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Abstract

Humanlanguagéds uniquein having a learned arbitrarymappingbetweermeaningsandsignalsthatis compositional
andrecursve. This paperpresentsa newv approacho understandingts origins and evolution. Ratherthanturningto

naturalselectionfor an explanation,it is arguedthat generalpropertiesof the transmissiorof learnedbehaiour are
sufiicientto explaintheparticularpropertiesof language A computationamodelof linguistic transmissioris described
in which comple structuredanguagespontaneouslgmege in populationsof learners gven thoughthe populations
have no languageinitially, and are not subjectto ary equialentof biological change. Theseresultsare claimedto

be generaland are explainedin termsof propertiesof mappings. Essentially as mappingsare passeddowvn through
generation®f imitators,syntacticonesareintrinsically betterat surviving throughthelearning“bottleneck”.

1 Intr oduction

Why doeshumanlanguagehave certain propertiesand
not others?This is the centralquestionfor linguistic ex-
planation.Of particularinterestto linguistsarethe prop-
erties that humanlanguagehas that appearto malke it
unigueamongcommunicatiorsystemsn thenaturalworld.
Onesuchpropertyis syntax:the mappingbetweermean-
ings andsignalsin humanlanguagess uniquelycompo-
sitional andrecursve. Thatis, the meaningof a signal
is composedrom the meaningsof partsof that signal,
andfurthermorearbitrarily comple« meaningsanbe ex-
pressedy embeddingsignalsinsidesignals.

A commonapproachin linguisticsto the explanation
of thesebasicpropertienf syntaxis to appeato innately
givenpropertieof ourlanguagdaculty TheChomskan
approach(e.g. Chomsly, 1986), for example,holdsthat
our innatelanguageacquisitiondevice constraingirectly
what typesof languagewe may learn. In this perspec-
tive, the questionthat startedthis papercanbe answered
by hypothesizinghosepropertiesasinnatelygiven. An-
otherapproactbroadlytermed‘functionalism”holdsthat
much of the constraintson variationamongstianguages
canbeexplainedby appealingo thecommunicatrefunc-
tionsof languagde.g.Comrie,1981;Hawkins, 1988;Croft,
1990,andreferencesherein).Putsimply, languagés the
way it is becausat is shapedby the way it is used(see
Newmeyer, 1999; Kirby, 1999a,for reviews of the dis-
tinction betweenfunctionalandinnatistapproaches)A
dominantapproachin evolutionarylinguistics(e.g.Pinker
andBloom, 1990)combinedunctionalismandinnateness
by amuing that ary innate languageacquisitiondevice
would have beenshapedy naturalselectionin our evo-

lutionarypast,andthattheselectve pressuresvould have
beenrelatedto communication.

Oneway of looking at this paperis asan attemptat
an alternatve (thoughnot incompatible)explanationfor
the origins of compositionalityand recursionin human
language;jone which doesnot appealto a strongly con-
straininginnatelanguageacquisitiondevice, nor an ex-
plicit mechanisnwherebythe communicatie aspectf
languagénfluenceits form. Insteadtheapproactputfor-
wardherelooksto generapropertieof theway in which
linguistic informationis transmittedover time for an ex-
planationof its structure.

Anotherway of seeingthis paper however, is asa
demonstratiorof the value of looking at the properties
of behaviour thatis repeatedlyimitated in a population.
In this light, humanlanguagecanbe seenasa case-study
of how repeatedearningand useaffects, over time, the
structureof the behaiour beinglearned.Thinking about
imitated behaviour in this way, we canbegin to seesug-
gestize parallelsbetweernnformationtransmissiotvia learn-
ing in asocial/culturakcontext, andinformationtransmis-
sion via reproductionin a biological context (seefigure
1).

2 The learning bottleneck
Thetransmissiorof linguistic behaiour is a specialcase

of the systemdiagrammedn figure 1. A languagen its
internalform is a mappingbetweermeaningsandsignals

1| usetheterm“imitation” hereasit hasbeenusedn thisconference.
SeeOliphant(1997)for somediscussiorof why it may not be the best
termto usein this context.
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Figurel: Both socialtransmissior(via obsenationandimitation) andbiological transmissioninvolve transformatiorof
informationbetweeraninternalandexternaldomain. This transformatioractsasa bottleneckon the flow of information
throughthe respectre systemsandmayhave animpacton the emegentstructureof this information.

(typically stringsof phonemes)Thatis, anindividual in

possessiomnf alanguagewill have someinternalmental
representationf thatlanguagehat specifieshow mean-
ings arepairedwith strings. Languageslsoexistsin an
externalform, however, asactualinstance®f signalsbe-
ing pairedwith meanings.The way in which a particu-
lar language(in both its forms) persistsover time is by
repeatedransformatiorfrom the internalto externaldo-
mainsvia actualuse,andbackinto the internaldomain
via obsenationandlearning(i.e. imitation).

The transformatiorbetweernthe internalandexternal
domainsof language— I-languageand E-languagein
Chomsly's terms(seeChomsly, 1964; Andersen,1973;
Chomsly, 1986; Hurford, 1987; Kirby, 1999a;Hurford,
1999, for discussion)— actasa bottleneckon informa-
tion flowing throughthe system. Justas the bottleneck
on transmissiorof geneticinformationin biological sys-
temseventually hasimplicationsfor the structureof or-
ganismsthat emepge, we shouldexpectthat the equia-
lent bottleneckin the linguistic systemto have a role to
play in the explanationof partsof linguistic structure.So,
a particularpieceof geneticinformationmay not persist
becausehe phenotypethatit expressesnay not survive
to reproduce. In a similar way, a particularfeature of
language(that is, a particularpart of the representation
of the meanings-to-stringsapping)may not persistbe-
causeheutteranced givesriseto maynot reconstructt
throughlearning.

3 Simulating linguistic transmission

In orderto testthehypothesishat,in thecaseof language,
the learning bottleneckdeterminesin part the eventual

structureof whatis beinglearnedthe modelof linguis-

tic transmissiorhasbeenimplementedcomputationally
Thistype of simulationbasedapproacthasrecentlybeen
adoptedy severalresearcheris theevolutionarylinguis-

ticsliterature(e.g.Steels1997;Kirby andHurford, 1997;

Kirby, 1998;Hurford, 1998;Batali, 1998;Briscoe,1998;

Niyogi andBerwick, 1999)asit offersa “third way” be-

tweenverbaltheorisingontheonehandandmathematical
analyticapproachesnthe othet

Thesimulationconsistof:
e apopulationof computationahgents,

e apredefinedneaningspace.Thatis, a setof con-
ceptswhich theagentanaywishto express,

e apredefinedsignalspace Thatis, a setof concate-
nationsof symbolsavailableto theagents.

Eachagentsbehaviour is determinedy agrammaiinter-
nalto thatagentwhichit haslearntsolelythroughobserv-
ing the behaviour of otheragentsin the population. The
populationmodelis generationain thatagents'die” and
arereplacedwith new agentsavhich have noinitial gram-
mar. Theagentsarenotprejudicedor rewardedaccording
to their behaviour in ary way. In otherwords, thereis
no naturalselectionin this model,andsinceeachagentis
identicalat“birth”, theonlyinformationthatflowsthrough
the simulationfrom one generatiorto the next is in the
form of utterances.

For the experimentsdescribedin this paper a very
simple populationmodelwas used: one in which there
is, atary pointin time, only asinglespealer andasingle
hearer Thesimulationcycle is outlinedbelow:

c.1 Setup theinitial populationto have two agents:a
spealer anda heareyboth of whomhave no gram-
mar.

c.2 Repeatsomepre-specifiechumberof times:

c.2a Picka meaningm at randomfrom the mean-
ing space,

c.2b If the spealer canproducea string s for m
usingits grammay then let the hearerlearn
from the pair < s,m >, elselet the spealer
inventastrings andletbothheareandspealer
learnfrom the pair< s,m >.

c.3 Remaoethespealer, makethehearethenew spealer
andintroducea new hearemwith nogrammar

c.4 Gotoc.2



Clearlythecritical detailsfor thatdeterminghebehaiour
of thissimulationare:themeaningspacethesignalspace,
the grammaticalrepresentationthe learning algorithm,
andtheinventionalgorithm.

3.1 The meaningspace

The meaningsin the simulationare simple propositions
madeup of apredicateandtwo arguments.Typical propo-
sitionsinclude,for example:

loves(mary,john)
admires(gavin,heather)
etc.

Certainpredicatesan take propositionsas their second
argumentleadingto propositionssuchas:

says(peter,loves(mary,john))
believes(heather,says(peter,loves(mary,john)))
etc.

In thesimulationsreportechere thenumberof differ-
entsemanticatoms(predicates/@umentskanbevaried,
to testhow it affectsthe evolving language Becausem-
beddingof propositionss possible the rangeof possible
meaningss potentiallyinfinite.

3.2 The signalspace

Thesignalsin the simulationarelinear concatenationsf
symbolschoserfrom the 26 lower-caselettersof the al-
phabet. The shortestsignalwould containonly onelet-
ter, whilst thereis potentiallyno upperboundon signal
length. Thereis no pre-definecequivalentof the “space”
character An example utterance(i.e. signal-meaning
pair) of anagentthatknew alanguagdik e Englishcould
be:

< maryl ovesj ohn, loves(mary,john) >

3.3 The grammatical representation

Now that we have a specificmeaningspaceand signal
spacein mind, it is usefulto understandvhat makes a
mappingbetweerthesetwo spacessyntactic”in theway

| amusingthe term here. | have mentionedtwo unique
propertiesof the mappingthat one finds in humanlan-
guages: compositionalityand recursion. For an agent
with a languagelike English, a signalfor a meaningis
constructedby generatingstringsfor subpart®f thatmean-
ing andconcatenatinghemin a particularorder So,for
example ,themeaning

knows(john,says(heather,loves(mary,peter)))

is mappedonto a string by finding the stringsthat corre-
spondto john, knows and says(heather, loves(mary,
peter)) and concatenatinghem in that order This is
what makes the languagecompositional. The language
is alsorecursve becausehe constructiorof the stringfor

says(heather, loves(mary, peter)) is carriedout using
thesameprocedure.

A non-compositiondanguagepntheotherhand,maps
betweermeaningsandstringsin a quitedifferentway. In
suchalanguagethestringcorrespondingdo loves(mary,
peter) might have no relation whatsoger to the string
correspondingo loves(mary, john). In fact, thereare
degreesof compositionalityevenwith thesequite simple
meaningsandsignalspaces.

Theagentsinternalrepresentationf themappingoe-
tweenmeaningsand signalsmustbe ableto expressthe
differentdegreesof compositionalityand recursionthat
arepossible.For thesesimulations,a simplified form of
definiteclausegrammarformalismwasused. Seefigure
2 for examplesof how differenttypesof languagecanbe
expressedn this representatioscheme’

3.4 The learning algorithm

Thelearningalgorithmwill notbedescribedn detailhere.
More completecoveragecanbe foundin Kirby (1999b)
andKirby (1999c). The algorithmworks incrementally
processingeachstring-meaningair astheagenthearsit.
Theinductiontakesplacein two steps:

Incor poration The string-meaningpair is madeinto a
singlegrammaticatule andthisis addedo thelearners
grammar

Generalisation The algorithmtriesto integratethe new
ruleinto therestof thegrammarby lookingfor pos-
sible generalisationsThesegeneralisationarees-
sentiallysubsumptionsver pairsof rules. In other
words,the algorithmtakesa pair of rulesfrom the
grammay andtries to find a more generalrule to
replacethem with (within a setof heuristic con-
straints).This proces®f findinggeneralisatiover
pairs of rules continuesuntil no nev onescanbe
found,afterwhichthealgorithmhaltsandtheagent
is freeto procesghenext string-meaningair.

Ratherthangointo detailsof theinductionalgorithm,
anideaof how learningworks canbe demonstratedvith
a few examples.Consideran agentthathasno grammar
andhearsthe utterance:

< heat her | ovesj ohn, loves(heather,john) >
Theagentwill incorporatehis asthefollowing rule:

S/loves(heather,john) — heat her | ovesj ohn

2If a more complex and fine-grainedmeaningrepresentationwere
to be used,it would be clear that real humanlanguagesare actually
only partly compositionattoo. This is particularly obvious if we look
atmorphology Thestringl oves canbethoughtof ascompositionally
derivedfrom thestringsfor themeanindove andthe meaningpresent-
tense. However, the stringi s cannotbe composedrom partsof its
meaningbe+present-tense. Kirby (1998)discusses possibleexpla-
nationfor thesedatain termsof a similar modelto theonegiven here.

30thertypesof representatiorare, of course,possible(seeBatali,
1999, for a radical alternatve) but this one was chosenpartly for its
familiarity to linguists.
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S/loves(heather,john) — heat her | ovesj ohn
S/loves(john,heather) — j ohnl ovesheat her

S/loves(z,y) — N/x | oves N/y
N/heather — heat her
N/john — j ohn

S/p(z,y) = N/x Vi/p N/y
S/p(z,q) = N/x Va/p S/q
Vi /loves — | oves

Va /knows — knows
N/heather — heat her
N/john — j ohn

Figure2: Threetypesof languagexpressedn the formalismusedby the simulation. The materialafterthe slashon cat-
egory labelsis the semantiaepresentationf thatcatagory. Semantidnformationis passedetweerrulesusingvariables

(in italics here).

Now, imaginethatthe agenthearsa seconditterance:
< heat her| ovespet er, loves(heather,peter) >

The learnerincorporateshis utterance,and now hasa
grammarwith two rules:

S/loves(heather,john) — heat her | ovesj ohn
S/loves(heather,peter) — heat her | ovespet er

Thereis now a way in which thesetwo S rulescanbe
generalisedn suchaway thatthey canbe replacedwith
asingleS rule:

S/loves(heather,z) — heat her | oves A/z

This new rule refersto an (arbitrarily named)cateyory
A. In orderthatthis rule may generatat leastthe string-
meaningpairsthattheold rulesdid, theinducermustadd
two A rules:

A/john — j ohn
A/peter — pet er

This type of subsumptionwherethe differencese-
tweentwo rules are extractedout into a separateset of
rules,in itself is not particularly usefulfor learning,be-
causethe grammaras a whole will never becomemore
general. However, this type of subsumptioris pairedup
with anotherwhich can“merge” categgory names. Con-
siderthe stateof the agentdescribedabove after hearing
thefollowing two utterances:

< maryl ovesj ohn, loves(mary,john) >
< maryl ovesheat her , loves(mary,heather) >

Thegrammarof the agentafterincorporatingtheseutter
ancesandgeneralisingheruleswould be:

S/loves(heather,z) — heat her | oves A/z
S/loves(mary,z) — maryl oves B/x
A/john — j ohn
A/peter — pet er
B/john — j ohn
B/heather — heat her

Now, therearetwo “john” ruleswhich areidentical ex-
ceptfor their categgory name.A subsumptiorof thesetwo
rules canbe madesimply by rewriting all the Bs in the
grammarwith As (or vice versa).If thisis donewith the

grammarabove, thenthis meanghatthetwo S rulescan
now be subsumedy one by extracting out “mary” and
“heather”. After anothemeiging of category namesthe
grammarbecomes:

S/loves(z,y) - A/xz|oves AJy
A/john — j ohn
A/peter — pet er
A/heather — heat her
A/mary — mary

This grammarshaws thatthe learnerhasgeneralisede-
yond the datagiven: the learnerwas givenonly 4 utter
anceshut cannow producel6 distinctones.

3.5 Theinvention algorithm

Sofar, we have seenwhatthe agents’'meaningspaceand
signalspacdookslike, andhow they learnthegrammars
thatallow themto mapfrom oneto the other However,
sincethe simulationstartswith a spealkragentwith no
languageandno languages providedfrom “outside” of
the simulation, what hasbeendescribedso far will not
produceary utterancestall.

Theagentanust,therefore have someway of invent-
ing new stringsfor meaningwhich they cannotcurrently
produceusingtheirgrammarslf theagentwishesto pro-
ducea sstringfor a particularmeaningandthatagenthas
no grammarat all, then a completelyrandomstring of
symbolsis produced.In the simulationsreportedbelow,
the randomstringsvary betweenone andthreesymbols
in length.

Although, this completelyrandominventionstrateyy
seemssensiblewhere an agenthasno grammarat all,
or hasa non-compositionafjrammayit seemdesslikely
whereanagents alreadyin possessionf asyntactican-
guage.Thislattersituationis akinto a spealer of English
needingto producea sentencehatrefersto a completely
novel object. It seemsvery implausiblethat the spealer
will decideto inventa new “word” thatstandsin for the
whole sentencelnstead,t seemdikely thatthe spealer
of acompositionalanguagewill understandhatshecan
inventa new word for only that part of the sentencdhat
relatesto the novel meaning.

To simulatethis, the inventionalgorithmusedby the
agentsnever introducesary new structureinto an utter
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Figure3: A scattemplot comparingearly languagesvith

thosethat emege towards the end of the runs. Each
point represent®ne run. The runs varied with respect
to the size of the spacepossiblemeaningsaboutwhich

theagentproducedutterances.

ance,but similarly alwaysto preserer ary structurethat
alreadyexistsin thelanguage Again, for reason®f con-
cisenessdetailsof the algorithmare not given herebut
canbefoundelsavhere(Kirby, 1998,1999b).

4 Experimental results

This sectiondescribeseveral resultsof runningthe sim-
ulation describedabove. The simulatorwasdesignedo
outputthreesetsof datafor eachgeneratiorin arun: the
actualgrammairof the spealer, thesizeof grammarof the
spealer (in numberof rules), andthe proportionof the
meaningghatthe spealer expressedvithout recourseo
invention. The last statisticallows us to estimatethe ex-
pressie power of the spealer'sgrammar

4.1 Theememgenceof degree-Ocomposition-
ality
For the first set of experimentalresults, only degree-0

meaningsvereused. In otherwords,no predicatesuch
asbelieves or says wereincludedin the meaningspace
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Figure 4: The movementover time of the languagesn
variousrunsof thesimulation. Thearrovs show theover-
all directionof movementin expressvity/sizespace.The
languagesn the simulation start as vocahularies, gron
rapidly but eventually becomesyntactic. For a larger
meaningspace(anda fixed bottleneck)the time it takes
to achiese syntaxincreases.

of the agents. The size of the meaningspaceis varied
from runto run by alteringthe numberof distinctatomic
predicatesaindargumentgherecouldbe. Eachspealerin
everyrunattemptgo producesOrandomlychoserdegree-
0 meaningsn its lifetime. | will referto this valueasthe
bottlene& size reflectingthefactthatthelanguagei the
simulationsmustrepeatediysqueezé¢hroughabottleneck
of 50 sampledo persistovertime.

A varietyof simulationrunswereperformedwith the
sizeof themeaningspacevaryingfrom 12 possiblemean-
ingsto 448 possiblemeaning$ Theresultsof eachsim-
ulation canbe plotted on a graphof expressvity of lan-
guageagainstsize of grammar(this canbe thoughtof as
aplot of externalsizeagainstinternalsizeof alanguage).
Theexpressvity measurés calculatedoy multiplying the
proportionof meaningghat a spealer producedwithout

4For implementationalreasons,reflexive meaningswere pruned
from the meaning space. In other words, a proposition such as
loves(john,john) is not allowed. The largestmeaningspacevasmade
up of 8 possibleatomicpredicate®nd8 possibleatomicarguments.



inventionby the size of meaningspace.This givesusan
estimateof the total numberof meaningghata spealer’'s
grammaris able of expressing.Two scatterplots of this
typearein figure3. Eachpointonthetop plotis thesitua-
tion in asimulationrun afteronly 5 generationswhereas
the bottom plot shows the resultafter 5000 generations
(afterwhichthelanguagesretypically very stable).

Anotherway to visualisetheseresultsis to obsene
the movementof particularlanguagesver time asthey
aretransmittedfrom generatiorto generation.Figure 4
shaws two setsof simulationruns,onewith afairly small
meaningspaceandonewith alargerone.Noticethatthe
behaiour of the languagesn theserunsis very similar:
they startwith low expressvity andmediumsize,rapidly
increasdn sizewith anapproximatelinearincreasan
expressiity, beforeeventually changingdirectionin the
spacewith arapidincreasean expressvity andreduction
in size. The final expressvity is determinedexactly by
the sizeof the meaningspace.

Onthefirst setof graphd havedistinguishedetween
two typesof language Examplesof thesetypesaregiven
belon. In the simulationresults,predicateatomsarela-
belledasac0, acl etc. (standingfor “action”) whereas
argumentatomsarelabelledasob0, obl etc. (standing
for “object”):

Idiosyncratic Early in the simulations,the languages
arevocahulary-like,in thatthey tendto have nopredictable
correspondencbetweenmeaningsandstrings. In other
words, they are non-compositional.For the majority of
meaningsa correspondingstring is simply listed in the
grammair(althoughevenearlyontheremaybeotherrather
non-productve rules). Hereis a smallsubsebf therules
in agrammarfrom asimulationwith 8 possiblepredicates
and 8 possibleactions. The completegrammarhad 43
rulesandcoveredonly 2% of the possiblemeaningspace.

S/ac5(ob6,0b3) — ttm
S/ac4(ob2,0b4) — eue
S/ac6(ob5,0b4) — nx
S/ac3(obl,0b3) — ei b
S/ac4(ob6,0b5) — ve
S/ac2(obl,0b6) — n
S/acl(ob0,0b5) — ec
S/acl(ob6,0b7) — mv
S/ac0(ob3,0b4) — xi
S/ac5(ob4,0b5) — h
S/ac4(ob3,0b4) — i f
S/acl(ob0,0b7) — j
S/ac3(obl,0b0) — 0
and30others...

Syntactic At the end of the simulationruns, the lan-
guagesreableto expressall themeaningsn themeaning
spaceof thatparticularrun with arelatively smallgram-
mar. This is possiblebecausesyntaxhasemeged. The
final languagegxhibit completecompositionalityaswell

asan emegentnoun/ierbdistinction. The grammarbe-

low is anexampleof the endresultof a run with 5 pred-
icatesand5 agumentgthe cateyoriesA and B arearbi-
trarily choserby theinducer andappeato correspondo
nounandverh)

S/p(x,y) = B/p Alyi Alz
Afob3 — z
A/ob4d — qu
A/obl — f

A/ob0 — vco
Bj/ac3 —rr
B/ac2 — |
B/ac4 — b

B/acl — hta
A/ob2 —p
B/ac0 — qg

What theseresultsshow is that, for a large rangeof

initial conditionsfor thesimulation,syntaxinevitably emeges.

4.2 The ememenceof recursion

The semanticspacein the simulationsshovn so far has
beenstrictly finite. Only combinationsof atomic predi-
catesandtwo atomicargumentshave beenallowed. The
simulation has also beenrun with a potentially infinite
meaningspaceusingpredicatedik e believes whichtake
a propositionalsecondargument. For theseruns, there
are alwaysfive possibleatomic arguments five possible
“normal” predicatesandfive possible‘embedding”pred-
icates. Eachgeneration,the spealers produce50 ran-
dom utterancesvith degree-Osemanticgasin the previ-
oussimulations) followed by 50 randomutterancesvith
degree-1semanticgoneembedding)andfinally, 50 ran-
domutterancesvith degree-2semanticgtwo embeddings).
Unfortunately it is impossibleto plot the resultsof
theserunsin the sameway asthoseof the previous sim-
ulations, becausehe expressvity of a languagecannot
be calculatedas simply a numberof meaningscovered.
However, theresultsof differentrunsis remarkablycon-
sistent? andthebehaviour of the systemcanbeeasilyun-
derstoodby looking atanexamplelanguageasit changes
overtime. (The“subordinating”predicatesregiventhe
namessu0, sul, etc.in theoutputof thesimulation.)

Idiosyncratic Theinitial grammarsare very similar to
thosein the previous degree-Osimulationruns. In other
words,they too appeaito be simpleidiosyncraticvocab-
ulary lists for a subsebf the meaningsn the space.One
difference of coursejs thattherearewordsfor the more
complex degree-landdegree-2meaningsHereis asmall
subsebf thelanguagewe aretrackingearlyin therun:

S/ac3(obl,0b4) — de
S/ac2(ob0,0bl) — ak
S/ac2(ob0,0b3) — t

S/ac3(ob0,0b1) — sdx
S/ac4(ob0,0b3) — g

5SeeKirby (1999c)for a ratherdifferentway of visualisingthe re-
sultsof this type of simulationrun.



S/ac0(ob2,0b4) — vnu
S/ac0(ob1,0b3) — gj
S/ac0(ob3,0b4) — nui
S/su4(ob2,ac0(obl,0b2)) — oeb
S/su4(ob4,ac4(ob2,0bl)) — ew
S/sul(ob3,ac2(ob2,0b4)) — vri
S/su4(ob3,ac2(ob4,0b0)) —y
S/su4(ob4,ac2(ob3,0b0)) — pf f
S/sul(ob0,ac3(obl,0b3)) — fi
S/su2(ob0,su3(ob2,ac0(ob1,0b2))) —j t
S/sul(ob4,su2(ob0,ac2(ob0,0b3))) — vz
S/su2(ob0,su2(ob3,ac4(ob3,0bl))) — z
S/sul(ob0,sul(ob2,ac1(ob0,0b3))) — gb
S/su0(ob4,su4(ob3,ac0(ob0,0bl))) — r
S/su4(obl,su3(ob2,ac2(ob3,0b4))) — cr
S/su3(obl,sul(ob3,ac3(obl,0b4))) — sz
S/su2(ob0,su2(ob1,ac0(ob1,0b2))) — i xh
and94 others...

Degree-Ocompositionality After 100 generationsthis
languagenaschangedagainin a way similar to the pre-
viousruns. Theproportionof degree-Omeaningghatare
producedwithout invention hasclimbedrapidly, so that
now thespealerscanexpressevery degree-Omeaningus-
ing this language.Thelisting belon givesa small subset
of the language shoving how a compositionakencoding
for degree-Omeaningshasemeged. Therearethreema-
jor categories: D is averbalcateyory, and A andC appear
to be case-markdnominalswith A actinglike anomina-
tive,andC likeanaccusatie. Thesecatejoriesoccasion-
ally appeairin partly compositionalrules for more com-
plex meaningshut generally the degree-land degree-2
partof the meaningspaceis still expresseddiosyncrati-
cally, andthereforewith poorcoverage.
S/p(z,y) 9] C/yz A/z D/p
A/ob2 — dl
C/obl — ovp
A/obl — tej
C/ob2 — x
D/ac3 — xe
D/acO — m
A/ob3 — gp
A/ob0 — h
C/ob0 —y
D/ac2 — ¢
C/ob4 — i
D/acl —b
C/ob3 — h
S/sul(z,su4(obl,ac4(ob0,0b3))) - C/zjwyjtejdbznuy
S/sul(ob4,su0(obl,ac4(ob4,0b2))) — ht ej yj ndbznuy
S/su3(z,su0(ob0,ac0(ob0,0b4))) — qzj wA/z ya
and68 others...

Syntaxand recursion At theendof the simulationrun
(herethe run lastedfor 1000 generations}the language
coverstheentiremeaningspace Thatis, thespealerscan
producestringsfor ary degree-0,1or 2 meaningwithout
recourseto invention. Furthermore the spealers could
producestringsfor aninfinite rangeof meaningswith any
depthof embedding.This is possibledueto the appear
anceof recursionin the syntax,asshowvn below. In this
languagehe nominal systemhassimplified to oneform
that is usedboth for accusatie and nominative, and a
new verbalcategory hasemegedfor predicateghattake

a propositionalsecondargument. The secondS rule in
this grammaris the recursie one, asits last right-hand
sidecategoryis alsoS.

S/p(z,y) =9 A/yf A/z B/p
S/p(z,q) =1 A/z D/p S/q
A/ob3 — qp
A/ob2 — dI
Bj/ac2 — ¢
B/ac0 - m
A/obl — t ej
A/ob4d — n
B/ac4d — e
Afob0 — h
B/acl —b
B/ac3 — wp
D/su4 - m
D/sul —u
D/su2 — g
D/su0 — p
D/su3 —ipr

Onceagain,we have seena movementof languages
in the simulationfrom an initial random,idiosyncratic,
vocahulary-like stage,to onein which all the meanings
canbe expressedisinga highly structuredsyntacticsys-
tem.

5 Linguistic transmissionfavours syn-
tactic mappings

The simulationresultsin the previous sectionshawv that
compositionalrecursvelanguagemegein apopulation
which initially hasno language gven wherethereis no
selectionpressurenindividualsto communicatevell, or
indeedary biologicalevolution atall. Purelythroughthe
proces®f beingrepeatedlynappedrom aninternalform
asagrammarto an externalform asutterancesandback
again,languageevolves. Syntacticstructureappeargo
emege inevitably when a mappingbetweentwo struc-
tured domainsmust be passedon over time through a
learningbottleneck. Why might this be? What are the
propertieof syntactiomappingsandlearningbottlenecks
thatmake this inevitable?

Figure 5 is a schematicrepresentatiorf a possible
mappingbetweertwo spacesLet usassumefor the pur-
posesof this explanation,that the structurein the two
spacedeing mappedonto eachotheris spatial. Thatis,
two pointsin a spaceare more similar if they are close
togetherin the representatiormf that spacethanif they
arefurtherapart. The mappingin this diagramtherefore
doesnotpresere structurefrom onespaceo theother In
otherwords,thereis arandomrelationbetweera pointin
onespaceandits correspondingpointin the otherspace.

Now, imaginethat this mappingmustbe learned. In
the diagram,someof the pairingsare shovn in bold —
if thesewherethe only onesa learnerwas exposedto,
would thatlearnerbe ableto reconstructhe whole map-
ping? Not easily: the only way a randommappingcould



Figure5: A non-structurepreservingmappingbetween
two spaceswith spatialstructure.The bold linesindicate
animaginarysubsamplef themappingthatmightbe ev-
idencefor a learner This mappingcould only be learnt
by alearnemwith avery specificprior bias.

bereliablylearntfrom asubsebf pairingswould beif the
learnerhada very informative and domainspecificprior
biasto learnthat particularmapping. Whilst this is pos-
sibleif the spacesarefinite, it is in principle impossible
wherethey arepotentiallyunbounded.

Figure6 ontheotherhand,shavsamappingn which
structurein one spaceis presered in the other Given
the samplein bold, it seemshat a learnerhasa higher
chanceof reconstructinghe mapping. A learnerthatis
biasedto constructconcisemodels,for example,would
learnthis mappingmoreeasilythanthatin thefirst figure.
Importantly this biasis morelikely to be domaingen-
eralthanonethatexplicitly codedor aparticularidiosyn-
cratic mapping.Furthermorea modelcanbe constructed
thatwould mapthe spacesvenif they were potentially
infinite in extent.

The first type of mapping(figure 5) is very like the
vocahulary-likesystemslescribedn theprevioussection,
wherepointsin themeaningspacevherearbitrarily paired
with pointsin the signalspace.To putit moreprecisely
similarity betweentwo pointin either spaceis no guar
anteeof similarity betweerthe pointsthatthey maponto
in the otherspace® The secondype of mappingis much
morelike a syntacticsystem,wherestringshave a non-
arbitrary relationwith the meaningghey correspondo.
Similarity betweertwo stringsin thesesystemss a very
goodindicatorof similarity betweertheir corresponding
meanings.

In the secondsetof simulations,asin real language,
both the meaningspaceand the signal spaceare poten-
tially infinite in extent. This meansthatit is in princi-

6For anexampleof thistypeof mappingconsiderEdinkurghis more
like Glasgav thanit is like Erinsborough(the fictional settingfor the
AustraliansoapNeighbous), andyet the string Edinburgh is morelike
Erinsbooughthanit is like Glasgow

Figure6: A mappingin which structureis presered. The
bold lines indicatean imaginary subsampleof the map-
ping that might be evidencefor a learner This mapping
is morelikely to be successfullyearntby alearnemwith a
moregeneralprior bias.

ple impossiblefor a learnerto acquirea mappingof the
first type. We can conclude,then, thatwherea learner
is exposedto a sub-samplingf the string-meaningair-

ings in a language— in otherwords, wherethereis a
learningbottleneck— idiosyncratic,vocahulary-like lan-
guagesreunlikely to belearnedsuccessfullyTheinitial,

randomlanguagesn the simulationsare unstableover
time aslong asthe bottleneckis tight enoughthat they
cannotfit throughintact. This is not a featureof syn-
tactically structuredanguageshowever. Structurein the
mappingimprovesthe survivability of thatmappingfrom

onegeneratiorto the next.

Whatwe areleft with is avery generaktoryaboutthe
(cultural/social/historicalgvolutionof mappingsStructure-
preservingnappingsaremoresuccessfusurvivorsthrough
the learningbottleneck. This fact, coupledwith random
invention of pairingsin languageghat have incomplete
coverageof the meaningspace,and the unboundedness
of the meaningandsignalspacesleadsinevitably to the
emepgenceof syntax.
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