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Abstract

Human language may have started from a consistent set of mappings between meanings
and signals. These mappings, referred to as the early vocabulary, are considered to be the
results of conventions established among the agents of a population. In this study, we report
simulation models for investigating how such conventions can be reached. We propose that
convention is essentially the product of self-organization of the population through interac-
tions among the agents; and that cultural selection is another mechanism that speeds up the
establishment of convention. Whereas earlier studies emphasized either one or the other of
these two mechanisms, our focus is to integrate them into one hybrid model. The combina-
tion of these two complementary mechanisms, i.e. self-organization and cultural selection,
provides a plausible explanation for cultural evolution which progresses with high transmis-
sion rate. Furthermore, we observe that as the vocabulary tends to convergence there is a
uniform tendency to exhibit a sharp phase transition.

Summary

Language is one of the defining characteristics specific to humans. It is well known that
language evolves continuously at high rate. However, the answers to why and how human
language emerged and changes are still being pursued. In this study, we speculate that human
language may have started from a consistent set of mappings between meanings and signals.
These mappings are considered to be the results of conventions established among the indi-
viduals of a population. We use simulation models to investigate how such conventions can
be reached.
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1 Introduction

Language is generally considered to be one of the most important characteristics that differ-
entiates humans from other species. The question as to how fully-fledged human language
came into being has been pursued for centuries; various theories have been suggested and
many controversies exist [1]. Recently there has been growing interest in the study of lan-
guage emergence and change within the framework of complex adaptive systems [2]. In this
study, we focus on the emergence of vocabulary within a population of early humans using
simulation models, as is often adopted in the study of complex adaptive systems.

Most would agree that the first step in human language evolution was communication
systems using a number of holistic signals, like those found in primates and other animals
such as bees and birds [3]. These signals are not equivalent to the “names” or “words” as
we use these terms today. Each signal may refer instead to a complex mix of meanings. The
signal for “danger”, for example, may imply a cry of fear, a warning – “run, there is danger
coming”, as well as a general reference for the dangerous predator. Later, such a signal
would have been narrowed down to name a single object or class of objects, and used in a
non-situation specific fashion [4]. The realization of signals as symbols representing objects or
events is referred as the “naming insight” [5]. In the language development of a normal child,
the naming insight comes so naturally that most parents do not notice the exact moment of
this event without special attention. On the contrary, chimpanzees need intensive teaching
to learn to name [6].

How the naming insight occurred in the phylogeny of the hominid line is still a mystery.
However, we may assume that there was a stage during which early humans became equipped
with the naming insight. What interests us in this study is that once the naming insight was
achieved in the agents, each of whom might have his or her own way to name in an arbitrary
manner, how did the actual naming of objects or events become consistent across the entire
population? Some twenty centuries ago, two great philosophers, continents apart, arrived
at a similar observation that names are formed by convention [7]. Xunzi in China taught
that “names have no intrinsic appropriateness” and “names have no intrinsic reality” —the
appropriateness and reality of names are both given by convention. At about the same time
in Greece, Plato wrote that “any name which you give is the right one, and if you change
that and give another, the new name is as correct as the old.”

In this study, we use simulation models and mathematical analysis to explore the process
of how convention is achieved to form a coherent naming system—which we may refer to as
a vocabulary. In our models, at first, a number of agents in a population each have their own
agent-specific way for naming a set of objects. Upon interacting with each other, some are led
to modify their naming systems. Agents may not be concerned with and may not care about
the general communication performance at the population level, but instead concentrate only
on their own communication performance with other agents. Without any explicit or implicit
design, however, a consistent common vocabulary develops as an emergent property of the
population. Our proposed model of vocabulary emergence shares the same spirit as the
“invisible hand” mechanism suggested by Keller [8], which has been echoed by Kirby: “the
local, individual actions of many speakers, hearers, and acquirers of language across time
and space conspire to produce non-local, universal patterns of variation” [9]. In fact such
phenomena have been widely studied in many complex systems in various disciplines and are
described as “self-organization” [10]. A system is defined as self-organizing “if it acquires
a functional, spatial, or temporal structure without specific interference from the outside”
[11]. In recent studies of language emergence, there have been several reports explicitly
adopting this framework, which use computer simulation models to study the self-organization
mechanism of the emergence of vocabulary [12] and sound systems [13].
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From the evolution point of view, self-organization plays a role in the synchronic and
horizontal interaction in a population. However, self-organization has not addressed the
evolution process in the diachronic aspect, i.e. from generation to generation. On the other
hand, natural selection has been generally considered as the major mechanism for evolution
in terms of gene transmission across generations, i.e. vertical transmission. In the study of
language evolution there are two views related to natural selection. In one view, some consider
language as the product of a biological organ, the Language Acquisition Device (LAD); they
think it is the LAD that must have evolved through natural selection [14]. Alternatively,
Dawkins introduced the term “meme” to refer to a new type of replicating unit in cultural
evolution as a counterpart of the gene in biological evolution [15]. In this sense, a language is
an elaborate complex of memes, which evolve based on linguistic or cultural selection1. It is
the languages themselves that adapt for their own “survival” in the transmission from speaker
to speaker. It is impossible to evaluate which language, e.g. English, Chinese or any other,
is better, in terms of its overall fitness by taking into account learnability, expressiveness,
complexity and so on. However, we argue that when considering some specific aspects,
for example the possibility of ambiguity in terms of the number of homophones2, different
language subsystems indeed can be compared with respect to their fitness. Subsystems with
higher fitness will have a higher probability to diffuse more into the next generation. In this
study we assume that vocabulary can be transmitted from generation to generation as a result
of children’s learning from parents and that the communicative consistency of the vocabulary
determines the possibility in which it is transmitted to the next generation. In this way, we
study the effect of cultural selection in this vertical transmission process and examine how
selection couples with self-organization in catalyzing the formation of a consistent vocabulary
in the population.

In the study of modeling vocabulary emergence, there have been a few related studies.
Among them, Steels [12], as mentioned above, focuses on the self-organization mechanism,
while Hurford [16] and Nowak & Krakauer [17] mainly emphasize the selection process. In this
study, we propose that both mechanisms are indispensable for structure emergence in evolu-
tion. Using the “tinkerer” metaphor introduced by Jacob [18]3, we highlight the combined
function of these two “tinkerers” in language evolution.

The rest of the paper is organized as follows. First, we report an imitation model in
Section 2, which simulates how a common vocabulary is formed by agents imitating each other
either merely randomly or by following the majority. We use Markov chain theory to analyze
the model. A detailed proof of the convergence is given in the appendix. In Section 3 we
present an interaction model which uses a probabilistic representation of vocabulary. Different
parameters in the model are investigated by simulation and a few interesting observations
are reported. Section 4 introduces a hybrid model which combines the self-organization and
cultural selection mechanisms. Conclusions and discussion are given in the last section.

2 The imitation model

The strong ability of imitation in human, even from early infancy, has been extensively
documented in the studies reported by many investigators, e.g. Meltzoff [19]. While other

1In this study, however, we still use the term “natural selection” in a broad sense to refer to the selection
mechanism in language evolution.

2Two or more words are homophones if they are pronounced the same but differ in meaning, such as the
words ‘too’ and ‘two’.

3Jacob states that “natural selection . . . works like a tinkerer, who does not know exactly what he is going
to produce, but uses whatever he finds around him, whether it be pieces of string, fragments of wood, or old
cardboards, . . . to produce some kind of workable object.”
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social animals, particularly the primates, also imitate, it appears that the tendency is by far
the strongest and most general in our species. We assume that imitation may serve as the
most explanatory mechanism for the formation of a common vocabulary. Before establishing
a consistent way of naming things, early humans very likely made use of their propensity for
imitation; the younger ones imitating their elders, the followers imitating the leaders or, just
by chance, their neighbors. Such imitation between agents can be seen as self-organization
in the population.

In this study, we set up a model to simulate the process of word imitation by agents in a
population. Assume that in a population of Ps agents there are M classes of objects4 that
the agents must name in their daily communication, and U different utterances5 that the
agents can make. Each agent’s vocabulary consists of a set of associations, or one-to-one
mappings, between meanings and utterances. Each agent can create and change his or her
own vocabulary by imitation, similar to the model proposed by Steels [12]. We assume that,
at first, each agent already has his or her own specific meaning-utterance mappings. For
example, the M-U mappings of two agents (A and B) might be as shown in Table 1.

Table 1 about here

Let us assume that when they interact with each other, the two agents only communicate
a single meaning. When they are not using the same word to represent that meaning, an
imitation event is likely to occur; for example A may imitate B when they communicate
meaning m1 by replacing his own u2 with B’s u5, or vice versa. We assume that each agent
is equipped with an imitation strategy. For simplicity, we assume that such imitation events
involve no errors. There are many possible imitation strategies that can be conceived. In
this study we report two strategies that may be the most realistic6:

• Strategy 1: imitating by random direction—either A imitates B, or vice versa, with
equal probability.

• Strategy 2: imitating by following the majority—A imitates B if the utterance B uses
is shared by more agents than the utterance A uses.

Before studying how imitation affects agents’ vocabulary in a population, we need to
design some criteria to evaluate how well the vocabularies of the members of a population
work for conveying meanings. First, we need to consider the population consistency, denoted
by C, i.e. how many consistent meaning-utterance mappings there are among the agents.
Second, we consider the effect of homophones, which are words that have the same form but
different meanings. The existence of homophones is likely to cause confusion. Therefore,
assuming that the fewer the homophones, the better the vocabulary, we select a second
criterion to be the distinctiveness of the vocabulary, denoted by D. C and D are calculated
as follows. For a population with Ps agents,

1. The overall consistency for all meanings is

C =
1
M

M∑
i=1

Ci

4A class of objects containing a single object is permissible.
5In this report “utterance”, “signal” and “word” are used interchangeably for the sake of convenience,

particularly when discussing other studies, though we acknowledge that there are important differences among
them.

6We have considered other strategies such as following the authority and homophone avoidance. The
detailed simulation results are reported in an earlier study by Wang & Ke [20].
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where M is the number of meanings, and Ci is the consistency for meaning i, which
is defined as the proportion of matched pairs (i.e. the number of pairs using the same
utterance for meaning i) among all possible pairs in the population,

Ci =

∑
j

(
Sij

2

)
(

Ps

2

)

where Sij is the number of agents that use utterance uj for meaning mi. The following
holds, ∑

j

Sij = Ps, for any i

2. The overall distinctiveness for all agents’ vocabulary is

D =
1
Ps

Ps∑
I=1

DI

where DI is a measure of the degree of homophony in agent I’s vocabulary defined by

DI =
∑

j ξj

N

where N is the number of distinctive utterances that the I-th agent uses for the M
meanings, and ξj is the probability that the I-th agent correctly interprets uj , which is
inversely proportional to the number of meanings that uj represents.

Both C and D are positive values but no larger than 1. When C = 1, all agents have
the same vocabulary, while D = 1 means that none of the agents have any homophones
in their vocabulary.

We carried out a number of simulations for a fix number of meanings (M = 10) and
different population sizes, Ps, and different numbers of signals, U , to study the change of C
and D. Table 2 shows the average C and D from 100 runs for different combinations of Ps and
U . In each run 20000 interactions were carried out. From the simulation results, we find that
in most cases the whole population can reach consistency, i.e. C = 1. However, homophones
seem to be unavoidable, i.e. D < 1, even when the number of signals (U) outweighs the
number of meanings (M) by five times; this is consistent with the common observation that
large numbers of homophones exist in most natural languages. The converged vocabulary
with C = 1 and D < 1 corresponds to the lexicon in sub-optimal state which has been
discussed in Nowak et al. [21]. In their model, the lexicon could reach a coherent but unstable
state where one signal can refer to more than one meaning, and small amounts of error will
destroy the coherence.

When Ps increases, the population reaches consistency in its vocabulary more slowly, as
expected, using either Strategy 1 or Strategy 2. However, in Strategy 2, i.e. following the
majority, when U is larger, it becomes more difficult for C to reach 1 when the population
size is small, for instance Ps = 10. This occurs when several competing mappings happen to
co-exist, which map to the same meaning and each of which is used by an equal number of
agents, in other words, when there is exactly the same number of agents using each of the
competing mappings.
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We study the consistency in these two strategies and pursue a formal mathematical proof
under a simplified condition (U = 2 and M = 1) using Markov chain theory; the proof is
given in the Appendix. We observe from the proof that consistency can be reached with
Strategy 1 and, in most cases, with Strategy 2 except when there are competing mappings
as described above.

Table 2 about here

Our model is conceptually close to the model reported by Steels [12], in which a group of
agents share a coherent vocabulary by changing their own private vocabulary by imitating
others. Steels’s model incorporates probabilities for the mappings whereby imitation depends
on communicative success. Similarly, in our model, strategy 2, i.e. “following the majority”,
there is also an implicit fitness measure involved. A uni-directional selection mechanism
drives the system towards the emergence of consistency; this is implemented by assuming
that the agents have a complete sampling of the whole population and therefore know of the
majority tendency in the population, though this may not be realistic especially when the
population size is large. On the other hand, for the proposed strategy 1 in our model, the
population can converge by purely random imitation through local interactions without any
explicit measure of fitness or knowledge of the majority in the population. The coherent state
of a convergent vocabulary achieved by random imitation may not be optimal due to there
being a large number of homophones, i.e. D is much smaller than 1 under some conditions,
such as shown in Table 2. In this model we have not considered the learners’ effect on the
development vocabulary. Nowak et al. [24] study three different types of learners’ strategies,
and find that random learning strategies are more sensitive to noise than parental or role
model learning.

3 The interaction model

3.1 Probabilistic representation of vocabulary

The U-M mapping in the previous section assumes that each meaning is represented uniquely
by a single utterance at any one time. However, one may speculate that words are represented
in the mind in a probabilistic manner [16]. At some stage, a particular meaning may be
represented by several forms/utterances with certain probabilities. And some utterances
may possibly be associated with several meanings. Consequently we hypothesize a process
in which there is competition among several meanings or utterances. When one wants to
express a meaning, several possible utterances which are associated with the meaning will
rival each other. The speaker will produce the utterance which “beats” other utterances in the
production competition. Similarly, when the listener hears an utterance, he/she will interpret
the utterance as the meaning which beats the other meanings associated with that utterance.
These two processes are possibly separate, which implies that there are two different sets
of mappings respectively for speaking and listening. Here in this study we adopt such a
representation of two matrices, one for speaking and one for listening, corresponding to the
active and passive matrices in Nowak & Krakauer [17] and the transmission and reception
matrices in Hurford [16].

We set the initial speaking and listening mappings for each agent randomly. Table 3 shows
an example of the initial speaking and listening mappings of one agent(S) with M = U = 3.

Table 3 about here
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In the speaking matrix (P) the rows sum up to 1, i.e.
∑U

j=1 pij = 1, while the columns of
the listening matrix (Q) sum up to 1, i.e.

∑M
i=1 qij = 1. This assumes that each agent can

always select an utterance to convey a meaning (speaking) and can always infer a meaning
from an utterance (listening). However, they might not have formed a fixed way to express
the meanings. Then how did early humans organize their internal mappings? This should be
considered differently from ontogenetic vocabulary development because children construct
their mental lexicon by learning from relatively consistent mappings. Although the linguistic
environment that a child is exposed to today is also constantly changing, composed of various
idolects with a certain diversity7, the degrees of diversity in the two processes, i.e. the
phylogenetic and ontogenetic development of vocabulary, are considered to be at different
levels.

Hurford [16] first applied simulation studies to this question. He hypothesizes three
idealized learning strategies, Imitator, Calculator and Saussurean. Hurford’s simulations
show that the Saussurean strategy, which restricts the learner to identical speaking and
listening matrices, is more successful than the other two strategies in evolutionary terms.
Hurford speculates that the Saussurean strategy would have been selected against other
conceivable strategies due to its clear advantage. We would infer from this speculation that
we should always have identical speaking and listening vocabularies if the Saussurean strategy
is an inherited learning ability. However, we are skeptical that this is true. As we observe
from their vocabulary development, children often go through a stage of overextension, i.e.
they use one word to refer to several meanings or objects which have similar physical or
functional features. For example, “ball” may refer to a ball, a balloon, an observatory dome
etc. [23]. But they can understand when adults talk with them using adults’ vocabulary.
We believe this is a reflection of non-identical speaking and listening vocabulary in children.
We speculate that when there is no established common vocabulary and everyone has his
own way to name things at the early stage of language development, such an inconsistency
would have to exist as well. In fact we can still observe the non-identical phenomena in
modern society. Very often we can understand a word though we never use it when we
speak. It is generally thought that people typically have a different, usually larger, listening
vocabulary than speaking vocabulary. Therefore, we hypothesize that the speaking matrix is
not necessarily the same as the listening matrix.

Oliphant and Batali [24] propose an “obverter” model, where agents adopt a strategy
very similar to Hurford’s calculator strategy. In their model, new learners are continuously
inserted into a randomly initiated population. The learner is able to observe the speaking and
listening behaviors of other agents and accordingly constructs his/her speaking and listening
matrices by following the majority. It is shown that a coordinated system can be achieved if
the learner have a complete observation of the whole population. The convergence slows down
and deteriorates much if learners have only a limited number of observations, which is more
plausible, however, in real situations. Furthermore, an important factor in the convergence of
the obverter model is that, although the initial population starts with random probabilistic
matrices, the learner’s speaking and listening matrices are in binary representation, and
once formed they will not change any more. These assumptions make the convergence not
surprising at all, much as we have shown in the simulation of Strategy 2 of the imitation
model above.

Nowak and Krakauer [17] report a similar simulation of the emergence of signal-meaning
associations in terms of two probabilistic matrices. Their model, similar to that of Hurford
[16], takes selection as the basic principle to guide the evolution of signal-meaning associa-

7Ross [22] gives a good example demonstrating this diversity in a linguistic community, by studying English
speakers’ judgements on grammaticality of a number of sentences.
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tions in a population of agents from a random initial condition to sub-optimum states. In
Nowak and Krakauer’s model, each agent has a measure of the fitness of its signal-meaning
associations with regard to its ability to communicate successfully and produces offspring
proportional to its fitness. Children learn the associations by sampling their parents’ speech.
Their simulation shows that the population can converge to a set of consistent mappings.
However, the optimal state, i.e. unique one-to-one associations of signal and meaning, is not
guaranteed; sometimes the population settles at a sub-optimal state whereby, for example,
two different signals are associated with one object, or one signal is associated with two
different objects. Furthermore the resultant speaking and listening matrices in their model
are not guaranteed to be “compatible”; by compatible we mean that the two matrices are
identical or the speaking matrix is a subset of the listening matrix when U > M . Nowak et
al. [21] considered this a paradoxical result in their model.

In this study, we report two models which adopt the same probabilistic representation of
vocabulary as Hurford [16] and Nowak & Krakauer [17]. The interaction model is introduced
in this section and the hybrid model in Section 4.

Our proposal differs from previous studies in that agents construct their vocabulary by
continually interacting with other agents. All agents modify their probabilistic speaking and
listening matrices independently according to the success or failure of each interaction. After
a number of interactions, the agents in the population come up with a set of consistent
mappings. The population behaves like a self-organizing system where order emerges from
the interactions between agents within the system. The following describes the details of our
interaction model and its simulation results.

3.2 Interactions between agents

In an interaction event in the simulation, two agents are randomly selected, one as a speaker
(S), and one as a listener (L), each agent having a speaking matrix and a listening matrix,
both of size M × U . Consider, for instance, two agents, agent S starting with a set of map-
pings as presented in Table 3 given earlier and agent L with mappings shown in Table 4
below (M = U = 3).

Table 4 about here

Suppose that in an interaction event speaker S decides to convey meaning m2, say, which
is randomly selected. Because the mappings are interpreted as probabilities that associate
a meaning with an utterance, rather than directly choosing the utterance with the biggest
probability for that meaning, S will choose an utterance by sampling. Similarly, the listener
receives the utterance sent by the speaker and will interpret the utterance by choosing one
meaning from those which have associations with that utterance by sampling. In the simula-
tion, the roulette wheel sampling method is used in both the speaking and listening process
[25].

3.3 The adjustment after one interaction

If the meaning interpreted by the listener is the same as the meaning intended by the speaker,
an interaction is seen as successful. Consequently the associations between the intended
meaning (m) and the utterance (u) are strengthened by an adjustment variable ∆, both in
the speaker’s speaking matrix and the listener’s listening matrix, i.e. pS

mu and qL
mu. Accord-

ingly, the mappings of pS
mi (i �= u) in the speaker’s speaking matrix and qL

ju (j �= m) in the
listener’s listening matrix are decreased by re-normalization, in order to maintain the con-
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straints
∑U

j=1 pij = 1, and
∑M

i=1 qij = 1. This way of adjusting the mapping is based on the
assumption that once the speaker decides to use one particular utterance to express a certain
meaning in that particular interaction, he will be less likely to use other utterances for that
meaning. This is just one of many possible strategies that can be conceived. Similarly, once
the listener realizes that an utterance refers to one particular meaning, he will be less likely
to associate other utterances with that meaning.

The interaction fails if the meaning interpreted by the listener is not the same as the
meaning intended by the speaker. The speaker is assumed to modify his current mappings
for that meaning as he notices that his intention was not understood by the listener. At the
same time, the listener also reduces the mapping between the utterance and the meaning
he interprets wrongly, while increasing the mappings associated with other meanings. The
above situations are hypothesized based on the assumption that the interactions between the
agents are intentional, which implies that both the speaker and the listener are consciously
taking part in the communication interaction. Furthermore, the agents are both able to
judge whether the communication is successful with the help of the information from the
environment in which the interaction takes place. Upon assuming these, we are consciously
avoiding the danger of attributing “mind-reading” to the agents, which means that the agents
do not have access to each other’s internal states.

The adjustment variable (∆) measures by how much a mapping is reinforced when an
interaction is successful and by how much it is weakened upon failure. This variable plays an
important role in the interaction model. It is easy to understand that ∆ should be neither
too large nor too small, otherwise it will result in oscillations when adjusting the agents’
mappings.

Furthermore, we propose a multiple-listener hypothesis, which finds psychological precur-
sors in chimpanzees [26]. We speculate that groups of early humans were small [27] and often
gathered together. In an interaction, when one speaker speaks, it is very likely that more
than one listener would be involved in the communication interaction. Here, we assume that
there is only one listener that the speaker intends to talk to but that any other listener who
interprets the speaker’s meaning correctly will also correspondingly reinforce their mapping
as we assume there is some direct reward or benefit from such a successful communication.
However, when the communication fails, only the intended listener and the speaker adjust
their mappings. This is based on the assumption that the side-listeners would not be affected
when failing to interpret the speaker’s utterance as the communication is not intended to
them, though this may not necessarily be true.

3.4 Evaluation of the communication system

Before starting the simulation, we design four measures for evaluating the communication
system: the similarity of the mapping matrices (SI), the individual convergence rate (IC),
the population convergence rate (PC), and the convergence time (CT ).

1. SI(I, J) is a measure of the similarity between the vocabularies of two agents, I and J ,
and is defined in terms of the sum of the differences between corresponding elements in
both their speaking matrices and their listening matrices, i.e. for two agents I and J ,

SI(I, J) = 1 − 1
(U − 1)M + (M − 1)U

U∑
i=1

M∑
j=1

(|p(I)
ij − p

(J)
ij | + |q(I)

ij − q
(J)
ij |) (1)

The population similarity SI is defined as the average similarity between all possible
pairs of agents. When SI reaches 1, all agents have identical speaking and listening
matrices.
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2. IC(I) is a measure of the degree of consistency of an individual’s speaking and listening
mappings, and is defined as the proportion of elements in each of the two matrices that
are smaller than a certain threshold (δ, set as 0.05 here),

IC(I) =
1
2
(

1
M(U − 1)

M∑
i=1

U∑
j=1

Θ(p(I)
ij ) +

1
U(M − 1)

M∑
i=1

U∑
j=1

Θ(q(I)
ij )) (2)

where Θ(k) = 1 if k < δ, else Θ(k) = 0.

The purpose of this definition is to determine when a vocabulary has converged to
a state in which each meaning is associated with a single dominant utterance in the
speaking matrix and each utterance is associated with a unique meaning in the listening
matrix. Table 5 gives an example of IC(I) = 1. Although this is a convergent state, it
is not a stable state because the speaking matrix is not compatible with the listening
matrix, implying that the agent cannot successfully interact with him/herself except
about m3.

Table 5 about here

3. PC is an index of the population convergence, which is the summation of commu-
nicative consistency between all possible pairs in the population. For a pair of agents,
I and J , the communicative consistency PC(I, J) is calculated by the following formula:

PC(I, J) =
1

2UM

U∑
i=1

M∑
j=1

(p(I)
ij q

(J)
ij + p

(J)
ij q

(I)
ij ) (3)

When PC = 1, it means that any pair of agents in the population can successfully
interact with each other for all meanings. Simulation shows that PC will equal 1 only
when SI = 1 and IC = 1, which means that the system defined by the interaction
model has reached a stable state. Table 6 shows an example of a stable state for the
system when M = U = 3; there are five other stable states for such a system, which
can be easily derived by finding one-to-one mappings for a 3 × 3 matrix. If the matrix
is N × N , then the number of possible matrices is simply N !. In the simulation, the
agents do not stop interacting until the system has reached a stable state or they have
completed a given number of interactions.

Table 6 about here

4. Convergence time, CT , is the number of interactions taken for PC to reach a certain
threshold (set as 0.99 here) above which the population is considered to have converged.

3.5 Simulation results

In the simulation, several parameters are investigated: the population size (Ps), the number
of available utterances that each agent can produce or perceive (U), the number of meanings
that need to be conveyed (M), and the adjustment variable (∆).

• The convergence trend

When M and U are not too big, we can easily observe the convergent trend. Figure 1
shows an example of a population with 10 agents, initialized randomly, with a vocabu-
lary size of M = U = 3. Figure 2 shows an example of one run with M = U = 5. It is
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interesting to observe that there is always a long period of oscillation before the pop-
ulation starts to converge. The convergence is not gradual but rather is quite abrupt.
This is reminiscent of the “phase transition” which has been discussed as a common
pattern of emergence in physical, biological and social systems [10]. The global struc-
ture abruptly emerges, which seems to be reached by chance. As it is hard to rigorously
analyze the condition of convergence for the current model, we can only demonstrate
the phase transition by simulation, while we have undertaken no systematic analysis to
determine when the transition point will occur.

Figure 1 about here

Figure 2 about here

• The effect of adjusting variable ∆

As we have discussed above, the adjustment variable ∆ is crucial; it should be neither
too large nor too small. The following Table 7 shows the convergence time for different
values of ∆. The table shows the percentage of runs for which convergence occurs,
and the average, minimum, maximum and variance of convergence time taken from
500 runs. It can be seen that there is an optimal ∆ for each vocabulary size. For
M = U = 3 the optimal ∆ must lie in the interval [0.1, 0.3], while for M = U = 4 or 5,
the optimal value must lie in the interval [0.05, 0.2].

Table 7 about here

• The effect of population size

Figure 3 shows the convergence percentage and the average convergence time for dif-
ferent population sizes, Ps, taken from 500 runs. For most population sizes, the con-
vergence time increases as the population size increases, at a rate faster than linear.
However, it is interesting to note that when the population size is small, here smaller
than 5, the convergence is slow. There seems to be an optimal population size which
converges the fastest—Ps=10 for M = U = 3 and ∆=0.3.

The optimal population size observed above is in fact an artefact due to the con-
straint that agents are not allowed to interact with themselves. When we remove this
constraint, allowing agents to interact with themselves and update their vocabulary
accordingly, it is found that the convergence becomes much faster, and there is no op-
timal population size (Figure 3); the smaller the population size, the easier it is for the
population to achieve a consistent vocabulary. Such an effect of “self-talking” is not sur-
prising, because not only is an agent’s listening vocabulary formed by observing other
agents’ speaking behavior, the agent’s speaking vocabulary, too, is indirectly influenced
by others’ speaking behavior by interacting with him/herself. This can be considered
as an indirect imitation, which is very plausible in real situations as we have discussed
in Section 2. The observation of optimal population size under the condition that
“self-talking” is prohibited is unexpected. We could a preliminary explanation which
is that in a very small population the majority hardly takes effect accumulatively, and
agents are very sensitive to the small adjustment after each interaction with any other
agent and thus keep oscillating. When self-talk allowed, the indirect imitation helps to
suppress the oscillation to a large extent.
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Figure 3 about here

• The outcome when the speaking and listening matrices do not have the same size, i.e.
M �= U

As mentioned earlier, the speaking and listening matrices are developed independently.
It is therefore possible that the agents end up with different mappings for the two ma-
trices. Nevertheless, under the current configuration with M = U , when the population
converges the two matrices are always the same. Only when M �= U does the popula-
tion actually converge with different speaking and listening matrices. It would appear
to be a significant emergent property of the system that the speaking matrix is always
a subset of the listening matrix when U > M , an example of which is shown below.
The simulation results show that such system indeed emerges, which corresponds to
the observation of non-identical speaking and listening vocabulary in reality as we have
discussed in Section 3.1.

Table 8 about here

The above four sections report various factors determining the convergence of a consistent
vocabulary. We can see that the self-organization is sensitive to the variables such as the
adjustment variable and the population size. However, the attainment of the stable state is
not guaranteed, at least within the maximum permitted number of interactions, 1000,000 for
simulations reported here.

4 The hybrid model

The imitation and interaction models in the previous sections have only treated the horizontal
interactions in a fixed population in one generation. In this section, we will build upon the
interaction model and add to it vertical transmission from generation to generation. As
mentioned in the Introduction, the mechanism of cultural selection is often used to study
vertical transmission. No matter by gene transmission or meme transmission, the replicators
which have higher fitness to the environment will have higher probability to be transmitted
to the next generation. In this study, we assume that the communicative consistency of the
vocabulary determines the possibility that it is transmitted to the next generation. In other
words, the consistency of the agent’s vocabulary is regarded as its fitness and is related to the
successfulness of it being learned by the next generation. The fitness of agent I’s vocabulary
F (I) is defined here as the average consistency when the agent communicates with all agents
including himself/herself,

F (I) =
1
Ps

Ps∑
J=1

PC(I, J)

where PC(i, j) is defined in Section 3.4.

We implement vertical transmission as follows. Assume that each child samples “exhaus-
tively” their parent’s speaking and listening matrices to form his own initial vocabulary, with
the result that the child has nearly the same speaking and listening matrices as that of the
parent. In addition, to reflect the errors which often occur during learning, we also allow
occasional small mutations in the matrices. Such implementation is different from Nowak
& Krakauer [17] in that their model does not assume an exhaustive sampling but instead a
limited sampling, allowing unique mappings between objects and sounds to be achieved more
quickly. This is the reason that the population can converge very quickly in their simulation.
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In our hybrid model, after learning from the parents and building their own initial map-
pings, the agents of a new generation go through a number of interactions as described in
the interaction model. For the sake of simplicity, we set the number of interactions to 1000
regardless of the population size, though it may be true that a larger population should pro-
vide more opportunities for each agent to interact with more different agents. Table 9 shows
the convergence time for various vocabulary sizes. Figure 4 demonstrates the convergence
trends of one run of simulation when Ps = 10 and M = U = 5.

Table 9 about here

Figure 4 about here

In the interaction model, when the population size becomes large or the vocabulary size
increases, it is hard for the population to converge to a consistent vocabulary, even when
the maximum number of interactions is set as large as 1,000,000. However, the life span of
a human being is limited and the time for an individual to learn is always finite. Therefore,
interaction among a single generation of a population cannot guarantee the formation of
a consistent vocabulary. If the population cannot develop a consistent vocabulary for one
generation, and the next generation starts from scratch again, then it would be hard for
a common vocabulary to emerge. On the contrary, if the partially developed vocabulary
in the previous generation can be transmitted and developed cumulatively, the chance for
the emergence of a consistent vocabulary will be much higher. From the simulation in this
section, we can observe the effect of cultural selection: a consistent vocabulary emerges much
more quickly and with higher probability in the hybrid model than in the interaction model.

To make an approximate comparison of the convergence time between these two models,
we calculate the equivalent convergence time for the hybrid model as the number of gen-
erations multiplied by the number of interactions per generation, and compare this figure
with the total number of interactions in the interaction model. From Tables 7 and 9, we see
that under the same condition, for example, M = U = 5 and ∆ = 0.1, the hybrid model
is about 10 times faster, in terms of average convergence time, than the interaction model.
Furthermore, the hybrid model has a higher convergence rate (100%) than interaction model
(90%).

5 Conclusions and discussions

In this study, we have used simulation and mathematical models to explore the emergence
of vocabulary. We propose that a common vocabulary, the first ordered system in human
language phylogeny, would have formed as the result of conventions established in the popula-
tion through local interactions. Our approach of studying the emergence of patterns from the
interactions among the agents falls into the general setting of agent-based modeling, which
has been widely used in the study of various complex systems with emergent properties.
There are only a small number of rules describing each agent’s behavior. However, the order
emerges from the locally coupled interactions [28].

The reported imitation and interaction models show that interaction between agents in a
population can cause them to arrive at a coherent vocabulary. We speculate that, especially
in the early stages of language emergence when there was no established communication
system, synchronic interactions among agents were possibly the only way for early humans to
form conventions and to attain mutual understanding. The imitation and interaction models
have allowed us to study how the convention may be achieved under various conditions.
The simulations demonstrate that without external design or driving force, coherence among

14



the entire population can be reached only through self-organization by each agent. Each
agent concentrates on adjusting him/herself to be better understood by others and to better
understand others for his/her own benefit. Nevertheless, this individual focus can lead to
global consistency.

The interaction hypothesis, however, only works with small populations and small vocab-
ulary size. We speculate that cultural selection plays a role in speeding up and passing on the
progress of interaction between agents through generations. Those vocabularies which have a
higher fitness through self-organization will have a higher probability to be transmitted to the
next generation. Such an external selection mechanism accumulates the benefits obtained by
each agent and spreads them through the population, and therefore speeds up the emergence
of a consistent communication system.

Language emergence and evolution have been widely studied under the framework of
cultural evolution [29]; cultural transmission evolves much faster than biological transmission.
We propose that it is the combined effect of horizontal self-organization plus cultural selection
in vertical transmission that results in high speed evolution. We believe the hybrid model in
this study has demonstrated this effect.

We observe that as the vocabulary tends to convergence there is a tendency to exhibit
a sharp phase transition. The global structure abruptly emerges after a long period of os-
cillation. It seems that there is some threshold after which the system converges quickly.
However, it is not yet clear how to obtain or predict this threshold.

In the demographic study of early humans, it has been pointed out that for hunter-
gatherers there exists an optimal size of population for the formation of small local groups of
10-50 persons [30]. Interestingly, our simulation also shows that there is an optimal popula-
tion size for the emergence of early vocabulary. If the population size is too small, a shared
vocabulary does not easily emerge; meanwhile, as the population size is increased, the con-
vergence time increases faster than linearly. Therefore, we speculate that it is still very likely
that language emerged in groups having an optimal size, neither too big nor too small. We
note that this optimum size occurs only under the constraint that agents do not interact with
themselves, though the plausibility of this constraint is still under question. The observed
population size (i.e. 10-15) is smaller than that deemed likely among modern human groups.
Further investigation in this aspect would be worthwhile.

Other work can be done along the line of the models we have presented here as well. In
the current model, agents do not make use of their previous experience when modifying their
vocabulary. Agents update their vocabulary matrix with a fixed value, only according to
the successfulness of the current interaction. However, by common sense, experience is an
important factor which could affect agents’ behavior. Therefore we could further investigate
the effect of experience. We assume that agents have a memory of their own several previ-
ous interactions and modify the matrices according to the current and previous interaction
results. Preliminary simulation results show that convergence can thus be obtained in larger
vocabulary such as M = 10, U = 10 and population sizes up to 100. Detailed results will be
given in successive reports.

One may also incorporate one or a group of model agents who already have consistent
mappings in the population and see how this agent or group affects the population’s conver-
gence. The current model of generation transmission is rather simple as each child learns
a parent’s vocabulary by sampling with some small learning errors. Komarova & Nowak
[31] recently report analytic models and simulations for incomplete and incorrect vocabulary
learning. Further systematic study of the effect of learning errors could be a useful direction
of exploration.
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Appendix: A Markov chain proof of convergence

Definition 1 A Markov chain is defined as a sequence X0,X1,. . . of discrete random vari-
ables with the property that the conditional distribution of Xn+1 given X0,X1,. . . ,Xn depends
only on the value of Xn but not further on X0,X1,. . . ,Xn−1; i.e. for any set of values
h, j, . . . , k belonging to the discrete state space,

Pr(Xn+1 = k|X0 = h, . . . , Xn = j) = Pr(Xn+1 = k|Xn = j).

Definition 2 Given a Markov chain M, a closed set of states is any proper subset of states
in M such that there is no arc from any of the states in C to any state not in C. Particularly,
a closed set with only one element (state) is called an absorbing state.

Property 1 For transition matrices corresponding to finite Markov chains, the multiplicity
of the eigenvalue λ = 1 is equal to the number of closed sets.

Property 2 Let P be an M×M transition matrix, xi and yi are the linearly independent left
eigenvectors and right eigenvectors corresponding to λi, i.e. xi

T P = λ ixi
T and Pyi = λiyi.

P k can be represented as

P k =
M∑
i=0

λk
i yixT

i

Property 3 As k tends to infinity,

P∞ = lim
k→∞

∑
i:λi=1

yixi
T

A Markov chain for the imitation model

We begin this mathematical investigation by considering a simplified model with one meaning
(M = 1), two available utterances (U = 2, i.e. u1 and u2), and Ps number of agents in the
population. Writing the number of agents who use utterance u1 as k (k = 0, 1, . . . , Ps), after
each imitation interaction k can change in one of only three possible ways: keep constant,
decrease by 1, or increase by 1. In other words, kn+1 depends only on kn, the situation at
the previous time instant. Therefore, by Definition 1, this process can be viewed as a Markov
chain.

Strategy 1

The Markov chain for the state relationships in one imitation interaction for Strategy 1 can
be represented as the following Figure 5:

Figure 5 about here

The transition matrix P (with size (Ps + 1) × (Ps + 1)) for the Markov chain is

P =




1 0 0 0 . . . 0
c1 d1 c1 0 . . . 0
0 c2 d2 c2 . . . 0
...

...
...

...
. . . cj dj cj . . .

...
...

...
...

c1 d1 c1

0 0 0 0 . . . 1



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where
cj =

j(Ps − j)
Ps(Ps − 1)

and
dj =

j(j − 1) + (Ps − j)(Ps − j − 1)
Ps(Ps − 1)

.

According to the definition of closed set of states in a Markov chain, we can easily see
that there are only two closed states in the above Markov chain shown in Figure 5. Therefore
the multiplicity of λ = 1 is 2, i.e. there are two eigenvalues equal to 1. Other eigenvalues are
all smaller than 1.

Taking xi
TP = λxi

T , xi
T can be seen as an input to the Markov chain. Setting λ = 1

means that the output will be the same as the input. It is easy to calculate that x1 =
[1 0 0 0 . . . 0]T and x2 = [0 0 0 0 . . . 1]T . To calculate y1 and y2, we need to solve a series of
equations.

From
P[y1 y2 . . . yPs+1]T = [y1 y2 . . . yPs+1]T

we have

c1y1 + d1y2 + c1y3 = y2

c2y2 + d2y3 + c3y4 = y3

. . .

c1yPs−1 + d1yPs + c1yPs+1 = yPs

Thus we obtain y1 = [1 Ps−1
Ps

. . . 1
Ps

0]T . Similarly, we can obtain y2 = [0 1
Ps

. . . p−1
Ps

1]T .
Therefore,

P∞ = y1x1
T + y2x2

T

=




1 0 0 0 . . . 0
Ps−1

Ps
0 0 0 . . . 1

Ps

...
...

...
...

1
Ps

0 0 0 . . . Ps−1
Ps

0 0 0 0 . . . 1




which indicates that the population will always converge to a state in which either all agents
use u1 or all agents use u2. Different initial conditions cause the Markov chain to converge
to either of the stable states with different probabilities.

Consider a more complicated model with M = 1, U > 2. We use a mathematical induction
method to prove the emergence of consistency by the following steps:

1 We have proved convergence for M = 1, U = 2.

2 Assume that we can prove convergence M = 1, U = i. That is, after a sufficient number
of interactions, the agents will all use the same utterance.

3 When U = i + 1, the set of all utterances {u1, u2, ..., ui, ui+1} can be divided into two
subsets Set1 = {u1, u2, ..., ui} and Set2 = {ui+1}. Similarly we can construct a Markov
chain which contains Ps + 1 states, k = 0, 1, 2, ..., Ps. A state denotes the number of
agents that use the utterance in Set1. As the number of interactions tends to infinity,
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the system will converge to one of only two possible states: k = 0 or k = Ps. That is to
say, finally there are only two possible situations for the population, either all agents
use ui+1 or all agents use one of the utterances in Set1. As we have the assumption in
step [2], the population is convergent with U = i number of available utterances. Thus,
when U = i + 1, the system can reach convergence also.

Strategy 2

Consider again the simplest case of M = 1, U = 2. The transition matrix for the Markov
chain is as follows: if Ps is an even number,

P =




1 0 0 0 . . . 0
e1 f1 0 0 . . . 0
0 e2 f2 0 . . . 0
...

...
...

...
. . . ePs

2 −1 fPs
2 −1 0 . . .

. . . 0 1 0

. . . 0 fPs
2 +1 ePs

2 +1 . . .

...
...

...
...

0 f1 e1

0 0 0 0 . . . 1




while if Ps is an odd number,

P =




1 0 0 0 . . . 0
e1 f1 0 0 . . . 0
0 e2 f2 0 . . . 0
...

...
...

...
. . . ePs−1

2
fPs−1

2
0 . . .

. . . 0 fPs+1
2

ePs+1
2

. . .

...
...

...
...

0 f1 e1

0 0 0 0 . . . 1




where
ej = 2 × j(Ps − j)

Ps(Ps − 1)

and
fj =

j(j − 1) + (Ps − j)(Ps − j − 1)
Ps(Ps − 1)

.

The Markov chains have the states shown in the following two graphs:

Figure 6 about here

Figure 7 about here
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It is easy to derive P∞ using a method similar to Strategy 1. If Ps is an even number,

P∞ =




1 0 0 0 . . . 0
1 0 0 0 . . . 0
...

...
...

...
1 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 1
...

...
...

...
0 0 0 0 . . . 1
0 0 0 0 . . . 1




while if Ps is an even number,

P∞ =




1 0 0 0 . . . 0
1 0 0 0 . . . 0
...

...
...

...
1 0 0 0 . . . 0
0 0 0 0 . . . 1
...

...
...

...
0 0 0 0 . . . 1
0 0 0 0 . . . 1




Thus it is proved that the population can reach consistency after long term interaction,
except in the situation that there is an equal number of agents using each of the two utterances
at the beginning of the interaction when Ps is an even number.
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Figure Captions:

Figure 1: The convergent trends from an example simulation of the interaction model
(Ps=10, M = U = 3, ∆ = 0.2). Three measures of the convergence (SI, PC and IC) are
shown. A consistent vocabulary emerges after 3553 interactions. An abrupt phase transition
can be observed around 3000th interaction.

Figure 2: The convergent trends from an example simulation of the interaction model
(Ps=10, M = U = 5, ∆ = 0.1). A consistent vocabulary emerges after 443781 interactions.
An abrupt phase transition can be observed around 44000th interaction.

Figure 3: The relationship between Ps and CT for the interaction model. When agents
are not allowed to interact with themselves (i.e. no self-talk), an optimal population size
can be observed; when self-talk is allowed, the convergence time increases nonlinearly as the
population size increases.

Figure 4: The convergent trends from an example simulation of the hybrid model (Ps=10,
M = U = 5, ∆ = 0.1). Three measures of the convergence (SI, PC and IC) are shown. A
consistent vocabulary emerges after 50 generations. 1000 interactions take place per genera-
tion.

Figure 5: The Markov chain for a simplified model of imitation strategy 1, i.e. random
imitation. U = 2, M = 1.

Figure 6: Markov chain for a simplified model of imitation strategy 2, i.e. following the
majority. Ps is an even number.

Figure 7: Markov chain for a simplified model of imitation strategy 2, i.e. following the
majority. Ps is an odd number.
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Figure 1: The convergent trends from an example simulation of the interaction model (Ps=10,
M = U = 3, ∆ = 0.2). Three measures of the convergence (SI, PC and IC) are shown. A
consistent vocabulary emerges after 3553 interactions. An abrupt phase transition can be
observed around 3000th interaction.
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Figure 2: The convergent trends from an example simulation of the interaction model (Ps=10,
M = U = 5, ∆ = 0.1). A consistent vocabulary emerges after 443781 interactions. An abrupt
phase transition can be observed around 44000th interaction.
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Figure 3: The relationship between Ps and CT for the interaction model. When agents
are not allowed to interact with themselves (i.e. no self-talk), an optimal population size
can be observed; when self-talk is allowed, the convergence time increases nonlinearly as the
population size increases.

Table 1: Two agents, A and B, and their U-M mappings between utterances (U) and meanings
(M)

m1 m2 m3 m4 . . .
Ψ(A) u2 u4 u1 u4 . . .
Ψ(B) u5 u3 u1 u1 . . .
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Figure 4: The convergent trends from an example simulation of the hybrid model (Ps=10,
M = U = 5, ∆ = 0.1). Three measures of the convergence (SI, PC and IC) are shown. A
consistent vocabulary emerges after 50 generations. 1000 interactions take place per genera-
tion.
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Figure 5: The Markov chain for a simplified model of imitation strategy 1, i.e. random
imitation. U = 2, M = 1.
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Figure 6: Markov chain for a simplified model of imitation strategy 2, i.e. following the
majority. Ps is an even number.
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Figure 7: Markov chain for a simplified model of imitation strategy 2, i.e. following the
majority. Ps is an odd number.

Table 2: Average consistency C and distinctiveness D of 100 runs for various Ps and U ,
Strategy 1 and 2 (imitation model)

S1 C D
U=10 U=30 U=50 U=10 U=30 U=50

Ps=10 1.00 1.00 1.00 0.77 0.91 0.94
Ps=30 0.98 0.98 0.98 0.76 0.92 0.95
Ps=50 0.82 0.80 0.80 0.78 0.92 0.95

S2 C D
U=10 U=30 U=50 U=10 U=30 U=50

Ps=10 1.00 0.80 0.63 0.74 0.92 0.95
Ps=30 1.00 1.00 1.00 0.73 0.92 0.95
Ps=50 1.00 1.00 1.00 0.74 0.91 0.94

Table 3: Probabilistic speaking and listening mapping matrices of agent S
pij u1 u2 u3

m1 0.3 0.4 0.3
m2 0.4 0.55 0.05
m3 0.7 0.2 0.1

qij u1 u2 u3

m1 0.1 0.3 0.6
m2 0.5 0.3 0.3
m3 0.4 0.4 0.1

Table 4: Probabilistic speaking and listening mapping matrices of agent L
pij u1 u2 u3

m1 0.3 0.2 0.5
m2 0.4 0.3 0.1
m3 0.3 0.5 0.4

qij u1 u2 u3

m1 0.2 0.1 0.7
m2 0.6 0.2 0.1
m3 0.2 0.7 0.2
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Table 5: An example of convergent vocabulary with incompatible speaking and listening
matrices

pij u1 u2 u3

m1 1 0 0
m2 0 1 0
m3 0 0 1

qij u1 u2 u3

m1 0 1 0
m2 1 0 0
m3 0 0 1

Table 6: An example of a stable state: all agents have the same speaking and listening
matrices.

pij u1 u2 u3

m1 1 0 0
m2 0 1 0
m3 0 0 1

qij u1 u2 u3

m1 1 0 0
m2 0 1 0
m3 0 0 1

Table 7: The convergent time for different adjustment variable ∆ (interaction model)

M U ∆ converged % CTavg CTmin CTmax CTvar

3 3 0.3 100% 5958 878 27401 4288
3 3 0.2 100% 1759 759 4249 592
3 3 0.1 100% 1840 919 4246 514
3 3 0.05 100% 2916 1493 6289 718
4 4 0.3 0% nca nc nc 0
4 4 0.2 100% 81294 2823 414821 72865
4 4 0.1 100% 7631 2941 22348 3131
4 4 0.05 99.8% 18072 5056 nc 65457
5 5 0.3 0% nc nc nc 0
5 5 0.2 0% nc nc nc 0
5 5 0.1 90.0% 402948 9016 nc 315519
5 5 0.05 21.4% 893577 35813 nc 234069

aNote: If the population can not converge when the simulation completes the given number of interactions
in a run, then this run is considered unconverged. When all 500 runs are unconverged, “nc” is indicated in
the table. This applies to the following tables as well.

Table 8: An example of convergent vocabulary when U > M : Two types of resultant speaking
and listening matrices, speaking being a subset of listening vocabulary (interaction model)

p1
ij u1 u2 u3 u4

m1 1 0 0 0
m2 0 1 0 0
m3 0 0 1 0

p2
ij u1 u2 u3 u4

m1 0 0 0 1
m2 0 1 0 0
m3 0 0 1 0

q1
ij u1 u2 u3 u4

m1 1 0 0 1
m2 0 1 0 0
m3 0 0 1 0

q2
ij u1 u2 u3 u4

m1 1 0 0 1
m2 0 1 0 0
m3 0 0 1 0
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Table 9: The convergent time for different vocabulary sizes (hybrid model)

M U ∆ converged % CTavg CTmin CTmax CTvar

3 3 0.3 100% 3 1 12 1
4 4 0.2 100% 20 2 129 16
5 5 0.1 100% 37 6 156 26
6 6 0.1 98.2% 552 25 na 486
7 7 0.1 46.6% 3876 69 na 964
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