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Abstract

Humanlanguageis uniquein having a learned,arbitrarymappingbetweenmeaningsandsignalsthat is compositional
andrecursive. This paperpresentsa new approachto understandingits origins andevolution. Ratherthanturning to
naturalselectionfor an explanation,it is arguedthat generalpropertiesof the transmissionof learnedbehaviour are
sufficient to explain theparticularpropertiesof language.A computationalmodelof linguistic transmissionis described
in which complex structuredlanguagesspontaneouslyemerge in populationsof learners,even thoughthepopulations
have no languageinitially, andarenot subjectto any equivalent of biological change. Theseresultsareclaimedto
be generalandareexplainedin termsof propertiesof mappings.Essentially, asmappingsarepasseddown through
generationsof imitators,syntacticonesareintrinsicallybetterat surviving throughthelearning“bottleneck”.

1 Intr oduction

Why doeshumanlanguagehave certainpropertiesand
not others?This is thecentralquestionfor linguistic ex-
planation.Of particularinterestto linguistsaretheprop-
erties that humanlanguagehas that appearto make it
uniqueamongcommunicationsystemsin thenaturalworld.
Onesuchpropertyis syntax:themappingbetweenmean-
ingsandsignalsin humanlanguagesis uniquelycompo-
sitional and recursive. That is, the meaningof a signal
is composedfrom the meaningsof partsof that signal,
andfurthermore,arbitrarilycomplex meaningscanbeex-
pressedby embeddingsignalsinsidesignals.

A commonapproachin linguisticsto theexplanation
of thesebasicpropertiesof syntaxis to appealto innately
givenpropertiesof our languagefaculty. TheChomskyan
approach(e.g.Chomsky, 1986), for example,holds that
our innatelanguageacquisitiondeviceconstrainsdirectly
what typesof languagewe may learn. In this perspec-
tive, thequestionthatstartedthis papercanbeanswered
by hypothesizingthosepropertiesasinnatelygiven. An-
otherapproachbroadlytermed“functionalism”holdsthat
muchof the constraintson variationamongstlanguages
canbeexplainedbyappealingto thecommunicativefunc-
tionsof language(e.g.Comrie,1981;Hawkins,1988;Croft,
1990,andreferencestherein).Putsimply, languageis the
way it is becauseit is shapedby the way it is used(see
Newmeyer, 1999; Kirby, 1999a,for reviews of the dis-
tinction betweenfunctionaland innatistapproaches).A
dominantapproachin evolutionarylinguistics(e.g.Pinker
andBloom,1990)combinesfunctionalismandinnateness
by arguing that any innate languageacquisitiondevice
would have beenshapedby naturalselectionin our evo-

lutionarypast,andthattheselectivepressureswouldhave
beenrelatedto communication.

Oneway of looking at this paperis asan attemptat
an alternative (thoughnot incompatible)explanationfor
the origins of compositionalityand recursionin human
language;onewhich doesnot appealto a stronglycon-
straininginnatelanguageacquisitiondevice, nor an ex-
plicit mechanismwherebythecommunicative aspectsof
languageinfluenceits form. Instead,theapproachputfor-
wardherelooksto generalpropertiesof theway in which
linguistic informationis transmittedover time for anex-
planationof its structure.

Another way of seeingthis paper, however, is as a
demonstrationof the value of looking at the properties
of behaviour that is repeatedlyimitated1 in a population.
In this light, humanlanguagecanbeseenasa case-study
of how repeatedlearninganduseaffects,over time, the
structureof thebehaviour beinglearned.Thinking about
imitatedbehaviour in this way, we canbegin to seesug-
gestiveparallelsbetweeninformationtransmissionvia learn-
ing in asocial/culturalcontext, andinformationtransmis-
sion via reproductionin a biological context (seefigure
1).

2 The learning bottleneck

Thetransmissionof linguistic behaviour is a specialcase
of the systemdiagrammedin figure1. A languagein its
internalform is amappingbetweenmeaningsandsignals

1I usetheterm“imitation” hereasit hasbeenusedin thisconference.
SeeOliphant(1997)for somediscussionof why it maynot be thebest
termto usein this context.
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Figure1: Both socialtransmission(via observationandimitation) andbiological transmission,involve transformationof
informationbetweenaninternalandexternaldomain.This transformationactsasa bottleneckon theflow of information
throughtherespectivesystems,andmayhaveanimpacton theemergentstructureof this information.

(typically stringsof phonemes).That is, an individual in
possessionof a languagewill have someinternalmental
representationof that languagethat specifieshow mean-
ings arepairedwith strings. Languagesalsoexists in an
externalform, however, asactualinstancesof signalsbe-
ing pairedwith meanings.The way in which a particu-
lar language(in both its forms) persistsover time is by
repeatedtransformationfrom the internalto externaldo-
mainsvia actualuse,andback into the internaldomain
via observationandlearning(i.e. imitation).

Thetransformationbetweenthe internalandexternal
domainsof language— I-languageand E-languagein
Chomsky’s terms(seeChomsky, 1964;Andersen,1973;
Chomsky, 1986;Hurford, 1987;Kirby, 1999a;Hurford,
1999,for discussion)— act asa bottleneckon informa-
tion flowing throughthe system. Justas the bottleneck
on transmissionof geneticinformationin biologicalsys-
temseventuallyhasimplicationsfor the structureof or-
ganismsthat emerge, we shouldexpect that the equiva-
lent bottleneckin the linguistic systemto have a role to
play in theexplanationof partsof linguisticstructure.So,
a particularpieceof geneticinformationmay not persist
becausethe phenotypethat it expressesmay not survive
to reproduce. In a similar way, a particular featureof
language(that is, a particularpart of the representation
of the meanings-to-stringsmapping)may not persistbe-
causetheutterancesit givesriseto maynot reconstructit
throughlearning.

3 Simulating linguistic transmission

In orderto testthehypothesisthat,in thecaseof language,
the learning bottleneckdeterminesin part the eventual
structureof what is beinglearned,the modelof linguis-
tic transmissionhasbeenimplementedcomputationally.
This typeof simulationbasedapproachhasrecentlybeen
adoptedbyseveralresearchersin theevolutionarylinguis-
tics literature(e.g.Steels,1997;Kirby andHurford,1997;
Kirby, 1998;Hurford,1998;Batali,1998;Briscoe,1998;
Niyogi andBerwick, 1999)asit offersa “third way” be-
tweenverbaltheorisingontheonehandandmathematical
analyticapproacheson theother.

Thesimulationconsistsof:

Z apopulationof computationalagents,

Z a predefinedmeaningspace.That is, a setof con-
ceptswhich theagentsmaywish to express,

Z a predefinedsignalspace.Thatis, a setof concate-
nationsof symbolsavailableto theagents.

Eachagent’sbehaviour is determinedby agrammarinter-
nal to thatagentwhichit haslearntsolelythroughobserv-
ing thebehaviour of otheragentsin the population.The
populationmodelis generationalin thatagents“die” and
arereplacedwith new agentswhich haveno initial gram-
mar. Theagentsarenotprejudicedor rewardedaccording
to their behaviour in any way. In other words, thereis
nonaturalselectionin this model,andsinceeachagentis
identicalat“birth”, theonly informationthatflowsthrough
the simulationfrom onegenerationto the next is in the
form of utterances.

For the experimentsdescribedin this paper, a very
simple populationmodel was used: one in which there
is, at any point in time,only a singlespeakerandasingle
hearer. Thesimulationcycle is outlinedbelow:

c.1 Setup the initial populationto have two agents:a
speaker anda hearer, bothof whomhave no gram-
mar.

c.2 Repeatsomepre-specifiednumberof times:

c.2a Pick a meaning[ at randomfrom themean-
ing space,

c.2b If the speaker can producea string \ for [
using its grammar, then let the hearerlearn
from the pair ]^\`_�[ba , elselet the speaker
inventastring \ andletbothhearerandspeaker
learnfrom thepair ]c\`_�[da .

c.3 Removethespeaker, makethehearerthenew speaker
andintroduceanew hearerwith no grammar.

c.4 Go to c.2.



Clearlythecriticaldetailsfor thatdeterminethebehaviour
of thissimulationare:themeaningspace,thesignalspace,
the grammaticalrepresentation,the learningalgorithm,
andtheinventionalgorithm.

3.1 The meaningspace

The meaningsin the simulationaresimplepropositions
madeupof apredicateandtwo arguments.Typicalpropo-
sitionsinclude,for example:

loves(mary,john)
admires(gavin,heather)

etc.

Certainpredicatescan take propositionsas their second
argumentleadingto propositionssuchas:

says(peter,loves(mary,john))
believes(heather,says(peter,loves(mary,john)))

etc.

In thesimulationsreportedhere,thenumberof differ-
entsemanticatoms(predicates/arguments)canbevaried,
to testhow it affectstheevolving language.Becauseem-
beddingof propositionsis possible,therangeof possible
meaningsis potentiallyinfinite.

3.2 The signal space

Thesignalsin thesimulationarelinearconcatenationsof
symbolschosenfrom the 26 lower-caselettersof the al-
phabet. The shortestsignalwould containonly onelet-
ter, whilst thereis potentiallyno upperboundon signal
length. Thereis no pre-definedequivalentof the“space”
character. An example utterance(i.e. signal-meaning
pair) of anagentthatknew a languagelike Englishcould
be:

e
marylovesjohn f loves(mary,john) g

3.3 The grammatical representation

Now that we have a specificmeaningspaceand signal
spacein mind, it is useful to understandwhat makes a
mappingbetweenthesetwo spaces“syntactic” in theway
I am usingthe term here. I have mentionedtwo unique
propertiesof the mappingthat one finds in humanlan-
guages: compositionalityand recursion. For an agent
with a languagelike English, a signal for a meaningis
constructedbygeneratingstringsfor subpartsof thatmean-
ing andconcatenatingthemin a particularorder. So,for
example,themeaning

knows(john,says(heather,loves(mary,peter)))

is mappedontoa stringby finding thestringsthatcorre-
spondto john, knows andsays(heather, loves(mary,
peter)) and concatenatingthem in that order. This is
what makes the languagecompositional. The language
is alsorecursivebecausetheconstructionof thestringfor

says(heather, loves(mary, peter)) is carriedout using
thesameprocedure.

A non-compositionallanguage,ontheotherhand,maps
betweenmeaningsandstringsin a quitedifferentway. In
sucha language,thestringcorrespondingto loves(mary,
peter) might have no relation whatsoever to the string
correspondingto loves(mary, john). In fact, thereare
degreesof compositionality, evenwith thesequitesimple
meaningsandsignalspaces.2

Theagents’internalrepresentationof themappingbe-
tweenmeaningsandsignalsmustbe ableto expressthe
different degreesof compositionalityand recursionthat
arepossible.For thesesimulations,a simplified form of
definiteclausegrammarformalismwasused.Seefigure
2 for examplesof how differenttypesof languagecanbe
expressedin this representationscheme.3

3.4 The learning algorithm

Thelearningalgorithmwill notbedescribedin detailhere.
More completecoveragecanbe found in Kirby (1999b)
andKirby (1999c). The algorithmworks incrementally,
processingeachstring-meaningpair astheagenthearsit.
Theinductiontakesplacein two steps:

Incorporation The string-meaningpair is madeinto a
singlegrammaticalruleandthisisaddedto thelearner’s
grammar.

Generalisation Thealgorithmtries to integratethe new
ruleinto therestof thegrammarby lookingfor pos-
siblegeneralisations.Thesegeneralisationsarees-
sentiallysubsumptionsoverpairsof rules.In other
words,thealgorithmtakesa pair of rulesfrom the
grammar, and tries to find a more generalrule to
replacethem with (within a set of heuristiccon-
straints).Thisprocessof findinggeneralisationover
pairsof rulescontinuesuntil no new onescanbe
found,afterwhichthealgorithmhaltsandtheagent
is freeto processthenext string-meaningpair.

Ratherthango into detailsof theinductionalgorithm,
an ideaof how learningworkscanbedemonstratedwith
a few examples.Consideranagentthathasno grammar
andhearstheutterance:

e
heatherlovesjohn f loves(heather,john) g

Theagentwill incorporatethis asthefollowing rule:
hji

loves(heather,john) k heatherlovesjohn

2If a morecomplex andfine-grainedmeaningrepresentationwere
to be used,it would be clear that real humanlanguagesare actually
only partly compositionaltoo. This is particularlyobvious if we look
atmorphology. Thestringloves canbethoughtof ascompositionally
derivedfrom thestringsfor themeaninglove andthemeaningpresent-
tense. However, the stringis cannotbe composedfrom partsof its
meaningbe+present-tense. Kirby (1998)discussesa possibleexpla-
nationfor thesedatain termsof asimilarmodelto theonegivenhere.

3Other typesof representationare,of course,possible(seeBatali,
1999, for a radical alternative) but this one was chosenpartly for its
familiarity to linguists.



Non-compositional Partly compositional Compositionaland recursive

lnm
loves(heather,john) o heatherlovesjohnlnm
loves(john,heather) o johnlovesheather

l`m
loves p�qsr�t"ujowv m q loves v m t

v m heather o heather
v m john o john

l`myx p�qsr�tzujo{v m q}|n~ myx v m tl`myx p�qsr���ujo{v m q�|�� myx}l`m �
|n~ m loves o loves
| � m knows o knows
v m heather o heather
v m john o john

Figure2: Threetypesof languageexpressedin theformalismusedby thesimulation.Thematerialaftertheslashon cat-
egory labelsis thesemanticrepresentationof thatcategory. Semanticinformationis passedbetweenrulesusingvariables
(in italics here).

Now, imaginethattheagenthearsa secondutterance:
e
heatherlovespeter f loves(heather,peter) g

The learnerincorporatesthis utterance,and now hasa
grammarwith two rules:

h&i
loves(heather,john) k heatherlovesjohnhji

loves(heather,peter) k heatherlovespeter

Thereis now a way in which thesetwo � rules can be
generalisedin sucha way that they canbereplacedwith
a single � rule:

hji
loves(heather,� ) k heatherloves � i �

This new rule refers to an (arbitrarily named)category�
. In orderthatthis rule maygenerateat leastthestring-

meaningpairsthattheold rulesdid, theinducermustadd
two

�
rules:

� i john k john
� i peter k peter

This type of subsumption,wherethe differencesbe-
tweentwo rules are extractedout into a separateset of
rules, in itself is not particularlyuseful for learning,be-
causethe grammarasa whole will never becomemore
general.However, this typeof subsumptionis pairedup
with anotherwhich can“merge” category names.Con-
siderthestateof theagentdescribedabove afterhearing
thefollowing two utterances:

e
marylovesjohn f loves(mary,john) ge

marylovesheather f loves(mary,heather) g
Thegrammarof theagentafterincorporatingtheseutter-
ancesandgeneralisingtheruleswould be:

hji
loves(heather,� ) k heatherloves � i �hji

loves(mary, � ) k maryloves � i �
� i john k john
� i peter k peter
� i john k john

� i heather k heather

Now, thereare two “john” ruleswhich are identicalex-
ceptfor theircategoryname.A subsumptionof thesetwo
rulescanbe madesimply by rewriting all the � s in the
grammarwith

�
s (or vice versa).If this is donewith the

grammarabove, thenthis meansthat thetwo � rulescan
now be subsumedby oneby extractingout “mary” and
“heather”. After anothermerging of category names,the
grammarbecomes:

h&i
loves( ��f�� ) k�� i � loves � i �

� i john k john
� i peter k peter

� i heather k heather
� i mary k mary

This grammarshows that the learnerhasgeneralisedbe-
yond the datagiven: the learnerwasgiven only 4 utter-
ances,but cannow produce16 distinctones.

3.5 The invention algorithm

Sofar, we haveseenwhattheagents’meaningspaceand
signalspacelookslike,andhow they learnthegrammars
thatallow themto mapfrom oneto the other. However,
sincethe simulationstartswith a speaker-agentwith no
language,andno languageis providedfrom “outside” of
the simulation,what hasbeendescribedso far will not
produceany utterancesat all.

Theagentsmust,therefore,havesomewayof invent-
ing new stringsfor meaningwhich they cannotcurrently
produceusingtheirgrammars.If theagentwishesto pro-
ducea stringfor a particularmeaning,andthatagenthas
no grammarat all, then a completelyrandomstring of
symbolsis produced.In the simulationsreportedbelow,
the randomstringsvary betweenoneandthreesymbols
in length.

Although, this completelyrandominventionstrategy
seemssensiblewhere an agenthasno grammarat all,
or hasa non-compositionalgrammar, it seemslesslikely
whereanagentis alreadyin possessionof asyntacticlan-
guage.This lattersituationis akin to aspeakerof English
needingto producea sentencethatrefersto a completely
novel object. It seemsvery implausiblethat the speaker
will decideto inventa new “word” that standsin for the
wholesentence.Instead,it seemslikely that thespeaker
of a compositionallanguagewill understandthatshecan
inventa new word for only thatpartof thesentencethat
relatesto thenovel meaning.

To simulatethis, the inventionalgorithmusedby the
agentsnever introducesany new structureinto an utter-
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Figure3: A scatterplot comparingearly languageswith
thosethat emerge towards the end of the runs. Each
point representsone run. The runs varied with respect
to the size of the spacepossiblemeaningsaboutwhich
theagentsproducedutterances.

ance,but similarly alwaysto preserver any structurethat
alreadyexistsin thelanguage.Again, for reasonsof con-
ciseness,detailsof the algorithmarenot given herebut
canbefoundelsewhere(Kirby, 1998,1999b).

4 Experimental results

This sectiondescribesseveralresultsof runningthesim-
ulation describedabove. The simulatorwasdesignedto
outputthreesetsof datafor eachgenerationin a run: the
actualgrammarof thespeaker, thesizeof grammarof the
speaker (in numberof rules), and the proportionof the
meaningsthat the speaker expressedwithout recourseto
invention. The laststatisticallows us to estimatetheex-
pressivepowerof thespeaker’sgrammar.

4.1 Theemergenceof degree-0composition-
ality

For the first set of experimentalresults,only degree-0
meaningswereused.In otherwords,no predicatessuch
asbelieves or says wereincludedin themeaningspace
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Figure 4: The movementover time of the languagesin
variousrunsof thesimulation.Thearrowsshow theover-
all directionof movementin expressivity/sizespace.The
languagesin the simulationstart as vocabularies,grow
rapidly but eventually becomesyntactic. For a larger
meaningspace(anda fixed bottleneck)the time it takes
to achievesyntaxincreases.

of the agents. The size of the meaningspaceis varied
from run to run by alteringthenumberof distinctatomic
predicatesandargumentstherecouldbe.Eachspeaker in
everyrunattemptstoproduce50randomlychosendegree-
0 meaningsin its lifetime. I will referto this valueasthe
bottlenecksize, reflectingthefactthatthelanguagesin the
simulationsmustrepeatedlysqueezethroughabottleneck
of 50 samplesto persistover time.

A varietyof simulationrunswereperformedwith the
sizeof themeaningspacevaryingfrom 12possiblemean-
ings to 448possiblemeanings.4 Theresultsof eachsim-
ulation canbe plottedon a graphof expressivity of lan-
guageagainstsizeof grammar(this canbethoughtof as
aplot of externalsizeagainstinternalsizeof a language).
Theexpressivity measureis calculatedby multiplying the
proportionof meaningsthat a speaker producedwithout

4For implementationalreasons,reflexive meaningswere pruned
from the meaning space. In other words, a proposition such as
loves(john,john) is not allowed. Thelargestmeaningspacewasmade
upof 8 possibleatomicpredicatesand8 possibleatomicarguments.



inventionby thesizeof meaningspace.This givesusan
estimateof thetotal numberof meaningsthata speaker’s
grammaris ableof expressing.Two scatterplots of this
typearein figure3. Eachpointonthetopplot is thesitua-
tion in a simulationrun afteronly 5 generations,whereas
the bottom plot shows the result after 5000generations
(afterwhich thelanguagesaretypically verystable).

Another way to visualisetheseresultsis to observe
the movementof particularlanguagesover time as they
are transmittedfrom generationto generation.Figure4
shows two setsof simulationruns,onewith a fairly small
meaningspace,andonewith a largerone.Noticethatthe
behaviour of the languagesin theserunsis very similar:
they startwith low expressivity andmediumsize,rapidly
increasein sizewith an approximatelylinear increasein
expressivity, beforeeventuallychangingdirection in the
spacewith a rapid increasein expressivity andreduction
in size. The final expressivity is determinedexactly by
thesizeof themeaningspace.

Onthefirst setof graphsI havedistinguishedbetween
two typesof language.Examplesof thesetypesaregiven
below. In the simulationresults,predicateatomsarela-
belledasac0, ac1 etc. (standingfor “action”) whereas
argumentatomsarelabelledasob0, ob1 etc. (standing
for “object”):

Idiosyncratic Early in the simulations,the languages
arevocabulary-like,in thatthey tendtohavenopredictable
correspondencebetweenmeaningsandstrings. In other
words, they arenon-compositional.For the majority of
meanings,a correspondingstring is simply listed in the
grammar(althoughevenearlyontheremaybeotherrather
non-productiverules).Hereis a smallsubsetof therules
in agrammarfrom asimulationwith 8 possiblepredicates
and 8 possibleactions. The completegrammarhad 43
rulesandcoveredonly 2%of thepossiblemeaningspace.

hji
ac5(ob6,ob3) k ttmhji
ac4(ob2,ob4) k eueh&i
ac6(ob5,ob4) k nxhji

ac3(ob1,ob3) k eibh&i
ac4(ob6,ob5) k vehji
ac2(ob1,ob6) k nh&i

ac1(ob0,ob5) k ech&i
ac1(ob6,ob7) k mvh&i
ac0(ob3,ob4) k xihji
ac5(ob4,ob5) k hh&i

ac4(ob3,ob4) k ifhji
ac1(ob0,ob7) k jhji
ac3(ob1,ob0) k o
and30 others...

Syntactic At the end of the simulation runs, the lan-
guagesareableto expressall themeaningsin themeaning
spaceof thatparticularrun with a relatively small gram-
mar. This is possiblebecausesyntaxhasemerged. The
final languagesexhibit completecompositionalityaswell
asan emergentnoun/verbdistinction. The grammarbe-

low is anexampleof theendresultof a run with 5 pred-
icatesand5 arguments(thecategories

�
and � arearbi-

trarily chosenby theinducer, andappearto correspondto
nounandverb.)

hji���� ��fy�`�Yk�� i�� � i � i � i �
� i ob3 k z
� i ob4 k qu
� i ob1 k f
� i ob0 k vco
� i ac3 k rr
� i ac2 k l
� i ac4 k b
� i ac1 k hta
� i ob2 k p
� i ac0 k qg

What theseresultsshow is that, for a large rangeof
initial conditionsfor thesimulation,syntaxinevitablyemerges.

4.2 The emergenceof recursion

The semanticspacein the simulationsshown so far has
beenstrictly finite. Only combinationsof atomicpredi-
catesandtwo atomicargumentshave beenallowed. The
simulationhasalso beenrun with a potentially infinite
meaningspace,usingpredicateslikebelieves whichtake
a propositionalsecondargument. For theseruns, there
arealwaysfive possibleatomicarguments,five possible
“normal” predicates,andfivepossible“embedding”pred-
icates. Each generation,the speakers produce50 ran-
domutteranceswith degree-0semantics(asin theprevi-
oussimulations),followedby 50 randomutteranceswith
degree-1semantics(oneembedding),andfinally, 50 ran-
domutteranceswith degree-2semantics(two embeddings).

Unfortunately, it is impossibleto plot the resultsof
theserunsin thesameway asthoseof theprevioussim-
ulations,becausethe expressivity of a languagecannot
be calculatedassimply a numberof meaningscovered.
However, theresultsof differentrunsis remarkablycon-
sistent,5 andthebehaviour of thesystemcanbeeasilyun-
derstoodby lookingatanexamplelanguageasit changes
over time. (The“subordinating”predicatesaregiventhe
namessu0, su1, etc. in theoutputof thesimulation.)

Idiosyncratic The initial grammarsarevery similar to
thosein the previous degree-0simulationruns. In other
words,they too appearto besimpleidiosyncraticvocab-
ulary lists for a subsetof themeaningsin thespace.One
difference,of course,is that therearewordsfor themore
complex degree-1anddegree-2meanings.Hereis asmall
subsetof thelanguagewe aretrackingearlyin therun:

lnm
ac3(ob1,ob4) o delnm
ac2(ob0,ob1) o aklnm
ac2(ob0,ob3) o tlnm

ac3(ob0,ob1) o sdxlnm
ac4(ob0,ob3) o g

5SeeKirby (1999c)for a ratherdifferentway of visualisingthe re-
sultsof this typeof simulationrun.



l`m
ac0(ob2,ob4) o vnul`m
ac0(ob1,ob3) o gjl`m

ac0(ob3,ob4) o nuil`m
su4(ob2,ac0(ob1,ob2)) o oebl`m
su4(ob4,ac4(ob2,ob1)) o ewl`m

su1(ob3,ac2(ob2,ob4)) o vril`m
su4(ob3,ac2(ob4,ob0)) o yl`m

su4(ob4,ac2(ob3,ob0)) o pffl`m
su1(ob0,ac3(ob1,ob3)) o fil`m

su2(ob0,su3(ob2,ac0(ob1,ob2))) o jtl`m
su1(ob4,su2(ob0,ac2(ob0,ob3))) o vzl`m
su2(ob0,su2(ob3,ac4(ob3,ob1))) o zl`m

su1(ob0,su1(ob2,ac1(ob0,ob3))) o gbl`m
su0(ob4,su4(ob3,ac0(ob0,ob1))) o rl`m

su4(ob1,su3(ob2,ac2(ob3,ob4))) o crl`m
su3(ob1,su1(ob3,ac3(ob1,ob4))) o szl`m

su2(ob0,su2(ob1,ac0(ob1,ob2))) o ixh
and94others...

Degree-0compositionality After 100generations,this
languagehaschanged,againin a way similar to thepre-
viousruns.Theproportionof degree-0meaningsthatare
producedwithout inventionhasclimbedrapidly, so that
now thespeakerscanexpresseverydegree-0meaningus-
ing this language.Thelisting below givesa smallsubset
of the language,showing how a compositionalencoding
for degree-0meaningshasemerged.Therearethreema-
jor categories: � is averbalcategory, and

�
and � appear

to becase-markednominals,with
�

actinglikeanomina-
tive,and � likeanaccusative. Thesecategoriesoccasion-
ally appearin partly compositionalrules for morecom-
plex meanings,but generally, the degree-1anddegree-2
part of the meaningspaceis still expressedidiosyncrati-
cally, andthereforewith poorcoverage.

l`myx pAqsr�t"u�o gj � m t z � m q�� myx
� m ob2 o dl
� m ob1 o ovp
� m ob1 o tej
� m ob2 o x
� m ac3 o xe
� m ac0 o m
� m ob3 o qp
� m ob0 o h
� m ob0 o y
� m ac2 o c
� m ob4 o i
� m ac1 o b
� m ob3 o hl`m

su1( q ,su4(ob1,ac4(ob0,ob3))) o�� m q jwyjtejdbznuyl`m
su1(ob4,su0(ob1,ac4(ob4,ob2))) o htejyjndbznuyl`m

su3( q ,su0(ob0,ac0(ob0,ob4))) o qzjw � m q ya
and68others...

Syntax and recursion At theendof thesimulationrun
(herethe run lastedfor 1000 generations)the language
coverstheentiremeaningspace.Thatis, thespeakerscan
producestringsfor any degree-0,1or 2 meaningwithout
recourseto invention. Furthermore,the speakers could
producestringsfor aninfinite rangeof meaningswith any
depthof embedding.This is possibledueto the appear-
anceof recursionin the syntax,asshown below. In this
languagethe nominalsystemhassimplified to oneform
that is usedboth for accusative and nominative, and a
new verbalcategory hasemergedfor predicatesthat take

a propositionalsecondargument. The second� rule in
this grammaris the recursive one,as its last right-hand
sidecategory is also � .

hji���� ��f��`��k gj � i � f � i ��� i��h&i���� ��fy�"�Yk i � i ��� i���hji �
� i ob3 k qp
� i ob2 k dl
� i ac2 k c
� i ac0 k m
� i ob1 k tej
� i ob4 k n
� i ac4 k e
� i ob0 k h
� i ac1 k b
� i ac3 k wp
� i su4 k m
� i su1 k u
� i su2 k g
� i su0 k p
� i su3 k ipr

Onceagain,we have seena movementof languages
in the simulationfrom an initial random,idiosyncratic,
vocabulary-like stage,to one in which all the meanings
canbeexpressedusinga highly structuredsyntacticsys-
tem.

5 Linguistic transmissionfavourssyn-
tactic mappings

The simulationresultsin the previous sectionshow that
compositional,recursivelanguageemergein apopulation
which initially hasno language,even wherethereis no
selectionpressureon individualsto communicatewell, or
indeedany biologicalevolution at all. Purelythroughthe
processof beingrepeatedlymappedfrom aninternalform
asa grammarto anexternalform asutterancesandback
again, languageevolves. Syntacticstructureappearsto
emerge inevitably when a mappingbetweentwo struc-
tured domainsmust be passedon over time through a
learningbottleneck. Why might this be? What are the
propertiesof syntacticmappingsandlearningbottlenecks
thatmakethis inevitable?

Figure 5 is a schematicrepresentationof a possible
mappingbetweentwo spaces.Let usassume,for thepur-
posesof this explanation,that the structurein the two
spacesbeingmappedonto eachotheris spatial. That is,
two points in a spacearemoresimilar if they areclose
togetherin the representationof that spacethan if they
arefurtherapart. Themappingin this diagramtherefore
doesnotpreservestructurefrom onespaceto theother. In
otherwords,thereis arandomrelationbetweenapoint in
onespaceandits correspondingpoint in theotherspace.

Now, imaginethat this mappingmustbe learned.In
the diagram,someof the pairingsareshown in bold —
if thesewhere the only onesa learnerwas exposedto,
would that learnerbeableto reconstructthewholemap-
ping? Not easily: theonly way a randommappingcould



Figure 5: A non-structurepreservingmappingbetween
two spaceswith spatialstructure.Thebold linesindicate
animaginarysubsampleof themappingthatmightbeev-
idencefor a learner. This mappingcould only be learnt
by a learnerwith a veryspecificprior bias.

bereliably learntfrom asubsetof pairingswouldbeif the
learnerhada very informative anddomainspecificprior
biasto learnthatparticularmapping.Whilst this is pos-
sible if the spacesarefinite, it is in principle impossible
wherethey arepotentiallyunbounded.

Figure6 ontheotherhand,showsamappingin which
structurein one spaceis preserved in the other. Given
the samplein bold, it seemsthat a learnerhasa higher
chanceof reconstructingthe mapping. A learnerthat is
biasedto constructconcisemodels,for example,would
learnthismappingmoreeasilythanthatin thefirst figure.
Importantly, this bias is more likely to be domaingen-
eralthanonethatexplicitly codesfor aparticularidiosyn-
craticmapping.Furthermorea modelcanbeconstructed
that would mapthe spaceseven if they werepotentially
infinite in extent.

The first type of mapping(figure 5) is very like the
vocabulary-likesystemsdescribedin theprevioussection,
wherepointsin themeaningspacewherearbitrarilypaired
with pointsin thesignalspace.To put it moreprecisely,
similarity betweentwo point in eitherspaceis no guar-
anteeof similarity betweenthepointsthat they maponto
in theotherspace.6 Thesecondtypeof mappingis much
more like a syntacticsystem,wherestringshave a non-
arbitrary relationwith the meaningsthey correspondto.
Similarity betweentwo stringsin thesesystemsis a very
goodindicatorof similarity betweentheir corresponding
meanings.

In the secondsetof simulations,asin real language,
both the meaningspaceand the signalspacearepoten-
tially infinite in extent. This meansthat it is in princi-

6Foranexampleof thistypeof mappingconsider:Edinburghis more
like Glasgow than it is like Erinsborough(the fictional settingfor the
AustraliansoapNeighbours), andyet thestringEdinburgh is morelike
Erinsboroughthanit is like Glasgow.

Figure6: A mappingin whichstructureis preserved.The
bold lines indicatean imaginarysubsampleof the map-
ping thatmight be evidencefor a learner. This mapping
is morelikely to besuccessfullylearntby a learnerwith a
moregeneralprior bias.

ple impossiblefor a learnerto acquirea mappingof the
first type. We can conclude,then, that wherea learner
is exposedto a sub-samplingof thestring-meaningpair-
ings in a language— in other words, where thereis a
learningbottleneck— idiosyncratic,vocabulary-like lan-
guagesareunlikely to belearnedsuccessfully. Theinitial,
randomlanguagesin the simulationsare unstableover
time as long as the bottleneckis tight enoughthat they
cannotfit throughintact. This is not a featureof syn-
tacticallystructuredlanguages,however. Structurein the
mappingimprovesthesurvivability of thatmappingfrom
onegenerationto thenext.

Whatweareleft with is averygeneralstoryaboutthe
(cultural/social/historical)evolutionof mappings.Structure-
preservingmappingsaremoresuccessfulsurvivorsthrough
the learningbottleneck.This fact, coupledwith random
inventionof pairingsin languagesthat have incomplete
coverageof the meaningspace,and the unboundedness
of themeaningandsignalspaces,leadsinevitably to the
emergenceof syntax.
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