical learning is aimed at acquiring lexical forms from speech data where

word boundaries are not marked by any means. The expected outcome from the learning

algorithms is a lexicon consisting of a list of individual word forms. This representation for

both the intermediate and final results of the learning in our research is in fact a deterministic

regular grammar. In this grammar, the right-hand sides of rules are lexical candidates that are

represented plainly as strings of the atomic symbols in the input corpus. The left-hand sides,

which merely function as indices for the lexical candidates, are skipped in the representation,

because the positions of the candidates in the lexicon play the same role as the skipped indices.

The choice of skipping the left-hand sides in the lexicon also reflects the principle of simplicity

– the underlying philosophy of our learning approach. Recall that our learning approach seeks

for a lexicon as the simplest representation for the input data.

Here we will illustrate the representation formalism with fragments of the real output from

our lexical learning experiments. The learning algorithms yyielding such output will be formu-

lated in the next section. The output from the first step of the lexical learning – an optimal

segmentation of input utterances into lexical candidates in terms of the DLG measure – consists

of two parts: One is the results of the optimal segmentation on the input utterances, such as

in Figure 6; and the other is the correspondent lexical candidates resulting from the segmenta-

tion, such as the ones in Table 2, where each candidate is has its count (or frequency), length,

coverage and average DLG attached. The spacing between characters is for readability, and

the symbol “+” is originally in the corpus. Many of the infrequent candidates in this lexicon,

not shown here, are non-words; and most of the frequent ones, as shown in the figure, are real

words or clumps of real words.

Therefore it is necessary to have a lexical refinement process in the lexical learning to turn

the word clumps into individual real words. Table 3 gives a number of decompositions of word-

clump lexical candidates into words (and other shorter clumps) during the lexical refinement

process, where the right-most column is the DLG of each decomposition. Table 4 is the finer-

grained lexicon that is output from the lexical refinement.

The final results of the lexical learning, i.e., the output from the optimal segmentation of

the input utterances using the refined lexicon (obtained by the first two steps of the learning,
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57 6 342 12.6261 [ p r e t t y ]

44 8 352 15.8121 [ t h o s e a r e ]

30 12 360 33.3633 [ c l o s e t h e d o o r ]

52 7 364 12.9680 [ t h i s o n e ]

73 5 365 12.5871 [ m o m m y ]

73 5 365 7.4265 [ h e l l o ]

37 10 370 25.6890 [ w h e r e ’ s t h e ]

53 7 371 24.5830 [ b y e + b y e ]

62 6 372 14.0373 [ y o u c a n ]

188 2 376 -3.4687 [ i t ]

67 6 402 14.2962 [ d o g g i e ]

41 10 410 23.8961 [ w h a t i s t h a t ]

207 2 414 -1.8734 [ o k ]

52 8 416 18.1429 [ w h a t i s i t ]

85 5 425 8.4561 [ i t ’ s a ]

43 10 430 25.5103 [ l o o k a t t h i s ]

108 4 432 6.5355 [ b o o k ]

63 7 441 15.1237 [ t h e r e ’ s ]

37 12 444 30.8000 [ w h a t a r e t h o s e ]

76 6 456 12.7278 [ w h a t ’ s ]

152 3 456 -1.0154 [ t h e ]

477 1 477 -6.0098 [ a ]

161 3 483 -0.3685 [ s e e ]

81 6 486 9.8742 [ i s t h a t ]

122 4 488 3.5881 [ t h i s ]

60 9 540 23.9726 [ t h e d r a g o n ]

98 6 588 14.9844 [ c a n y o u ]

197 3 591 2.2711 [ y o u ]

74 8 592 22.1664 [ a l l r i g h t ]

66 9 594 24.5681 [ t h e d o g g i e ]

149 4 596 3.7548 [ h e r e ]

161 4 644 6.1727 [ o k a y ]

65 10 650 41.8614 [ p e e k + a + b o o ]

222 3 666 2.3890 [ a n d ]

62 11 682 31.9754 [ t h a t ’ s r i g h t ]

122 6 732 11.9507 [ t h a t ’ s ]

110 7 770 15.4102 [ t h a t ’ s a ]

157 5 785 7.2517 [ t h e r e ]

198 4 792 3.1169 [ t h a t ]

203 4 812 6.4316 [ l o o k ]

452 2 904 -2.7021 [ o h ]

230 4 920 5.0676 [ w h a t ]

329 4 1316 5.3064 [ y e a h ]

139 10 1390 29.2903 [ w h a t ’ s t h i s ]

247 10 2470 29.1359 [ w h a t ’ s t h a t ]

Table 2: Sample lexical candidates output from the optimal segmentation, in ascending order
of coverage ( = count× length). Each candidate’s count, length, coverage and average DLG are
attached on the left
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Round 1 (The first 12 in 503 decompositions):

[ w h a t ’ s t h a t ] => [ w h a t ’ s ] [ t h a t ] 15.8447

[ w h a t ’ s t h i s ] => [ w h a t ’ s ] [ t h i s ] 16.3159

[ t h a t ’ s r i g h t ] => [ t h a t ] [ ’ s ] [ r i g h t ] 8.8198

[ a l l r i g h t ] => [ a l l ] [ r i g h t ] 8.4251

[ c a n y o u ] => [ c a n ] [ y o u ] 3.3597

[ t h e d r a g o n ] => [ t h e ] [ d r a g o n ] 11.5103

[ w h a t a r e t h o s e ] => [ w h a t ] [ a r e t h o s e ] 14.4629

[ t h e r e ’ s ] => [ t h e r e ] [ ’ s ] 4.8175

[ l o o k a t t h i s ] => [ l o o k ] [ a t ] [ t h i s ] 5.2867

[ w h a t i s i t ] => [ w h a t ] [ i s i t ] 7.5195

[ w h a t i s t h a t ] => [ w h a t ] [ i s t h a t ] 14.9418

[ y o u c a n ] => [ y o u ] [ c a n ] 3.3597

Round 2 (The first 12 in 112 decompositions):

[ i s t h a t ] => [ i s ] [ t h a t ] 0.6786

[ t h a t ’ s ] => [ t h a t ] [ ’ s ] 3.3377

[ t h a t ’ s a ] => [ t h a t ] [ ’ s a ] 1.1489

[ t h e d o g g i e ] => [ t h e ] [ d o g g i e ] 15.4579

[ w h e r e ’ s ] => [ w h e r e ] [ ’ s ] 6.5925

[ i n t h e r e ] => [ i n ] [ t h e r e ] 5.4346

[ t h e d o g ] => [ t h e ] [ d o g ] 0.2781

[ t h i s i s ] => [ t h i s ] [ i s ] 1.6062

[ y o u l i k e ] => [ y o u ] [ l i k e ] 10.3563

[ t h e b u n n y ] => [ t h e ] [ b u n n y ] 11.6377

[ a n o t h e r o n e ] => [ a ] [ n o t h e r ] [ o n e ] 2.7744

[ t h e b o o k ] => [ t h e ] [ b o o k ] 8.0009

Round 3 (The first 10 in 35 decompositions):

[ w h a t ’ s ] => [ w h a t ] [ ’ s ] 6.4455

[ y o u w a n t ] => [ y o u ] [ w a n t ] 8.6686

[ a r e y o u ] => [ a r e ] [ y o u ] 3.6702

[ d o y o u ] => [ d o ] [ y o u ] 1.4109

[ d o w i t h ] => [ d o ] [ w i t h ] 0.8707

[ d i d n ’ t ] => [ d i d ] [ n ’ t ] 0.6807

[ g o o d b y e ] => [ g o o d ] [ b y e ] 4.4128

[ w i t h t h e ] => [ w i t h ] [ t h e ] 5.6365

[ c o w j u m p i n g o v e r t h e m o o n ] => [ c o w ] [ j u m p ] [ i n g ]

[ o v e r ] [ t h e m ] [ o ] [ o n ] 1.2150

[ k n o c k e d t h e m ] => [ k n o c k ] [ e d ] [ t h e m ] 0.1631

[ p u t i t ] => [ p u t ] [ i t ] 0.4277

[ w h a t ’ ] => [ w h a t ] [ ’ ] 0.1275

Round 4 (2 decompositions):

[ d o e s s h e ] => [ d o e s ] [ s h e ] 0.0765

[ a n y o u ] => [ a n ] [ y o u ] 0.2196

Table 3: Sample decompositions of word-clump lexical candidates into finer-grained lexical
items during the lexical refinement process
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56 7 392 24.7372 [ b y e + b y e ]

80 5 400 8.9886 [ r i g h t ]

68 6 408 11.2601 [ l i t t l e ]

207 2 414 -1.8734 [ o k ]

71 6 426 10.1195 [ n o t h e r ]

144 3 432 2.0056 [ h i m ]

145 3 435 0.4780 [ h i s ]

109 4 436 4.6727 [ h e ’ s ]

91 5 455 8.5864 [ i t ’ s a ]

76 6 456 17.3798 [ b l o c k s ]

92 5 460 9.5032 [ d o n ’ t ]

155 3 465 2.5998 [ c a n ]

162 3 486 -0.1738 [ o n e ]

122 4 488 5.4852 [ i t ’ s ]

168 3 504 2.8772 [ i n g ]

64 8 512 20.7181 [ t h a n k y o u ]

106 5 530 11.9946 [ d a d d y ]

268 2 536 -2.9071 [ i t ]

134 4 536 4.7049 [ w i t h ]

181 3 543 3.5252 [ p u t ]

109 5 545 8.1970 [ h e l l o ]

93 6 558 14.9853 [ d o g g i e ]

144 4 576 6.0441 [ g o o d ]

116 5 580 13.5829 [ m o m m y ]

147 4 588 7.6852 [ h a v e ]

629 1 629 -5.5904 [ a ]

160 4 640 6.7353 [ y o u r ]

161 4 644 6.1727 [ o k a y ]

65 10 650 41.8614 [ p e e k + a + b o o ]

372 2 744 -0.2737 [ ’ s ]

194 4 776 7.1221 [ l i k e ]

275 3 825 2.7419 [ a n d ]

179 5 895 10.0591 [ w a n n a ]

224 4 896 7.8500 [ b o o k ]

329 3 987 0.7991 [ s e e ]

560 2 1120 -2.3705 [ o h ]

292 4 1168 4.8850 [ h e r e ]

342 4 1368 5.3697 [ y e a h ]

393 4 1572 5.5280 [ t h i s ]

455 4 1820 7.8423 [ l o o k ]

421 5 2105 8.9229 [ t h e r e ]

776 3 2328 1.5757 [ t h e ]

985 3 2955 5.0111 [ y o u ]

784 4 3136 7.1216 [ w h a t ]

856 4 3424 5.5552 [ t h a t ]

Table 4: Sample finer-grained lexical items output from the lexical refinement process, in ascend-
ing order of coverage. Each candiate’s count, length, coverage and average DLG are attached
on the left



Chunyu Kit 17

86 6 516 10.4986 [ n o t h e r ]

104 5 520 9.7007 [ w h o ’ s ]

110 5 550 12.0695 [ d a d d y ]

110 5 550 8.2140 [ h e l l o ]

139 4 556 5.7148 [ i t ’ s ]

113 5 565 12.7322 [ b u n n y ]

145 4 580 4.8412 [ w i t h ]

580 1 580 -5.7134 [ a ]

146 4 584 6.0685 [ g o o d ]

118 5 590 13.6191 [ m o m m y ]

100 6 600 14.7449 [ d r a g o n ]

304 2 608 -1.7303 [ d o ]

308 2 616 -3.4989 [ t o ]

315 2 630 -2.6536 [ i t ]

158 4 632 7.8306 [ h a v e ]

161 4 644 6.1727 [ o k a y ]

66 10 660 41.9282 [ p e e k + a + b o o ]

135 5 675 6.3450 [ t h o s e ]

236 3 708 0.4372 [ o n e ]

142 5 710 10.3046 [ d o n ’ t ]

243 3 729 4.0315 [ p u t ]

385 2 770 -1.5703 [ i s ]

279 3 837 1.4219 [ a r e ]

221 4 884 7.8259 [ b o o k ]

300 3 900 2.8851 [ a n d ]

185 5 925 10.1183 [ w a n n a ]

236 4 944 7.4020 [ y o u r ]

244 4 976 7.5159 [ l i k e ]

244 4 976 5.9158 [ w a n t ]

206 5 1030 9.4411 [ w h e r e ]

175 6 1050 16.2244 [ d o g g i e ]

359 3 1077 4.0248 [ c a n ]

364 3 1092 0.9634 [ s e e ]

221 5 1105 10.8338 [ r i g h t ]

287 4 1148 4.8562 [ h e r e ]

615 2 1230 -2.2253 [ o h ]

346 4 1384 5.3887 [ y e a h ]

471 4 1884 7.9047 [ l o o k ]

456 5 2280 9.0590 [ t h e r e ]

576 4 2304 6.1544 [ t h i s ]

1275 2 2550 1.8949 [ ’ s ]

1085 3 3255 2.1182 [ t h e ]

1256 3 3768 5.4795 [ y o u ]

1176 4 4704 6.1291 [ t h a t ]

1274 4 5096 8.0147 [ w h a t ]

Table 5: Sample lexical items in the final lexicon after word segmentation using the refined
lexicon, in ascending order of coverage. Each candidate’s count, length, coverage and average
DLG are attached on the left
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[she’s][really][in][to][books][right][now] [getit]

[you][want][to][see][the][book] [getit]

[oh][look][there][’sa][boy][with][his][hat] [getit]

[and][a][doggie] [is][that][for][the][doggie]

[oh][you][want][to][look][at][this] [can][you][feed][it][to][the][doggie]

[w’][look][at][this] [feed][it]

[have][a][drink] [oh][put][it][in][ok]

[ok][now] [ok]

[oh][what][’s][this] [what][are][you][gonna][do]

[what][’s][that] [i’ll][le][ther][play][with][the][se]

[play][with][this][for][aw][hi][le]

Figure 7: A fragment of the output from word segmentation using the refined lexicon

namely, the optimal segmentation and lexical refinement) consist of two parts: One is the

segmentation result, as illustrated in Figure 7, and the other is the correspondent lexicon, as

illustrated in Table 5.

6 Evaluation

In this section we will report the evaluation of our lexical learning algorithms’ performance

based on the experimental results on the Bernstein corpus. We will first define a number of

empirical measures for the evaluation, and then present the learning performance in terms of

these measures.

6.1 Evaluation Measures

We are going to use the following empirical measures to evaluate a lexical learner’s performance

on a given testing corpus.

• Word precision and recall

• Word boundary precision and recall

• Correct character ratio

• Word type precision and recall

The word precision is defined as the proportion of correct words among the learned words,

and the word recall as the proportion of real words that are learned by the learner. Given

that the input corpus has N words, and the learner learns M words among which C words are

correct, the word precision and recall are C
M

and C
N

, respectively, computed in terms of the

numbers of word tokens.

However, the measures of word precision and recall do not give any credit to a learning out-

put like [ithink][itwill][comeout], where although none of the chunks in the segmentation

is a real word, the learner really detects some regularity within the input data – many word
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boundaries are correctly discovered. In order to complement the measures of word precision

and recall, we need to have the word boundary precision and recall as evaluation measures.

The word boundary precision is defined as the proportion of correct word boundaries among

the word boundaries detected by the learner, and the word boundary recall as the proportion

of correct word boundaries that the learner detects. Given that the input corpus has N ′ word

boundaries, and the learner detects M ′ word boundaries among which C ′ boundaries are correct,

the word boundary precision and recall are C′

M ′ and C′

N ′ , respectively.

The correct character ratio is the proportion of the entire input corpus in terms of the

number of characters that is in correctly learned words. Given an input corpus of L characters

long and L′ characters out of L are in the correctly learned words, the correct character ratio

of the learning is L′

L
.

The word type precision and recall are the precision and recall in terms of the learned and

standard word types in the learned and standard lexicons, respectively, instead of word tokens

in the original corpus and the segmentation result by the learning. The word type precision

was also called lexicon precision in Brent’s recent work [2]. These measures form a systematic

evaluation for computational lexical learning.

6.1.1 Words versus Morphemes in the Evaluation

However, the above measures would be in vain if it is not clear about what words are in a

language. Thus what words are is a critical issue in this evaluation.

The basic rule we opt to follow is that we recognise the orthographic words in the input

corpus: spaces are word delimiters. That is, any strings separated by spaces in the input corpus

are, basically, recognised as words. This rule is consistent with our principle of minimally

necessary change in the data pre-processing: we respect the original corpus as much as we

can. Therefore, although we realise that there are many non-conventional word forms in the

Bernstein corpus, e.g., “i gotchyou gotchya gotchya”, “what d’ya want to do”, “didja

knock’em over” and “wa’dja like to call it”, where several words are wrapped up into

one “word”, we use them as “it is”.

Unfortunately, this simple rule does not help solve another problem that is caused by abbre-

viated (i.e., phonetically reduced) words, e.g., [-’s] as in [that’s], [what’s] and [there’s],

[-’re] in [you’re] and [there’re], [-’ll]” as in [i’ll] and [we’ll], and [-n’t] as in

[can’t], [don’t], [doesn’t] and [isn’t]. The problem is, if the learner outputs segmen-

tation results like [that][’s] and [does][n’t], how do we evaluate such cases? Should we

count them as correct, or as wrong?

It is difficult to have a clear decision here about correctness. If we only count real words in

the evaluation, they should certainly be counted as wrong words, because we know for sure that

[’s] and n’t] are not words. However, our task here is not counting real words; instead, we

are to evaluate the performance of an unsupervised lexical learning approach which is expected

to simulate human lexical learning mechanisms.

What do infant learners learn in lexical acquisition? Only words? No, they also learn many

morphemes as lexical items in addition to words. Morphemes are defined in linguistics as the

minimal units that have meaning in a language. There are two types of morpheme: one is free

morpheme, and the other is bound morpheme. The free morphemes are words. Most morphemes

in a language like English are words. The bound morphemes are the ones that cannot occur
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alone by themselves, e.g., [-ing] and [-ed]. The aforementioned reduced word forms such as

[-’s] and [-n’t] become bound morphemes mostly due to the fact that they lack a vowel

to form independent syllables. It is understood that the apostrophe [’] in [-n’t] is used

to represent a reduced vowel that is not qualified to make a syllable4. The number of bound

morphemes in a language like English is rather small, and they only can occur in adherence to

a word as in [don’t]. They are a close class of lexical items in the lexicon of a language.

Now, our problem concerning the question of “what are words?” in the evaluation becomes

how do we credit the two types of morphemes that a learner learns in the learning? If we

only count the correct words in the learning output, that means that the credit is only given

to free morphemes but not to any bound morphemes – an evaluation like this turns out to be

imperfect, unfair, and even flawed, in a sense. If we credit a bound morpheme in the same way

as a word, it can be quite controversial – those bound morphemes are not words! And we even

have no idea about whether a bound morpheme should credited 0.5 or 0.9 as much as a word.

All these unsettled problems indicate that it is inappropriate, and unrealistic, to have a

clear-cut means of evaluation for unsupervised lexical learning that has both words and bound

morphemes as learning output. The only conceivable way out of this dilemma is that we

conduct separate evaluations for the learner’s performance on learning words and on learning

lexical items including both words and bound morphemes.

To evaluate the performance of learning words, we simply count the chunks in the learn-

ing output that match the space-delimited words in the input corpus, and then produce the

evaluation results in terms of the above measures. But in the evaluation of the performance of

learning words and bound morphemes, the case is still a bit complicated. In general, we take a

flexible approach: either the learner recognises, for example, [that’s] as one word or as two

lexical items [that][’s], we consider both as correct responses.

But this approach is problematic in dealing with the contracted negative marker [-n’t],

because sometimes the [-] part is not a well-formed word, e.g., [ca][n’t] and [wo][n’t].

Thus, we need to adjust it accordingly, that is, either the learner recognises [Vn’t] as one word

a [Vn’t] or two lexical items as [V][n’t] is considered as correct, conditioned on the fact that

the [V] part must form a well-formed word. That is, output chunks like [can’t] and [won’t]

are all considered correct lexical items, but [ca][n’t] and [wo][n’t] are each recognised as

a wrong item and a correct one, instead of as two correct items. In contrast, [do][n’t] and

[is][n’t] are each recognised as two correct items.

The bound morphemes in English texts that we need to consider in the evaluation include,

at least, the following: [-’s], [-’d], [-’re], [-’ll], [-’ve] and [-n’t], all of which carry

an apostrophe. We divide these bound morphemes into two groups. One group, denoted as

G1, includes all the above ones but the last. These morphemes only co-occur with a noun. The

last one [-n’t] forms another group, denoted as G2, which only co-occurs with a verb.

6.2 Learning Performance

The learning performance of the twelve unsupervised lexical learning algorithms, each with a

slightly different combination of our OS, LR, WS algorithms and the EM algorithm, are presented

in Table 6 and Table 7 with the measures of word and word boundary precision and recall.

4Thus, in order to enable the OS + V algorithm to learn bound morphemes such as -n’t, we have to tell the
learner that [’] is something equivalent to a vowel character.
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Learning Word (Token) Word Boundary Corr. Char.
Algorithms P (%) R (%) P (%) R (%) Ratio (%)

OS 32.43 31.03 70.48 67.43 33.14

OS+EM 58.66 56.06 83.11 79.42 54.71

OS+LR+WS 61.60 67.99 81.28 89.72 64.10

OS+(LR+WS)x2 58.98 68.49 78.99 91.72 63.17

OS+V 47.99 36.72 85.41 65.36 38.23

OS+V+EM 63.54 49.78 90.71 71.06 49.01

OS+V+LR+WS 74.99 70.92 90.29 85.39 70.04

OS+V+(LR+WS)x2 75.31 73.39 89.63 87.34 71.69

OS+V’ 47.42 36.62 84.83 65.50 38.12

OS+V’+EM 63.42 51.12 90.72 73.13 50.51

OS+V’+LR+WS 70.17 70.13 87.58 87.53 68.12

OS+V’+(LR+WS)x2 69.26 72.22 86.06 89.75 68.80

Table 6: Learning performance of the unsupervised lexical learning algorithms on words

Learning Word (Token) Word Boundary Corr. Char. Counted
Algorithms P (%) R (%) P (%) R (%) Ratio (%) Morphemes

33.86 32.17 71.19 67.65 34.33 +G1
OS 34.04 32.32 71.28 67.68 34.35 +G1+G2

65.52 60.50 86.57 79.74 59.86 +G1
OS+EM 65.55 60.52 86.58 79.94 59.88 +G1+G2

69.89 73.77 85.42 90.17 71.33 +G1
OS+LR+WS 70.36 74.09 85.66 90.19 71.75 +G1+G2

67.08 74.40 83.04 92.10 70.60 +G1
OS+(LR+WS)x2 68.39 75.31 83.69 92.15 71.81 +G1+G2

49.33 37.81 85.78 65.76 39.28 +G1
OS+V’ 49.55 37.95 85.89 65.78 39.41 +G1+G2

69.45 54.66 93.68 73.73 54.38 +G1
OS+V’+EM 69.95 54.94 93.94 73.78 54.70 +G1+G2

79.42 75.87 92.20 88.08 75.42 +G1
OS+V’+LR+WS 79.92 76.17 92.45 88.11 75.82 +G1+G2

78.76 78.25 90.81 90.23 76.62 +G1
OS+V’+(LR+WS)x2 80.11 79.07 91.49 90.30 77.74 +G1+G2

Bound morphemes in group G1: [-’s], [-’d], [-’re], [-’ll], [-’ve]

Bound morphemes in group G2: [-n’t]

Table 7: Learning performance of the unsupervised lexical learning algorithms on word and
bound morphemes
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Table 6 presents their performance in learning real words, and Table 7 their performance in

learning words and bound morphemes.

The performance of the OS and OS+V’ algorithms incorporated in the EM algorithm is

presented in Figure 8. We can see that each of the two programs converges very quickly towards

the top of their performance. In general, both algorithms’ performance drops significantly in

the second iteration, except for OS+EM’s word precision and word boundary precision, which

continue going up. Then, all measures increase rapidly in the next five iterations. After that,

the growth slows down significantly in the next ten iterations, and all measures reach their local

maxima gradually.

We have observed that the OS and OS+EM algorithms have a better balance between precision

and recall than the OS+V’ and OS+V’+EM algorithms, as shown in the middle table in Table 8.

The former two algorithms’ precision and recall for word and word boundary show a difference,

defined as |P−R|, less than 3.69 percentage points and a divergence rate, defined as |P−R|
min(P,R) ,

less than 4.65%; whereas the latter two algorithms have a difference of precision and recall in

the range of 10 to 20 percentage points and a divergence rate in the range of 20% to 30%. But

the EM algorithm seems not to enlarge this difference and divergence rate: OS+EM has a balance

of precision and recall as good as OS, and OS+V’+EM has a slightly better balance of precision

and recall than OS+V’.

We can see the effect of the EM algorithm on improving the learning performance of the OS

and OS+V’ algorithms. As shown in the middle table in Table 8, the EM algorithm increases the

OS algorithm’s word precision and recall both by about 81% and its word boundary precision

and recall both by about 18%. In contrast, the EM algorithm appears less effective, but still

quite effective, on the OS+V’ algorithm, in that it increases the word precision and recall by

about 34% and 40%, respectively, and increases the word boundary precision and recall by

about 7% and 12%, respectively. This loss in effectiveness is, most likely, due to the effect of

the vowel constraint.

The bottom table in Table 8 presents the effect of the vowel constraint on learning perfor-

mance, with V’ (a looser constraint) as an example. It shows that except for the case of working

with the EM algorithm, the vowel constraint consistently enhances the learning performance by

improving the word precision and recall and word boundary precision, at the price of lowering

the word boundary recall slightly. While working with the EM algorithm, the vowel constraint

improves both the word precision and word boundary precision, by about 8% and 9%, respec-

tively, at the price of lowering the correspondent recalls by about -9% and -8%, respectively,

and also lowering the correct character ratio by 7.68%. These results indicate that the vowel

constraint is not a good co-operator with the EM algorithm.

The EM algorithm can only reach a local minimum; and human learners do not learn in the

same way by going through the input data many times. We are more interested in pursuing

learning algorithms that can simulate human lexical learning better than the EM algorithm, in

terms of both its learning strategies and learning performance. We have implemented several

such learning algorithms, including the OS+LR+WS, OS+V+LR+WS and OS+V’+LR+WS algorithms.

Their performance in learning words and in learning words and bound morphemes has been

shown in Table 6 and 7, respectively, and the comparison of their performance and their corre-

spondent EM algorithms’ performance is presented in Table 9. We can see that the unsupervised

lexical learning algorithms have a much better performance than the EM algorithm: the word

precision is better by 5-18%, the word recall is better by 21-42%, the word boundary precision
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Algorithms Word Word Boundary
P (%) R (%) |P − R| D (%) P (%) R (%) |P − R| D (%)

OS 32.43 31.03 1.40 4.51 70.48 67.43 3.05 4.52

OS+EM 58.66 56.06 2.60 4.64 83.11 79.42 3.69 4.65

OS+V’ 47.42 36.62 10.80 29.49 84.83 65.50 19.33 29.51

OS+V’+EM 63.42 51.12 12.30 20.06 90.72 73.13 17.59 24.05

Algorithms OS+EM OS+V’+EM

Word Word Boundary Word Word Boundary
P (%) R (%) P (%) R (%) P (%) R (%) P (%) R (%)

Beginning 32.43 31.03 70.48 67.43 47.42 36.62 84.83 65.50

End 58.66 56.06 83.11 79.42 63.42 51.12 90.72 73.13

Increment 26.23 25.03 12.63 11.99 16.00 14.50 5.89 7.63

Incr. Rate 80.88 80.66 17.76 17.78 33.74 39.60 6.94 11.65

Learning Word (Token) Word Boundary Corr. Char.
Algorithms P (%) R (%) P (%) R (%) Ratio (%)

OS 32.43 31.03 70.48 67.43 33.14

OS+V’ 47.42 36.62 84.83 65.50 38.12

Increment 14.99 5.59 14.35 -1.92 4.98

Incr. Rate (%) 46.22 18.01 20.36 -2.86 15.03

OS +EM 58.66 56.06 83.11 79.42 54.71

OS+V’+EM 63.42 51.12 90.72 73.13 50.51

Increment 4.76 -4.94 7.61 -6.29 -4.20

Incr. Rate (%) 8.11 -8.81 9.16 -7.92 -7.68

OS +LR+WS 61.60 67.99 81.28 89.72 64.10

OS+V’+LR+WS 70.17 70.13 87.58 87.53 68.12

Increment 9.00 2.14 6.30 -2.19 4.02

Incr. Rate (%) 14.61 3.15 7.75 -2.44 6.27

OS +(LR+WS)x2 58.98 68.49 78.99 91.72 63.17

OS+V’+(LR+WS)x2 69.26 72.22 86.06 89.75 68.80

Increment 10.28 3.73 7.07 -1.97 5.63

Incr. Rate (%) 17.43 5.45 8.95 -2.15 8.91

Table 8: The effectiveness of the EM algorithm and the vowel constraint
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Learning Word (Token) Word Boundary Corr. Char.
Algorithms P (%) R (%) P (%) R (%) Ratio (%)

OS+EM 58.66 56.06 83.11 79.42 54.71

OS+LR+WS 61.60 67.99 81.28 89.72 64.10

Increment 2.94 11.93 -1.83 10.30 9.39

Incr. Rate (%) 5.01 21.28 -2.20 12.97 17.16

OS+V+EM 63.54 49.78 90.71 71.06 49.01

OS+V+LR+WS 74.99 70.92 90.29 85.39 70.04

Increment 11.54 21.14 -0.42 14.33 21.03

Incr. Rate (%) 18.02 42.47 -0.46 20.17 42.91

OS+V’+EM 63.42 51.12 90.72 73.13 50.51

OS+V’+LR+WS 70.17 70.13 87.58 87.53 68.12

Increment 6.75 19.01 -3.14 14.40 17.61

Incr. Rate (%) 10.64 37.19 -3.46 19.69 34.86

Learning Word (Token) Word Boundary Corr. Char.
Algorithms P (%) R (%) P (%) R (%) Ratio (%)

OS+EM 65.55 60.52 86.58 79.94 59.88

OS+LR+WS 70.36 74.09 85.66 90.19 71.75

Increment 4.81 13.57 -0.92 10.25 11.87

Incr. Rate (%) 7.34 22.42 -1.06 12.82 19.82

OS+V’+EM 69.95 54.94 93.94 73.78 54.70

OS+V’+LR+WS 79.92 76.17 92.45 88.11 75.82

Increment 9.97 21.23 -1.49 14.33 21.12

Incr. Rate (%) 14.25 38.64 -1.59 19.42 38.61

Table 9: Comparison of learning performance on words and on words and bound morphemes:
unsupervised lexical learning algorithms versus the EM algorithm

is slightly lower, at most by 3.5%, the word boundary recall is better by 13-20%, and the correct

character ratio is better by 17-42%. The superiority of unsupervised lexical learning through

optimal segmentation, lexical refinement and word segmentation is clearly overwhelming.

The effect of repeating the (LR+WS) part in the unsupervised lexical learning appears in-

significant. It increases the recall slightly but decreases, sometimes, the precision to a sim-

ilar scale. For example, in the experiment of learning words and bound morphemes, the

OS+V+(LR+WS)x2 algorithm, in comparison with the OS+V+LR+WS algorithm, increases the word

recall by 1.2 percentage points at the price of lowering the word precision by 2 points and in-

creases the word boundary recall by about 2 points at the price of lowering the word boundary

precision by about 2 points. The OS+V’+(LR+WS)x2 algorithm demonstrates the best gain by

the (LR+WS)x2 part on learning words and morphemes: a gain of 2 percentage points in word

recall with no loss in word precision, a gain of 2.2 points in word boundary recall at the price

of 1 point loss in word boundary precision, and a gain of about 2 points in correct character

ratio.

When bound morphemes are counted as correctly learned lexical items in the learning

output, the learning performance of the OS+LR+WS and OS+V’+LR+WS algorithms goes up sig-

nificantly. These two algorithms’ precision and recall on lexical items, precision and recall on
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Learning Lexical Lexical Item Lexical Boundary Corr. Char.
Algorithms Type P (%) R (%) P (%) R (%) Ratio (%)

Word 61.60 67.99 81.28 89.72 64.10
Word + Morph. 70.36 74.09 85.66 90.19 71.75

OS+LR+WS Increment 8.76 6.10 4.38 0.47 7.65
Incr. Rate (%) 14.22 8.97 5.34 0.52 11.93

Word 70.17 70.13 87.58 87.53 68.12
Word + Morph. 79.92 76.17 92.45 88.11 75.82

OS+V’+LR+WS Increment 9.75 6.04 4.87 0.58 7.70
Incr. Rate (%) 13.89 8.61 5.56 0.66 11.30

Table 10: Comparison of learning performance on words and on words and morphemes

Learning Lexical Lexical Item Difference from MBDP-1
Algorithms Type P (%) R (%) P (%) R (%)

Word 61.60 67.99 −9.40 (−13.2%) −3.01 (−4.2%)
OS+LR+WS Word + Morph. 70.36 74.09 −0.64 (−0.9%) +2.09 (+2.9%)

OS+V+LR+WS Word 74.99 70.92 +3.99 (+5.6%) −1.08 (−1.5%)

Word 70.17 70.13 −0.93 (−1.3%) −0.97 (−1.3%)
OS+V’+LR+WS Word + Morph. 79.92 76.17 +8.08 (+11.4%) +4.17 (+5.8%)

Learning Lexical Lexical Item F Difference
Algorithms Type P (%) R (%) F (%) from MBDP-1

Word 61.60 67.99 60.86 −10.64 (−14.9%)
OS+LR+WS Word + Morph. 70.36 74.09 72.18 +0.68 (+0.1%)

OS+V+LR+WS Word 74.99 70.92 72.90 +1.40 (+2.0%)

Word 70.17 70.13 70.15 −1.35 (−1.9%)
OS+V’+LR+WS Word + Morph. 79.92 76.17 78.00 +6.50 (+9.1%)

Table 11: Comparison of our lexical learning algorithms’ performance with the state-of-the-art
performance

lexical boundaries, and correct character rate are, respectively, about 13%, 9%, 5.5%, 0.5%

and 11-12% higher than those on words. Of all these increments, only the increment of the

boundary recall is not notably significant.

In general, the learning performance of our algorithms compares favourably with the state-

of-the-art performance of Brent’s MBDP-1 algorithm. The MBDP-1 algorithm is estimated to

have an average word precision of around 71% and word recall of around 72%. The upper table

in Table 11 shows the comparison in terms of the difference in word precision and recall.

In order to make the comparison a bit clearer, we can use the F measure to combine the

precision and recall together for the overall learning performance. The F measure is a variant

of van Rijsbergen’s E measure introduced in [25]: F = 1 − E. The F measure is defined as

F =
1

α 1
P

+ (1 − α) 1
R

(10)

In general, we consider precision and recall equally important, and consequently choose a value



Chunyu Kit 27

of α = 0.5. Accordingly, we have

F =
2PR

P + R
(11)

Following this formula, the average overall learning performance of the MBDP-1 algorithm is
2∗71∗72
71+72 = 71.5, as we can estimated. The bottom table in Table 11 shows the comparison of

our algorithms’ overall performance with that of MBDP-1.

The result of this comparison indicates that our best algorithm for word learning, namely,

the OS+V+LR+WS algorithm, has an overall performance of learning words that compares favourably

with MBDP-1’s overall performance. If bound morphemes are considered as correctly learned

lexical items, the OS+LR+WS algorithm has a learning performance as good as MBDP-1, whereas

the OS+V’+LR+WS algorithm has a significantly better performance5.

If Brent had evaluated MBDP-1’s learning performance with the word boundary precision

and recall and with the correct character ratio, we could have a more thorough comparison

between our learning algorithms and MBDP-1. Based on the above comparison, we may not be

certain that our learning approach really outperforms the MBDP-1 algorithm, because many

factors in the learning algorithms and related to the testing data preparation are different.

For example, MBDP-1 is an incremental online learning algorithm, whereas ours are not; ono-

matopoeia and interjections are cleaned out from the testing data for MBDP-1 but kept in the

testing data for our algorithms; MBDP-1 learns from phonetic transcripts and our algorithms

learn from orthographic transcripts. All these factors mean that the above comparison carries

a certain degree of roughness.

However, the comparison has no doubt provided adequate evidence for the conclusion that

our learning approach reaches the level of the state of the art of unsupervised lexical learning.

7 Discussion

Although our lexical learning approach has turned out to show outstanding performance in

learning lexical items, including words and bound morphemes, we also have observed that there

is still quite some room for further improvement. In this section, we will analyse a number of

problems that our unsupervised lexical learners encountered in the experiments and discuss

possible solutions.

7.1 Negative DLG Segmentation

The first problem that still needs to be resolved is the negative DLG segmentation problem:

some low frequency words in an utterance, which may or may not exist in the refined lexicon, can

cause the segmentation of the entire utterance to have a segmentation with a negative DLG.

Table 12 lists many examples of negative DLG segmentations output from the OS+V’LR+WS

algorithm, with the frequency of the problem-causing words given at the right. Actually, it is

not a problem for the learner not to be able to recognise the low frequency words. It is absolutely

normal for all unsupervised lexical learning algorithms based on co-occurring statistics not to

learn most of these “bad” words. What is really a problem in our DLG-based learning algorithm

is that when a “bad” word is lost in this way, it looks as though this bad word interferes with

5Notice that OS+V-based algorithms, including OS+V+LR+WS, do not learn any bound morphemes like those
listed in G1 and G2, which have an apostrophe for the reduced vowel.
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DLG Examples of segmentation Freq.

1 -35.1325 asmileithasasmile 2
2 -32.6349 i just realizedhowitworks 1
3 -14.0336 that ’sawickedlaugh you monkey 1
4 -29.7511 one that willflapinthebreeze 1

5 -35.1325 iwanttoshowyousomethin’ 3
6 -22.5597 does the chair partflattenitout 1
7 -34.0216 okletsgetdownandgettothese toys 2
8 -35.1232 ahaahaahaahawhatelsedoeshe say 6
9 -27.7897 i don’t know whyshehatesitsomuch 2

10 -35.1325 ohigotigotanidea 1
11 -5.3626 you ’reintodestruction aren’t you Alice 1
12 -29.5773 that ’swhywehadyourestrained 1
13 -22.5104 you can spankitifitbites you 2

14 -22.7013 and this boy ’s put tingonhisshirt 3
15 -26.2659 could n’tpossiblybebecauseyourmother’shadaphoneattached 1, 2

16 -15.7839 yeah that ’s what the horsedoesyeahp 1

17 -0.7694 wanna look at look at look this onehaspaperpages you might 2, 1

18 -24.4458 that sanowlohtheblocksfell over 3
19 -33.1854 oh and the kidsaresayin’byeseethey’rewavin’ 3, 1

20 -26.0025 let’s tryawhthisisa snap (noise)
21 -12.6852 you ’renotatallinterestedin this dragon ’ think 2
22 -35.1325 igotchyougotchyagotchya 2, 2

23 -18.1525 do you re member what wesaidthelast time 4
24 -25.2219 mightbehavingtrouble onhisknees 1, 5
25 -22.7947 look sto me like you ’remakinghimdance 1
26 -22.0512 but he’s gonna triponhisshoelacestiesomebows 1
27 -28.0104 like adolphinit’sawhale 1

28 -35.1325 hehassomuchhairyoucan’tseehisneck 6
29 -35.1325 yastrapityagoanditsticks 4, 2

30 -29.7628 yeah Iwishitwereaburry 1

31 -13.5204 you know what it’s supposedtobe 2

32 -21.7612 it’s supposedtobea pieceof steak 2

33 -31.6725 growlswhotookmy steak 1

34 -16.0308 maybe the drayon’dliketobe inthe high chair 1

35 -7.4811 ithink hemightbetoosm all for this high chair 1
36 -20.2497 you know Michael’sgonnagoonvacation today 2, 1
37 -19.2983 it’s notakiteitthat’sthesteamcom ing outof the food 4, 2

Table 12: Examples of segmentations with negative DLG
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Learning output Original segmentation

ohigotigotanidea oh i got i got an idea#

i got blocks athome i got blocks at home#

oh i got them oh i got them#

a hi got your nose ah i got your nose#

i got ya finger i got ya finger#

wait now i got ta fix it wait now i gotta fix it#

i got it i got it#

i got you i got you#

i got you i got you#

i got your hand i got your hand#

i got you i got you#

i got you lemme open thedoor i got you lemme open the door#

it’s got an a@lb@lc@l it’s got an a@l b@l c@l#

Figure 9: Word clumps due to negative DLG vs. correct segmentation

the recognition of other words. For example, in Table 12, [lets] in line 7 grabs seven words,

namely, [ok] and [get down and get to these], into the same clump; [idea] in line 10

grabs six other words [oh i got i got an] – whereas in almost all other utterances these six

words are properly recognised by the unsupervised learner, as exemplified by the output from

the OS+V’+LR+WS algorithm as below, in comparison with all utterances involving [i got] and

[got an] in the original input corpus in the right column6:

Therefore, the key to solving this word-clumping problem is to find a principled way to

protect the other words from being corrupted by erroneous recognition of a bad word. We

say “principled way” because a cognitively sound strategy of word segmentation when there

are unknown words. In our learning approach we assume the same DLG optimisation based

approach to word segmentation as to lexical learning.

An ideal strategy is one that can incorporate the advantages of a DLG-based approach but

avoid its disadvantages in dealing with the negative DLG problem. It is highly possible that

word segmentation by human subjects with an existing lexicon is an optimisation process with a

different goodness measure than the one for their lexical learning. It can be a strategy as simple

as maximal match segmentation (MMS): scanning through the input, outputting the longest

matched word and then moving on to the next word, and continuing to work this way until

the entire input utterance is finished. It is also possible that the MMS strategy is incorporated

into the DLG optimisation based segmentation. One possible approach to the incorporation

would be, whenever a negative DLG segmentation is encountered, to apply the MMS to save as

many good words as possible from the clumping effect with “bad” word(s). According to our

statistics, 5.76% of the learning output is in such word clumps. That means, if we could have a

strategy that can perform word segmentation on this portion as well as on the rest, our learning

algorithms would enhance their learning performance by 5.76% ∗ 70%
1−5.76% = 4.28%. This would

6In the original orthographic text of Bernstein corpus, a@l, b@l and c@l denote single letters A, B and C,
respectively
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Learning Learned Correct Word Type
Algorithms Word Types Word Types Precision (%) Recall (%)

OS 1,922 394 20.50 22.25

OS+ LR+WS 1,046 400 38.24 22.59

OS+(LR+WS)x2 909 390 42.90 22.02

OS+V 3,036 601 19.64 33.94

OS+V+ LR+WS 1,914 568 29.68 32.07

OS+V+(LR+WS)x2 1,792 557 31.08 31.43

OS+V’ 2,916 604 20.71 34.11

OS+V’+ LR+WS 1,582 565 35.71 31.90

OS+V’+(LR+WS)x2 1,492 558 37.42 31.49

Table 13: Word type precision and recall of the unsupervised lexical algorithms

be a very significant improvement.

The problem of negative DLG segmentation deserves much research effort in our future

work.

7.2 Word Type Precision and Recall

In contrast to the word token precision and recall, which are usually at the level of 70%, the

word type precision and recall of our learning algorithms appear low, at the level of slightly

higher than 30%, as listed in Table 13. The number of word types in the original input corpus

is 1771.

As a matter of fact, the word type precision and recall in unsupervised lexical learning are

commonly at this level, or even lower. There has been no report on them, except for the word

type precision of the MBDP-1 algorithm reported in [2]. MBDP-1’s word type precision starts

at about 36% and grows to 54% in its incremental learning on the Bernstein corpus. All other

algorithms reported in [2] have a word type precision beneath 30% on average.

From Table 13 we can see that the OS+V’ based algorithms have the best performance, and

that when the LR+WS is applied one more time, the precision increases significantly and the

corresponding recall decreases slightly. Both our OS+V and OS+V’ based algorithms learn about

1/3 of the word types in the input corpus.

How can such a low word type recall enable the word token precision and recall, as we

reported above, at the level of 70%? The answer is given in Figure 10: the top 500 word types,

either in the frequency or coverage ranking, cover about 90% of the input corpus. Our learning

algorithms, e.g., OS+V+LR+WS and OS+V’+LR+WS, learn about 550 words correctly, most of which

are frequent words. It is not surprising that these words cover more than 70% of the input

corpus.

Like other statistically based learning algorithms, our algorithms make fewer errors in learn-

ing high frequency words than in learning low frequency words. The word type precision and

recall of our lexical learning versus word frequency rank are presented in the two figures in

Figure 11. The first figure is plotted in terms of the word frequency in the learning output and

the lower in terms of the frequency in the input corpus. The diamond-dots plot the precision or

recall at each frequency rank, and the solid lines plot the average precision or recall over word
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Figure 10: Word coverage rate versus frequency and coverage rank of word

types up to a frequency rank. We can see from the upper figure that the word type precision

over frequent words is very high: the average precision up to the first 100 ranks (out of 147) is

above 80%, and the learned words are not 100% correct only in 12 ranks out of the first half,

roughly 75, of all ranks. We can also see from the lower figure that the word type recall over

frequent words is also very high: the average recall up to the first 100 ranks (out of 147) is above

80%, and there are only 16 ranks in the first half, roughly 75, of all ranks in which the words

are not 100% correctly learned. The low overall word type precision and recall is determined

by the fact that the word type number increases dramatically in the last 10 frequency ranks,

where the precision and recall both drop very rapidly.

So, the focus of enhancing the word type precision and recall is on the enhancement of the

precision and recall of learning low frequency words.

7.3 Other Problems

In addition to the negative DLG segmentation problem and the problem of low word type

precision and recall, there are also other problems that hinder our learning algorithms from

performing or scoring any better. Some of these problems are inherent in the input data, e.g.,

the inconsistency and data noise in the transcripts. Some are related to our evaluation criteria,

e.g., [-ing] and [-ed] are not counted as creditable morphemes in the learning output, because

they are another type of morpheme categorically different from abbreviated forms of existing

words.

Some problems are directly related to the behaviour of the DLG-based leaner, e.g., in the

Bernstein corpus, the word [balloon], with 46 occurrences (a very high frequency), is correctly
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Figure 11: Word type precision and recall in terms of frequency rank of word
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recognised 42 times but erroneously divided into [ball][o][on] 3 times, and a more frequent

word [another], with 86 occurrences, is always divided into [a][nother]7. Many frequent

words or noun compounds, e.g., [instead] and [golfball], in some other child-directed cor-

pora, are also given abnormal segmentations by the DLG-based learning algorithms. The word

[instead], with 25 occurrences, is always segmented into [i][nstead], and the compound

[golfball], with 19 occurrences, is divided into [golf][ball] 8 times and recognised as a

single word 11 times.

We still do not quite understand such unusual behaviour in a DLG-based lexical learner, be-

cause according to the DLG optimisation, the learner should choose [another] and [instead]

instead of [a][nother] and [i][nstead], because [another] and [instead] have the same

frequency as [nother] and [nstead], respectively, but each has a greater length and therefore

a greater (positive) DLG. A lexical learner based on the DLG optimisation should select these

longer words instead of the shorter ones. Why does it learn these unexpected words?

These are interesting problems that deserve more research effort. We have a reasonable

assumption, namely, the least effort principle, as the starting point for our study. And we

have developed an elegant computational theory for the unsupervised lexical learning based on

the MDL principle and, accordingly, formulated the DLG goodness measure for selecting word

candidates. We also have implemented a number of sound learning programs based on DLG

optimisation that can learn most words correctly from the input corpus. However, a DLG lexical

learner still has some unexpected behaviours beyond our understanding for the time being. We

need to have a thorough understanding of them in order to advance the computational studies

on human cognitive mechanisms for lexical learning based on our current achievements with

the LDG optimisation approach.

8 Conclusions

We have presented a novel approach of unsupervised lexical learning via compression, including

its assumptions, underlying theories, a goodness measure for computing the compression effect

of extracting word candidates, an optimal segmentation algorithm following this goodness mea-

sure to word candidates, and a learning model to apply this algorithm to derive finer-grained

lexical items. Experiments on large-scale corpus of child-directed speech show that its perfor-

mance compares favourably to the state-of-the-art performance of unsupervised lexical learning.

This performance indicates the validity and the effectiveness of the learning approach and the

appropriateness of the implementation.

The unsupervised lexical learning is realised by an algorithm to achieve the DLG optimisa-

tion over input utterances following the MDL principle. The representation formalism for the

learning is trivially simple: each lexical item is represented as a string, with one parameter,

namely, its frequency – each lexical item’s LDG is calculated in terms of its frequency. The

Viterbi algorithm is exploited to search for the segmentation of an utterance that gives the

greatest sum of DLG over its segments.

The lexical learning process in our computational approach consists of three phases (or

learning modules), namely, DLG-based optimal segmentation of input utterances into lexical

candidates, lexical refinement to divide the word-clump candidates into individual words, and

then word segmentation in terms of lexical items acquired in the previous two phases. This

7Native speakers actually say “that’s a whole nother thing”.
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lexical learning model is consistent with human infants’ behaviours in lexical learning: they

recognise many word clumps as individual lexical items and later divide them into individual

words when they are exposed to more language evidence supporting the decomposability of

the clumps [19]. In our approach each of the three phases involves an application of the same

optimal segmentation algorithm for DLG optimisation with a different set of word candidates,

or, a different word space.

We have developed twelve unsupervised lexical learning algorithms each with a different

combination of learning modules, parameters and constraints, and also developed a compre-

hensive evaluation approach based on seven evaluation measures to systematically examine

their learning performance on the orthographic texts of the Bernstein corpus of child-directed

speech. The evaluation measures are word precision and recall, word boundary precision and re-

call, word type precision and recall, and correct character ratio. This is the most comprehensive

evaluation approach ever applied in the field of computational lexical learning.

The top performance of our DLG-based unsupervised learning of words and of words and

bound morphemes is achieved, respectively, by two typical unsupervised lexical learning al-

gorithms involving the three phases, namely, the OS+V+LR+WS and OS+V’+LR+WS. The best

performance in learning words is 75% precision, 71% recall and, accordingly, F = 73%. This

performance compares favourably with the state-of-the-art performance achieved by Brent’s

MBDP-1 algorithm on the same child-directed speech corpus. Our best performance in learn-

ing words and bound morphemes is 80% precision, 76% recall and F = 78% – this F score is 5

percentage points higher, by an increment of 6.85%.

In addition to the comprehensive evaluation, we have also analysed a number of problems

that the DLG-based lexical learning approach encounters, including the negative DLG segmen-

tation problem and the low precision and recall on word type. The analysis points to a direction

for future work.
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