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Abstract— A computationally implemented model of the
transmission of linguistic behaviour over time is presented.
In this model (the iterated learning model, or ILM) there is
no biological evolution, natural selection, nor any measure-
ment of the success of the agents at communicating (ex-
cept for results-gathering purposes). Nevertheless, counter
to intuition, significant evolution of linguistic behaviour is
observed. From an initially unstructured communication
system (a protolanguage), a fully compositional, syntactic
meaning-string mapping emerges. Furthermore, given a
non-uniform frequency distribution over a meaning space,
and a production mechanism that prefers short strings, a
realistic distribution of string lengths and patterns of sta-
ble irregularity emerges suggesting that the ILM is a good
model for the evolution of some of the fundamental features
of human language.
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I. INTRODUCTION

NE striking feature of human languages is the
structure-preserving nature of the mapping from
meanings to signals (and vice versa).! This feature can be
found in every human language, but arguably in no other
species’ communication system [1]. Structure-preservation
is particularly striking if we consider sentence structure.
The syntax of English, for example, is clearly composi-
tional — that is, the meaning of a sentence is some func-
tion of the meanings of the parts of that sentence. For
example, we can understand the meaning of the sentence
“the band played at Carlops” to the extent that we can
understand the constituents of that sentence, such as the
band or Carlops. Similarly, in the morphological paradigms
of languages, regularity is pervasive. We can see this too
as a structure-preserving mapping.>
An obvious goal for evolutionary linguistics is, therefore,
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1By “structure-preserving” here, I mean simply that similar mean-
ings tend to map to similar signals. We could formally define degree
of structure-preservation in terms of a correlation of distances be-
tween points in meaning-space and signal-space (i.e., a topographic
mapping), but this is unnecessary for our purposes here.

?Interestingly, recent computational analysis of very large corpora
of English usage [2] suggests that this structure-preservation can even
be seen within the monomorphemic lexicon, whose phonetic structure
was previously thought to be arbitrarily related to meaning.

an understanding of the origins of compositionality and
regularity in morphosyntax. Ultimately, we would like to
derive these properties from some other feature external
to the syntax of human language. For example, one ap-
proach is to argue that structure-preservation is actually a
property of our innate biological endowment, and can be
explained by appealing to fitness enhancing mutations that
were retained in our species through natural selection [3].
Ultimately, these types of explanation typically derive fea-
tures of the meaning-string mapping from communicative
pressures that influenced our protohuman ancestors [4].

This paper follows on from recent computational work
that takes a different approach [5], [6], [7], [8], [9], [10],
[11], [12], [13]. Instead of concentrating on the biolog-
ical evolution of an innate language faculty, this line of
research places more explanatory emphasis on languages
themselves as adaptive systems. Human languages are ar-
guably unique not only for their compositionality but also
in the way they persist over time through iterated obser-
vational learning. That is, information about the mapping
between meanings and signals is transmitted from genera-
tion to generation of language users through a repeated cy-
cle of use, observation, and induction. Rather than appeal-
ing to communicative pressures and natural selection, the
suggestion is that structure-preserving mappings emerge
from the dynamics of iterated learning.

Earlier work demonstrated, using computational models
of iterated learning, that structure-preserving maps emerge
from unstructured, random maps when learners are ex-
posed to a subset of the total range of meanings. The
problem with this kind of approach, that this paper ad-
dresses, is that it predicts that there should be no stable
wrregularity in language. This does not map well onto what
we know about natural language morphology, where histor-
ically stable irregularity is common. The results reported
in this paper, however, show that both regularity and ir-
regularity are predicted by a more sophisticated version of
the iterated learning model (ILM).

II. AN OVERVIEW OF THE ITERATED LEARNING MODEL

In order to model the cultural /historical transmission of
language from generation to generation, the ILM has four
components:

1. A meaning space.

2. A signal space.

3. One or more learning agents.
4. One or more adult agents.



The simulations reported here use only one adult and one
learner. Each iteration of the ILM involves the adult agent
being given a set of randomly chosen meanings to produce
signals for. The resulting meaning-signal pairs form train-
ing data for the learning agent. After learning, this agent
becomes a new adult agent, the previous adult agent is re-
moved, and a new learning agent is introduced. Typically,
this cycle is repeated thousands of times or until a clearly
stable end-state is reached. Furthermore, the simulation
is usually initialised with no language system in place. In
other words, the initial agents have no representation of a
mapping from meanings to signals at all.

Clearly, the agents in the ILM need at least:

1. An internal representation of language that specifies the
ways in which signals can be produced for particular mean-
ings.

2. An algorithm for inducing this representation given ex-
amples of meanings and signals.

3. Some means of generating signals for meanings that the
induced language representation does not include (e.g., in
the early stages of the simulation).

Apart from the meaning space, the various components
of the simulation reported in this paper are the same as
those reported in [7], [9], [10]. The following sections set
out each in turn.

A. Meaning space

In contrast to earlier work, which used a meaning space
involving recursively structured hierarchical predicates, a
much simpler set of meanings is employed here. Each
meaning is simply a vector of values drawn from a finite
set. Specifically, for the results reported here, a meaning
consists of two components, a and b, both of which can
range over five values.> There are thus 25 possible mean-
ings, (ag,bo) to (a4,bs), and within the space of meanings
there is some structure. We can imagine how this sim-
ple model of meanings could map onto the world in various
ways. For example, one component of the meaning could be
an object, and the other an action — expressing a very sim-
ple one-place predicate. The interpretation of the meaning
space is not important, however. It provides us with a very
simple model of a structured space of concepts. Usefully,
the space can be displayed as a table, as will be done later.

B. Signal space

The signal space, in common with earlier work, is an
ordered linear string of characters drawn from the letters
a-z. There is no set limit on string length. These letters
cannot be equated simply with the phonemes of natural
languages. A better parallel would be with syllables, but
even this is not a one-to-one correspondence. Basically, the
letters that make up signals are the atomic elements of the
language that the grammatical system cannot break down.

3To check that the model scales up, the results were replicated with
a meaning space of 20x20. These are not reported because the large
size seems to add little to the simulation and the results are harder
to visualise. Note also that previously reported results relating to the
emergence of recursion (but not of irregularity) have, in principle, an
infinite meaning space.

C. Language representation

Obviously there are many possible representations of the
mapping between meanings and signals in the spaces de-
scribed above. To keep the model as general as possible and
retain compatibility with earlier work, the language is rep-
resented as a simplified form of definite-clause grammar.
Specifically, the grammars consist of context-free rewrite
rules in which nonterminals may have a single argument at-
tached to them that conveys semantic information. Thus,
a rule has the following form:

C:pup— A

where C' is a category label, u is a meaning structure, and
A is a string of terminals (characters from the alphabet)
and nonterminals. There is a special category label S that
signifies the start symbol for production. In other words,
every legal meaning-string pair must expand an S rule in
the language. For these simulations, the meaning structure
has one of the following forms:

(@i, b;) or a; or b;

but, in general, any structure can be used. Each of the
meaning elements may either be specified directly or in-
herited from the value of the meaning structure attached
to one of the nonterminals in A using variable unification.

For example, this rule specifies that the string abc maps
to the meaning (ag, bo):

S (ao,bo) — abc

as do this set of rules:

S:(z,y) >A:yB:x
A:b0—>ab
B:ag—c

An adult agent that had either of these sets of rules would
output abc if asked to produce a signal for the meaning

(a0, bo)-
D. Induction algorithm

In order that the simulation of iterated learning over
many generations be a practical prospect, the induction
algorithm of the learning agents must be computationally
cheap. The heuristic incremental algorithm developed in
[7] is used here.

Induction takes place in two steps incrementally for every
input meaning-signal pair:

Incorporation A single rule that covers the input pair is
added to the grammar. In this model, a rule is only added
if the learning agent cannot already parse the signal com-
ponent of the pair. This is included to impose a preference
for unambiguous languages because the learner will not ac-
quire multiple meanings for one string.

Generalisation The algorithm iteratively tries to integrate
the new rule into the existing grammar by looking for pos-
sible generalisations. These generalisations are essentially
subsumptions over pairs of rules. In other words, the algo-
rithm takes a pair of rules from the grammar and tries to



find a more general rule to replace them with (within a set
of heuristic constraints). This may be done, for example,
by merging category labels, or discovering common strings
of right-hand-side constituents. After subsumption, dupli-
cate rules are deleted, and the process is repeated until
no more heuristics apply. At this stage the learning agent
accepts another input pair to be incorporated.

The details of the algorithm are outlined below (adapted
from [9]):

Induction algorithm: Given a meaning u, a string s, and a
grammar g:
i.1 parse s using g, if the parse is successful, then return g.
i.2 form g¢’, the union of g and S : u — s.
i.3 apply a generalisation algorithm to g’:

g.1 take a pair of rules (r1,72) from g’.

g.2 if there is a category label substitution c to ¢/, that would make
r1 identical to 72, then rewrite all ¢ in ¢’ with ¢/, go to g.5.

g.3 if r1 and ra could be made identical by “chunking” a substring
on either or both their right hand sides into a new rule or rules, then
create the new rules, and delete the old ones in ¢/, go to g.5.

g.4 if r1’s right hand side is a proper substring of r2’s and r1’s
semantics is identical to either the top level predicate or one of the
arguments of r2’s semantics, then rewrite r2 in ¢’ to refer to r1, go
to g.5.

g.5 delete all duplicate rules in g’.

g.6 if any rules in ¢’ have changed, go to g.1
i.4 return ¢'.

The general chunking method for the DCG-type repre-
sentations is not given here for lack of space, but can be
found in [7]. However, for the meaning space used here,
practically chunking is pretty simple. Given a pair of rules:

C: (ai,bj) — )\1/\2)\3
C: (ai,bk) — A1 A3

where )\; is any string of terminals/nonterminals, these are
deleted and replaced with:

C: (ai,m) = AL Chew 1T A3
Cnew : bj — /\2
Cnew tbp = A\

The constraints on this process are that A2 and A4 must
be non-null, and that A\; or A3 must be non-null. The
obvious equivalent chunking process is applied if it is the b
component of the semantics that the rules have in common.

E. Invention algorithm

At the start of the simulation especially, the adult agents
will frequently not have a way of expressing particular
meanings. In other words, their grammar will not be able
to generate any string-meaning pair for some meanings. In
the very first generation of the ILM, the adult agent has
no grammar at all, and therefore no way to express any
meaning. In order for any innovation to emerge in the lin-
guistic system that is being transmitted the agents need
some form of creativity — an ability to invent new strings.

The simplest approach would be to generate strings at
random whenever an agent must produce a signal for a
meaning which its grammar cannot generate. For the most
part in fact, this is the strategy employed in the simulation.
However, in some cases this approach is rather implausible.

Consider the case of an agent that has a completely regu-
lar, compositional language, but does not have a word for
a particular meaning component. For example, the agent
might have words for all the meaning components ay to
a4 and words for by to bs, and might produce signals for
whole meanings by concatenating the relevant words for
the a component and then the b component. This is ob-
viously a very regular syntactic and humanlike language.
However, the agent does not have a way to produce a string
for, say, (ag, bs). It seems counterintuitive for the agent to
generate a completely random new string for this meaning,
given that it has a word for @y and has already induced
a compositional rule for concatenating words together to
produce sentences. Instead, it seems sensible that an agent
in this state should simply invent a new word for by.

On the other hand, it is undesirable for the model to
allow for agents to introduce compositionality de novo in
the invention process. To give another example, consider
an agent who has signals for the same range of meanings as
the agent in the previous example, but instead of using a
regular rule to produce sentences, simply lists each meaning
and its associated signal unanalysed in its grammar. In this
case, we do not want the invention algorithm to introduce
any compositionality itself — instead, an entirely random
innovation seems more plausible.

What is needed, then, is an invention algorithm that in
producing a novel string preserves what structure is already
existing in the agent’s grammar but does not introduce
any new structure. The general algorithm for any meaning
space is informally summarised below: (N.B. If the gram-
mar is empty, then this algorithm cannot be applied, and
a random string is generated.)

Invention algorithm: Given a meaning u, and a grammar g, that
cannot generate a meaning-string pair (y, s):
i.1 find the y' most similar to p for which the pair (4, s’) can be
generated (i.e., initially try all meanings with one meaning component
the same, then all meanings).
i.2 form p'’, the intersection of y and u/, with any meaning slots that
are different replaced with a unique “difference-flag”.
i.3 generate a string s corresponding to u’ using g, but include a
pseudo rule of the sort:
any-category : difference-flag — random-string
i.4 return s.

The random string generated as part of the invention algo-
rithm can be produced with various different lengths. In
the simulations reported here, the strings were of a random
length between 1 and 10. To encourage consistency in out-
put, the agent uses the meaning-string pair produced by
invention as input to one iteration of the induction algo-
rithm. In other words, agents learn from their own inno-
vations.

III. RESULTS

In this section, the results of running the ILM with var-
ious different conditions are presented. Typical results are
analysed here, but qualitatively similar behaviours are ob-
served in all replications.
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Fig. 1. Emergence of a stable system in the simple simulation. Cov-
erage is a measure of the proportion of utterances that are made
without recourse to invention. Success is calculated by testing
adult and learner after learning in a set of communication games,
half of the time with the adult as speaker and half of the time
with the learner as the speaker. The number reflects the pro-
portion of successful games (i.e., when the hearer can parse the
string with the same meaning as the speaker).

A. The emergence of regular compositionality

The simulation described in the previous section was set
up with an initial population of one adult and one learner,
both with no linguistic knowledge. The adult produces
50 utterances for the learner, each of which is a randomly
chosen meaning. Notice that although there are only 25
meanings, the chances of all 25 being exemplified in the
learner’s input are less than one.* This feature of the ILM
has been termed the “bottleneck” in linguistic transmission
[8]. Although the bottleneck is not particularly tight here,
it plays a more important role in later experiments.

Figure 1 shows a plot of the simulation converging from
the initial condition on a language that is stable, covers the
complete meaning space, and allows for perfect communi-
cation.

Because the meaning space is essentially a two-
dimensional vector, we can visualise the language used at
a particular point in time in the simulation as a table of
strings, with the columns corresponding to the a compo-
nent of the meaning and the rows to the b component. The
table below was produced by the first adult agent in the
simulation at the end of its “life.” Notice, that each cell in
the table has only one string associated with it. This does
not specify the language of that agent completely because
there may be more than one way of producing a signal
for each meaning. In this experiment, the agents make a
random choice whenever that happens.

4The probability of a {Jarticular meaning being in the training input
to a learneris 1 — (1 — E)T7 where n is the size of the meaning space,
and r is the number of utterances. So, the chances of every meaning
being represented are (1 — (1 — %)’“)n So, only 3 times in every
100 generations should a learner hear all meanings in the simulations
reported here.

ao al a2 as a4
bo s sq - pnj bjmjimsq
b1 n avvcf jlimgttztp  pclcfho kebae
b ebhzyuyrl  afeeyykokz - pyuhu hwrpg
bs | rgbvtggjac zrdleab rxktywr rbq rkhxpbmx
by | drnlblwmo  afqjghvuw gnbyq pquztpi wf

In this first iteration of the ILM, we are essentially see-
ing the language that is produced from iteratively inducing
50 random inventions. There is no clear regularity in the
system, and the agent even at the end of life has no way to
produce a couple of meanings, (a2, bo) and (az, b2). We can
term this type of system a protolanguage system (in fact, it
matches well with Wray’s definition of protolanguage [14]
rather better than the more well-known Bickertonian defi-
nition [15]%).

Once the language has converged, however, the system
looks quite different. Here is the system after 30 genera-
tions (it looks the same after another 1000):

ag a as as ay
bo wcpalsdqu asdqu hngmxsdqu gpmhmsdqu bsdqu
by wcpalp ap hngmxp gpmhmp bp

bo wepalihm aihm hngmxihm gpmhmihm bihm
bs | rkhxpwcpalmx rkhxpamx rkhxphngmxmx rkhxpgpmhmmx  rkhxpbmx
ba cswepalbf csabf cshngmxbf csgpmhmbf csbbf

This language is quite clearly compositional in a com-
pletely regular way. There appear to be substrings for each
component of the meaning. For example, for the most part,
ag is expressed using the string wcpal at the start of the
utterance, whereas by is expressed using the string sdqu at
the end of the utterance. The only exceptions to this pat-
tern are the meanings involving b3 and by. These appear
to have circumfizes like rkhxp- -mx and cs- -bf.

The grammar for this language is shown below:

S:(z,y) > A:2B:y
S :(x,b3) = rkhxp A : £ mx
S:(x,bs) &> cs A:x bf
A : ag = wepal
A:a1—>a
A : as = hngmx
A a3 — gpmhm
A:a4—>b
B : by — sdqu
B:bl—)p
B : by — ihm

This compositionality is just what was expected to
emerge given earlier results with more complex meaning-
spaces. In every run of the simulation, this sort of be-
haviour always emerges. The exact structure of the lan-
guage is different every time, but structure-preservation in
the mapping between meanings and strings appears to be
inevitable. We will return to an explanation for this in a
later section.

5Alison Wray argues that protolanguage utterances were more
likely to be holistic, unanalysed expressions, as opposed to the short
concatenations of words (rather like asyntactic mini-sentences) that
Derek Bickerton envisages.



B. Problems with regularity

Although the primary target for explanation in this line
of work has been the pervasive structure-preserving nature
of human linguistic behaviour, the results outlined above
and in previous work by myself and others do not appear
to capture the nature of regularity in human languages
accurately. This is because a completely stable composi-
tional system is actually unusual in real languages, whereas
there does not seem to be any other possible attractor
in the ILM dynamic. If we are to claim that structure-
preservation in human languages arises out of the dynamics
of the transmission of learned behaviour, it seems impor-
tant that we should be able to show partial, but stable,
irregularity emerging as well.

C. Pressures on language use

One possible reason that the models presented so far ap-
pear to be too perfectly structure-preserving, is that there
is no pressure on the language that is being transmitted
other than a pressure to be learnable. Real languages have
to be used by speakers who are not always accurate, and
whose performance may be influenced by least-effort prin-
ciples. To test the hypothesis that features of linguistic
performance influence the emergence of regularity, the ex-
periment described earlier was repeated with two modifi-
cations:

o If the agent speaking has more than one way of express-
ing a meaning, then instead of picking one at random, the
shortest string is always used.

o With a certain probability per character, the speaker
may fail to pronounce characters in a string. In other
words, there is a chance of random, noiselike erosion of the
strings transmitted from generation to generation. For the
simulation results here, the erosion probability per charac-
ter was 0.001.9

In many ways, the behaviour of the simulation under
these conditions is similar to the previous simulation. The
initial language is completely noncompositional (irregular),
but regularity increases gradually over time. The major dif-
ferences are that the system obviously never reaches com-
plete stability, since their is always a chance that a random
erosion will disrupt linguistic transmission. Figure 2 shows
the evolution of the system over 1000 generations.

Again, it is easy to see language evolution in progress in
the model by tabulating strings from adult agents in the
simulation at different points in time. Here is a language
from early in the simulation (generation 13):

ap ay as as a4
bo | gbkgofetfv mpqr kyfnfz knj wgvick
b wkjwijk usdptfzoq Irl Irifj Iz
ba xwlua tvnakitga  fjpginnza  fja  kbtlakgyoa
bs lyxzd qesgsqgyfoq liuc ifjiuc lhsmy
by pplj Ivtjoq ubvqsj yj f

As before, this early system is clearly a protolanguage as
opposed to a fully compositional mapping from meanings
81f the erosion resulted in a string of length zero, the speaking agent

was considered not to have said anything. In this case, no information
was passed to the learning agent.
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Fig. 2. Evolution of the language in an ILM with pressures for short
strings. In addition to coverage, communicative success, and size
of grammar, mean string length of utterances is also plotted.

to strings. Again, however, a structure-preserving system
does eventually emerge (generation 223):

ao ai a2 as 2
bo | qda bguda Ida kda ixcda
b1 | qr bgur Ir kr ixcr
by | qa bgua la ka ixca
bs | qu bguu lu  ku ixcu
bs | qp  bgup Ip kp ixcp

Just as in the previous simulation, a clearly regular en-
coding has evolved. This is not what we were looking for,
however. There is still no irregularity in this language. In
later generations, some irregularity does emerge (shown in
bold in this example from generation 763):

o 41 G2 a3 a4
bp |ad gd Id kd xd
by | qr gr Ir k xr
ba | ga ga la ka xa
bs |qu gu wu ku xu
bs Jap gp Ip kp xp

These irregulars are not stable, however. They typi-
cally only last one or two generations, being rapidly re-
regularised by learners. So, although the performance pres-
sures clearly influence the evolution of the system (in that
the string length is much reduced), realistic irregulars have
not emerged.

D. Nonuniform frequency distributions

What else might be needed to model both the emergence
of structure-preserving regularity, and stable irregularity in
languages? A clear indication of what is missing from the
iterated learning models presented so far is given if we look
at where in real languages irregulars appear most stable.
For example, here are some of the verbs in English that
have an irregular past tense: be, have, do, say, make, go,
take, come, see, get ...
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Fig. 3. The expected number of each meaning in the input to a
learner. The probability of a meaning (a;,b;) is proportional to
(i+1)~1(j+1)~1, and, as before, the total number of utterances
is 50.

Strikingly, these verbs are also the 10 most frequent
verbs in English usage [16]. In fact, it is recognised by
linguists that irregularity (i.e., noncompositionality) corre-
lates closely with frequency in natural language [17]. The
frequency with which meanings need to be expressed in the
ILM (and hence, indirectly the frequency of use of particu-
lar strings) is uniform. In contrast, the frequency of use of
words in natural languages approximates a Zipfian distribu-
tion [18], that is, the frequency of use of a particular word
is inversely proportional to its frequency rank. Whilst we
cannot infer the frequency distribution of particular mean-
ings in real languages from this directly, it strongly suggests
that a uniform distribution is an unrealistic idealisation.

Consequently, the simulation in the previous section is
rerun with a nonuniform distribution over meanings (shown
in Figure 3), based on a Zipfian surface. This means that
when in the ILM meanings are chosen at random for the
adult agent to produce strings about, the probability of
picking a particular meaning is weighted so that the fre-
quency of use of meanings approximates the function shown
in Figure 3.

The results of a run with this distribution of meanings is
shown in Figure 4. It is noticeable that the system appears
far less stable than others, suggesting that the process of
language change is ongoing throughout the simulation (as
it is in real language history). The most important re-
sult, however can be seen by looking at a snapshot of the
language taken at one point in time in the simulation (gen-
eration 256):

ag aq as as a4
b | g s kf if uhlf
by y igi ki ji uhli
b2 | yq iga kq iq uhlq
bs | yba  jgbqg kbq  jbqg uhlbq
bs | yugeg jguqeg kuqgeg jugeg uhlugeg

As before, there are some irregular forms (shown in
bold), but in contrast with the previous result, they are
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Fig. 4. The evolution of language with performance pressures and a
nonuniform distribution of meanings.

highly stable. For example, this particular cluster of irreg-
ulars appeared in generation 127 and lasts until generation
464, at which point y is reregularised to yi. Indeed, the ir-
regular g appears constant throughout all 1000 generations
of the simulation. Furthermore, just as in the real case,
the irregular forms are all highly frequent. It is also in-
teresting to note that length appears to correlate inversely
with frequency (although quantitative results have yet to
be obtained). This correlation is also well known in human
language [18].

IV. DISCUSSION

Why does language emerge in these simulations? There
is no biological evolution in the ILM — the agent architec-
ture is the same throughout the simulation. Nowhere in
the simulation is the communicative system of the agents
measured against an objective function. To put it crudely,
the agents do not care if they can communicate or not.
Nor does the agent architecture put any hard constraints
on whether the language that they can use should be
structure-preserving or not (as witnessed by the languages
in the early stages of the simulation). Given these facts,
one might suspect that there would be no evolution in
the ILM at all. Counter to intuition, the system ap-
pears to adapt. In even the simplest instantiation of the
model, structure emerges in the meaning-signal mapping.
Words/morphemes spontaneously emerge that correspond
to subparts of the meaning, and regular rules evolve for
combining these into complete sentences. Where there are
length pressures placed on the signal channel, the language
adapts to shorter codes. When the distribution of mean-
ings is not smooth, a system evolves with a realistic pattern
of frequent, short irregulars and infrequent regular forms.

The key to understanding the behaviour in the model lies
in seeing the language (as opposed to the language users)
as adapting to improve its own survival. In a standard
evolutionary simulation a model of natural selection would
lead the agents to adapt to some fitness function. However,
in this case there is no natural selection; agents do not



I-Language I-Language

‘ Induction ‘ ‘ Production ‘ ‘ Induction ‘ ‘ Production ‘ ‘ Induction ‘

E-language E-language

Fig. 5. The process of linguistic transmission. I-language refers to
the internal representation (e.g., grammar) of language, whereas
E-language is the external form of language as sets of utterances.
For language to persist it must be transformed repeatedly from
one domain to the other through the processes of induction and
production.

adapt, rather we can see the process of transmission in the
ILM as imposing a cultural, linguistic selection on features
of the language that the agents use.

The survival of a language, or rather, a feature of a lan-
guage like a rule or word, over time relies on it being repeat-
edly replicated in the ILM. Figure 5 shows how linguistic
information flows through time, both in the model, and in
reality. It is clear from this that in order for a linguistic
feature of any kind to be successful it must survive the
two transformations between its internal representation (I-
language in the Chomskian parlance [19]), and its external
representation (E-language, or utterances). We can there-
fore see the processes of language induction, and language
production as imposing endogenous selection pressures on
languages. To put it another way, these transformations
act as bottlenecks on the persistence of linguistic variation
(see also [8], [11]).

Taking these in turn it is clear that the optimal system
with regard to these two bottlenecks is rather different:
Induction The induction, or learning bottleneck, ap-
pears to favour languages that are maximally structure-
preserving. More generally, it has been argued that the
learning bottleneck favours linguistic generalisations [11],
or compressed internal representations [20]. If we consider
generalisations as replicators, it is clear why this might
be the case. For example, assume in a hypothetical lan-
guage, that there are two ways of expressing a particular
meaning. The first is noncompositional, it is simply a com-
pletely idiosyncratic holistic word for that whole meaning.
The second, on the other hand, is compositional, produced
by some more general rule that can also produce a vari-
ety of other meanings. What are the chances that each of
these ways of producing that meaning will survive? For
the first way of expressing the meaning to survive, that
meaning-string pair must be produced by the adult and
heard by the learner. However, for the second, it does not
necessarily need to be produced. In some sense, the actual
meaning-string pair is not the relevant replicator, rather it
is the generalisation that is replicating. By definition, a
generalisation will cover more meaning space, and there-
fore have more chance of being expressed in the input to
the learner. The learning bottleneck, therefore, will tend
to produce a selective pressure for generalisations. Notice

that the precise form of generalisation that is possible must
depend on the prior bias of the learner — in the case of
this model, for example, this corresponds to the induction
heuristics and the choice of representation language (i.e.,
DCGs). That said, however, the argument about the rela-
tive replicability of generalisations is quite general. It is an
ongoing research project to discover how similar emergent
languages are with a range of representational and search
biases (see, e.g., [13]).

Production The pressure imposed by the production bot-
tleneck in this simulation is very clear. Shorter strings are
more likely to show up in the languages in the simulation.
Ultimately, we might expect that if it were possible for
pressures from production alone to influence the simula-
tion, languages would tend towards minimal length codes
for the meaning space.

The language for a 5x5 meaning space and a 26-letter
alphabet cannot both be minimal length and structure-
preserving because the shortest language would have one
letter for each whole meaning, which makes composition-
ality impossible. The two selection pressures on language
are therefore in competition.” What is interesting about
this competition is that the relative pressure varies accord-
ing to the frequency of use of the meanings. The induction
pressure becomes more severe for low frequency meanings
since these will have less likelihood of being expressed in
the learner’s training set. The low frequency forms need
therefore to behave in regular paradigms. Conversely, the
higher-frequency forms are much more likely to replicate
without the need to be part of a general pattern. This
means that they can succumb to the pressure for short-
ness, and hence irregularity.

Various directions for future work are possible given the
results described in this paper. For example:
¢ The role of induction bias. This has already been men-
tioned; essentially we need to replicate these results with a
range of different learning algorithms to uncover the (non-
trivial) relationship between bias and emergent structure
of systems in the ILM.

e The role of invention. I have argued for an invention
algorithm that never increases the degree of composition-
ality inherent in the learner’s grammar at the time of in-
vention. This is clearly only one point on a scale of possi-
ble approaches, however. For example, different dynamics
would be observed given a purely random invention pro-
cess, or one which maximises compositionality. An inter-
esting project would be to look at the types of language-
change that are observed with different algorithms, and
compare these with real language change.

« Different degrees of irregularity. In some languages (such
as isolating languages like Chinese), there is little or no ir-
regularity. A challenge for modelling could be to isolate the
possible mechanisms that might lead to different degrees
of irregularity in different languages. This could involve
investigating more closely the processes of, for example,

7 Appealing to pressures in competition is a well recognised explana-
tory principle in linguistic functionalism, where the term “competing
motivations” is used. See [21], [22] for discussion.



phonological erosion, which here is modelled very crudely
(as the random elision of segments).

o The comprehension bottleneck. The results described
here are due to an interaction of induction and production
bottlenecks. Other work looks at the role of comprehension
bottlenecks on emergent structure (e.g., [21]). A possible
extension to the model might be to integrate this third
bottleneck into the ILM.

V. CONCLUSION

A central and unique feature of human language — struc-
ture preservation — has been explained in terms of the
evolution of languages themselves, as opposed to language
users. Within the framework of an iterated learning model,
it has been shown that general pressures on the transmis-
sion of language over time give rise not only to composi-
tional systems of meaning-signal mapping, but also realis-
tic patterns of language dynamics, utterance length, and
irregularity.

This research suggests that, if we are to understand the
origins of human linguistic behaviour, we may need to con-
centrate less on the way in which we as a species have
adapted to the task of using language and more on the
ways in which languages adapt to being better passed on
by us.

REFERENCES

[1] M. Oliphant, “The learning barrier: Moving from innate to
learned systems of communication,” To appear in Adaptive Be-
haviour, in press.

[2] R. Shillcock, S. McDonald, C. Brew, and S. Kirby, “Human
languages evolve to fit a structure-preserving mental lexicon,”
In preparation.

[3] S. Pinker and P. Bloom, “Natural language and natural se-
lection,” Behavioral and Brain Sciences, vol. 13, pp. 707-784,
1990.

[4] M. A. Nowak, J. B. Plotkin, and V. A. A. Jansen, “The evolution
of syntactic communication,” Nature, vol. 404, pp. 495-498,
2000.

[5] J. Batali, “Computational simulations of the emergence of gram-
mar,” in Approaches to the Evolution of Language, J. Hurford,
M. Studdert-Kennedy, and C. Knight, Eds. Cambridge Univer-
sity Press, Cambridge, 1998.

[6] J. Batali, “The negotiation and acquisition of recursive gram-
mars as a result of competition among exemplars,” In Briscoe
[23].

[7] S. Kirby, “Learning, bottlenecks and the evolution of recursive
syntax,” In Briscoe [23].

[8] S.Kirby, “Syntax without natural selection: How compositional-
ity emerges from vocabulary in a population of learners,” in The
Evolutionary Emergence of Language, C. Knight, M. Studdert-
Kennedy, and J. R. Hurford, Eds. Cambridge University Press,
Cambridge, in press.

[9] S.Kirby, “Syntax out of learning: the cultural evolution of struc-

tured communication in a population of induction algorithms,”

in Advances in Artificial Life, D. Floreano, J. D. Nicoud, and

F. Mondada, Eds., number 1674 in Lecture Notes in Computer

Science. Springer, 1999.

S. Kirby, “Learning, bottlenecks and infinity: a working model

of the evolution of syntactic communication,” in Proceedings of

the AISB’99 Symposium on Imitation in Animals and Artifacts,

K. Dautenhahn and C. Nehaniv, Eds. Society for the Study of

Artificial Intelligence and the Simulation of Behaviour, 1999.

J. R. Hurford, “Expression/induction models of language evolu-

tion: Dimensions and issues,” In Briscoe [23].

J. Hurford, “Social transmission favours linguistic generaliza-

tion,” in The Emergence of Language: Social function and the

origins of linguistic form, C. Knight, M. Studdert-Kennedy, and

J. Hurford, Eds., pp. 324-352. CUP, Cambridge, in press.

(10]

[11]

(12]

[13] B. Tonkes and J. Wiles, “Methodological issues in simulating the
emergence of language,” Submitted to the volume arising out of
the Third Conference on the Evolution of Language, Paris 2000.
A. Wray, “Protolanguage as a holistic system for social interac-
tion,” Language and Communication, vol. 18, pp. 47-67, 1998.
Derek Bickerton, Language and Species, University of Chicago
Press, 1990.

N. Francis and H. Kucera, Frequency analysis of English usage:
Lezicon and grammar, Hoghton Mifflin, Boston, 1982.

S. Pinker, Words and Rules, Weidenfeld & Nicolson, 1999.

G. K. Zipf, The Psycho-Biology of Language, Routledge, Lon-
don, 1936.

Noam Chomsky, Knowledge of Language, Praeger, 1986.

T. Teal and C. Taylor, “Compression and adaptation,” in Ad-
vances in Artificial Life, D. Floreano, J. D. Nicoud, and F. Mon-
dada, Eds., number 1674 in Lecture Notes in Computer Science.
Springer, 1999.

S. Kirby, Function, Selection and Innateness: the Emergence of
Language Universals, Oxford University Press, 1999.

Frederick J. Newmeyer, Language Form and Language Function,
MIT Press, Cambridge, MA, 1998.

E. Briscoe, Ed., Linguistic Evolution through Language Acquisi-
tion: Formal and Computational Models, Cambridge University
Press, Cambridge, in press.

(14]
(18]

(16]



