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Abstract

Cultural transmission of information plays a central role in shaping human knowledge.

Some of the most complex knowledge that people acquire, such as languages or cultural

norms, can only be learned from other people, who themselves learned from previous

generations. The prevalence of this process of “iterated learning” as a mode of cultural

transmission raises the question of how it affects the information being transmitted.

Analyses of iterated learning under the assumption that the learners are Bayesian agents

predict that this process should converge to an equilibrium that reflects the inductive

biases of the learners. An experiment in iterated function learning with human participants

confirms this prediction, providing insight into the consequences of intergenerational

knowledge transmission and a method for discovering the inductive biases that guide

human inferences.
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Iterated learning: Intergenerational knowledge transmission

reveals inductive biases

Knowledge changes as it is passed from one person to the next, and from one

generation to the next. Sometimes the change is dramatic: the deaf children of Nicaragua

have transformed a fragmentary protolanguage into a real language in the brief time

required for one generation of signers to mature within the new language’s community

(e.g., Senghas & Coppola, 2001). Language is only one example, although it is perhaps

the most striking, of the inter-generational transmission of cultural knowledge. In many

cases of cultural transmission, one learner serves as the next learner’s teacher. Languages,

legends, superstitions and social norms are all transmitted by such a process of “iterated

learning” (see Figure 1a), with each generation learning from data produced by that which

preceded it (Boyd & Richerson, 1985; Briscoe, 2002; Cavalli-Sforza & Feldman, 1981;

Kirby, 1999, 2001). However, iterated learning does not result in perfect transfer of

knowledge across generations. Its outcome depends not just on the data being passed from

learner to learner, but on the properties of the learners themselves.

The prevalence of iterated learning as a mode of cultural transmission raises an

important question: what are the consequences of iterated learning for the information

being transmitted? In particular, does this information converge to a predictable

equilibrium, and are the dynamics of this process understandable? This question has been

explored in a variety of disciplines, including anthropology and linguistics. In

anthropology, several researchers have argued that processes of cultural transmission like

iterated learning provide the opportunity for the biases of learners to manifest in the

concepts used by a society (Atran, 2001, 2002; Boyer, 1994, 1998; Sperber, 1996). In
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linguistics, iterated learning provides a potential explanation for the structure of human

languages (e.g., Kirby, 2001; Briscoe, 2002). This approach is an alternative to traditional

claims that the structure of language is the result of constraints imposed by an innate,

special-purpose, language faculty (e.g., Chomsky, 1965; Hauser, Chomsky, & Fitch,

2002). Simulations of iterated learning with general-purpose learning algorithms have

shown that languages with considerable degrees of structure can emerge when agents are

allowed to learn from one another (Kirby, 2001; Smith, Kirby, & Brighton, 2003;

Brighton, 2002).

Despite this interest in cultural transmission, there has been very little laboratory

work on the consequences of iterated learning. Bartlett’s (1932) experiments in “serial

reproduction” were the first psychological investigations of this topic, using a procedure in

which participants reconstructed a stimulus from memory, with their reconstructions

serving as stimuli for later participants. Bartlett concluded that reproductions seem to

become more consistent with the biases of the participants as the number of reproductions

increases. However, these claims are impossible to validate, since Bartlett’s experiments

used stimuli, such as pictures and stories, that are not particularly amenable to rigorous

analysis. In addition, there was no unambiguous pre-experimental hypothesis about what

people’s biases might be for these complex stimuli. There have been only a few

subsequent studies in serial reproduction, with the most prominent being Bangerter (2000)

and Barrett and Nyhof (2001), and thus we presently have little understanding of the likely

outcome of iterated learning in controlled conditions. The possibilities are numerous:

iteration might produce divergence from structure into noise, or into random or

unpredictable alternation from one solution to another, or people might blend their biases

with the data to form consistent “compromise” solutions. In this paper, we attempt to
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determine the outcome of intergenerational knowledge transmission by testing the

predictions made by a formal analysis of iterated learning in an experiment using a

controlled set of stimuli.

We can gain some insight into the consequences of iterated learning by considering

the case where the learners are Bayesian agents. Bayesian agents use a principle of

probability theory, called Bayes’ rule, to infer the process that was responsible for

generating some observed data. Assume that a learner has a set of hypotheses, H, about

the process that could have produced data, d, and a “prior” probability distribution, p(h),

that encodes that learner’s biases by specifying the probability a learner assigns to the

truth of each hypothesis h ∈ H before seeing d. In the case of learning a language, the

hypotheses, h, are different languages, and the data, d, are a set of utterances. Bayes’ rule

states that the probability that an agent should assign to each hypothesis after seeing d –

known as the “posterior” probability, p(h|d) – is

p(h|d) =
p(d|h)p(h)

∑

h∈H p(d|h)p(h)
, (1)

where p(d|h) – the “likelihood” – indicates how likely d is under hypothesis h, and p(d) is

the probability of d averaged over all hypotheses, p(d) =
∑

h p(d|h)p(h), sometimes

called the prior predictive distribution. The assumption that learners are Bayesian agents

is not unreasonable: adherence to Bayes’ rule is a fundamental principle of rational action

in statistics and economics (Savage, 1954; Jaynes, 2003; Robert, 1994) and its use

underlies many learning algorithms (Mitchell, 1997; Mackay, 2003).

In iterated learning with Bayesian agents, each learner uses Bayes’ rule to infer the

language spoken by the previous learner, and generates the data provided to the next

learner using the results of this inference (see Figure 1b). Having formalized iterated

learning in this way, we can examine how it affects the hypotheses chosen by the learners.
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The probability that the nth learner chooses hypothesis i given that the previous learner

chose hypothesis j is

p(hn = i|hn−1 = j) =
∑

d

p(hn = i|d)p(d|hn−1 = j), (2)

where p(hn = i|d) is the posterior probability obtained from Equation 1. This specifies

the transition matrix of a Markov chain, with the hypothesis chosen by each learner

depending only on that chosen by the previous learner. Griffiths and Kalish (2005) showed

that the stationary distribution of this Markov chain is p(h), the prior assumed by the

learners. The Markov chain will converge to this distribution under fairly general

conditions (e.g., Norris, 1997). This means that the probability that the last in a long line

of learners chooses a particular hypothesis is simply the prior probability of that

hypothesis, regardless of the data provided to the first learner. In other words, the stimuli

provided for learning are completely irrelevant in the long run, and only the biases of the

learners affect the outcome of iterated learning.1

A similar convergence result can be obtained if we consider how the data generated

by the learners (instead of the hypotheses they hold) change over time: after many

generations, the probability that a learner generates data d will be p(d) =
∑

h p(d|h)p(h),

the probability of d under the prior predictive distribution (Griffiths & Kalish, 2006). This

process of convergence is illustrated in Figure 2 for the case where the hypotheses are

linear functions and the prior favors functions with unit slope and zero intercept (the

details of this Bayesian model appear in the Appendix). This is a simple example of

iterated learning, but nonetheless illustrative of convergence to the prior predictive

distribution. As each generation of learners combines the evidence provided by the data

with their (common) prior, their posterior distributions move closer to the prior, and the

data they produce becomes more consistent with hypotheses that have high prior
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probability.

The preceding analysis of iterated learning with Bayesian agents provides a simple

answer to the question of how iterated learning affects the information being transmitted:

the information will be transformed to reflect the inductive biases of the learners. Whether

a similar transformation will be observed with human learners is an open empirical

question. To test this prediction, we reproduced iterated learning in the laboratory using a

set of controlled stimuli for which people’s biases are well understood. We chose to use a

function learning task, because of the prominent role that inductive bias seems to play in

this domain.2 In function learning, each learner sees data consisting of (x, y) pairs and

attempts to infer the underlying function relating y to x. Experiments typically present the

values of x graphically, and subjects produce a graphical y magnitude in response. Tests

of interpolation and extrapolation with novel x values reveal that people infer continuous

functions from these discrete trials. Previous experiments in function learning suggest that

people have an inductive bias favoring linear functions with a positive slope: initial

responses are consistent with such functions (Busemeyer, Byun, DeLosh, & McDaniel,

1997), and they require the least training to learn (Brehmer, 1971, 1974; Busemeyer et al.,

1997). Kalish, Lewandowsky, and Kruschke (2004) showed that a model that included

such a bias could account for a variety of phenomena in human function learning. If

iterated learning converges to an equilibrium reflecting the inductive biases of the learners,

we should expect to see linear functions with positive slope emerge after a few

generations of learners. We tested this hypothesis by examining the outcome of iterated

function learning, varying the functions used to train the first learner in each sequence.
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Method

Participants

288 undergraduate psychology students from the University of Louisiana at

Lafayette participated for partial course credit. The experiment had four conditions,

corresponding to different initial training functions. There were 72 participants in each

condition, forming nine generations of learners from eight “families” in which the

responses of each generation of learners during a post-training transfer test were presented

to the next generation of learners as the to-be-learned target stimuli.

Apparatus and Stimuli

Participants completed the experiment in individual sound-attenuated booths. A

computer displayed all trials and collected all responses. On each trial a filled blue bar

1cm high and 0.3cm (x = 1) to 30cm (x = 100) wide was presented as the stimulus. The

stimulus was always presented in the upper portion of the screen, with its upper left corner

approximately 4cm from the top and 4cm from the left of the edge of the screen. The

participant entered a response magnitude by adjusting a vertically-oriented unmarked

slider (located 4cm from the botton and 6cm from the right of the screen) with the mouse;

the slider’s position determined the height of a filled red bar 1cm wide, which could

extend up to 25cm. During the training phase, feedback was provided in the form of a

filled yellow bar 1cm wide placed 1cm to the right of the response bar, which varied from

0.25cm (y = 1) to 25cm (y = 100) in height and was aligned so that the height of the bar

was aligned with the correct response.
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Procedure

The experiment had both training and transfer phases. For the learners who formed

the first generation of any family, the values of the training stimuli were 50 randomly

selected stimulus values (x) ranging from 1 to 100 paired with feedback (y) given by the

function of the condition the participant was in. The four functions used during training of

the first generation of participants in the four conditions were: y = x (positive linear),

y = 101 − x (negative linear), y = 50.5 + 49.5 sin
(

π
2

+ x
5π

)

(non-linear, U-shaped) and a

random 1-to-1 pairing of x and y with both x, y ∈ {1, . . . , 100}. All values of x were

integers and all values of y were rounded to the nearest integer prior to display.

The test items consisted of 25 of the training items along with 25 of the 50 unused

stimulus values. Inter-generational transfer took place by making the test stimuli and

responses of generation n of each family serve as the training items of generation n + 1 in

that family. Inter-generational transfer was conducted entirely without personal contact

and participants were not made aware that their test responses would serve as training for

later participants; the use of one generation’s test items in training the next generation was

the only contact between generations.

Each trial was initiated by the presentation of a stimulus, selected without

replacement from the 50 items in either the training or test set. Following each stimulus

presentation, while the stimulus remained on the screen, the participant used the mouse to

adjust the slider to indicate their predicted response magnitude and clicked a button to

record their response when they had adjusted the slider to the desired magnitude. The

response could be manipulated ad lib until the participant chose to record the response.

During training each response was followed by the presentation of a feedback bar. If

the response was correct (defined as within 1.5 cm, or 5 units, of the target value y), there
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was a study interval of 1s duration during which the stimulus, response, and feedback

were all presented. If the response was incorrect, a tone sounded and the participant was

shown the feedback bar. The participant was then required to set the slider so that the

response bar was equal to the feedback bar. A study interval of 2s duration followed this

correction. Thus, participants who responded accurately spent less time studying the

feedback; this was the reward for accurate responses. After each study interval there was a

blank interval of 2s duration before the next trial. Each participant completed a single

block of training in which each of their 50 training values was presented once in random

order. Test trials were identical to training trials, except that no feedback was made

available after the response was entered. Participants were informed prior to the beginning

of the test phase about this change.

Results

Figure 3 shows a single family of nine participants for each condition, chosen to be

representative of the overall results. Each set of axes shows the test-phase responses of a

single learner who was trained using the data shown in the graph to its left. For example,

the responses of the first generation in each condition (in column 2) were based on the

data provided by the actual function (to the left, in column 1). The responses of the second

generation (in column 3) were based on the data produced by the first generation (in

column 2), and so forth.

Regardless of the data seen by the first learner, iterated learning converged to a

linear function with positive slope in only a few generations for 28 of the 32 families of

learners. The other four families, three in the negative linear condition and one in the

random condition, were producing a negative linear function at the point the experiment
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concluded. Figure 3(a) indicates that a linear function with positive slope is stable under

iterated learning; none of the other initial conditions had this level of stability. Figure 3(b)

is reminiscent of the analysis shown in Figure 2: despite starting with a linear function

with negative slope, learners converged to a linear function with positive slope. Figure

3(c) and (d) show that linear functions with positive slope also emerge from iterated

learning when the initial function is non-monotonic or completely random. Figure 3(e)

shows the family that most strongly maintained the negative linear function.

The results shown in Figure 3 illustrate a tendency for iterated learning to converge

to a positive linear function. To provide a more quantitative analysis, we computed the

correlation between the responses of each participant and the positive linear function

y = x. The outliers produced by families converging to the negative linear function made

the mean correlation less informative than the median; Figure 3(f) shows the median

correlations at each generation for each of the four conditions. Other than the positive

linear condition, where the correlation was at ceiling from the first generation, the

correlations systematically increased across generations. As the data clearly show, iterated

learning produced an increase in the consistency of people’s responses with a positive

linear function. This result is consistent with a prior that is dominated by linear functions,

with a strong bias for the positive over the negative.

Discussion

Our analysis of iterated learning with Bayesian agents indicates that when Bayesian

learners learn from one another, they converge to a distribution over hypotheses

determined by their inductive biases (Griffiths & Kalish, 2005, 2006). The purpose of this

experiment was to test whether iterated learning with human learners likewise converges
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to an outcome consistent with their inductive biases. Previous research in function

learning suggests that people favor linear functions with positive slopes (Brehmer, 1971,

1974; Busemeyer et al., 1997; Kalish et al., 2004). In our experiment, iterated learning

converged to a positive linear function in the majority of cases, regardless of the function

seen by the first learner. Mapping out the stationary distribution of iterated learning in

greater detail would require collecting significantly more data, making it possible to

confirm that the underlying Markov chains have converged, and providing more samples

from the stationary distribution. Nonetheless, the dominance of the positive linear

function in our results suggests that, for human learners as for Bayesian agents, iterated

learning produces convergence to the prior.

These empirical results are consistent with our theoretical analysis of iterated

learning, and have two significant implications. First, they support the idea that

information transmitted via iterated learning will ultimately come to mirror the structure

of the human mind, a conclusion consistent with claims that processes of cultural

transmission can allow the biases of learners to manifest in cultures (Atran, 2001, 2002;

Boyer, 1994, 1998; Sperber, 1996). This suggests that languages, legends, religious

concepts, and social norms are all tailored to match our biases, providing a formal

justification for studying these phenomena as a means of understanding human cognition.

These results also validate the interpretation of existing, less controlled, experiments using

serial reproduction (e.g., Bartlett, 1932; Bangerter, 2000; Barrett & Nyhof, 2001) as

revealing people’s biases.

Second, and perhaps more importantly, our results suggest that iterated learning can

be used as a method for exploring the biases that guide human learning. Many of the

problems that are central to cognitive science, from learning and using language to
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inferring the structure of categories from a few examples, are problems of induction. A

variety of arguments, from both philosophy (e.g., Goodman, 1955) and learning theory

(e.g., Kearns & Vazirani, 1994; Vapnik, 1995), stress the importance of inductive biases in

solving these problems. In order to understand how people make inductive inferences, we

need to understand the biases that constrain those inferences. The present experiment

involved a case in which the general shape of learners’ biases was known prior to the

study. Based on the results of the experiment, it appears possible to use the procedure to

investigate biases in situations in which they are unknown and people are unable (or

unwilling) to reveal what those biases are. By reproducing iterated learning in the

laboratory, we may be able to map out the implicit inductive biases that make human

learning possible.
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Appendix

Bayesian linear regression

Linear regression is a standard problem that is dealt with in detail in several books

on Bayesian statistics, including Box and Tiao (1992) and Gelman, Carlin, Stern, and

Rubin (1995). For this reason, our treatment of this analysis is extremely brief. Assume

that the data d are a set of n pairs (xi, yi), and that the hypothesis space H consists of

linear functions of the form y = β1x + β0 + ε, where ε is Gaussian noise with variance

σ2

Y . Since a hypothesis h is identified entirely by the parameters β1 and β0, we can

summarize both data and hypotheses using column vectors, x = [x1, x2, . . . , xn]T ,

y = [y1, y2, . . . , yn]T , and β = [β1 β0]
T .

The likelihood, p(d|h), is simply the probability of x and y given β, p(y,x|β).

Assuming that x follows a distribution q(x) which is constant over all hypotheses, we

have p(y,x|β) = p(y|x,β)q(x). From the assumption that y = β1x + β0 + ε, it follows

that p(y|x, β) is Gaussian with mean Xβ and covariance matrix σ2

Y In, where

X = [x 1n], and 1n and In are an n × 1 vector of 1s and the n × n identity matrix

respectively. The prior p(h) is a distribution over the parameters β, p(β). We take p(β) to

be Gaussian with mean µβ and covariance matrix σ2

βI2.

The posterior distribution p(h|d) is a distribution over β given x and y. Using our

choice of prior and likelihood, this is Gaussian with covariance matrix

Σpost = (
1

σ2

Y

XTX +
1

σ2

β

I2)
−1, (3)

and mean

µpost = Σ−1

post(
1

σ2

Y

XTy +
1

σ2

β

µβ). (4)
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Figure 2 was generated by simulating iterated learning with this model. The first learner

saw 20 datapoints generated by sampling x uniformly at random from the range [0, 1], and

taking y = 1 − x. A value of β was sampled from the resulting posterior distribution, and

used to generate values of y for 20 new randomly drawn values of x, which were supplied

as data to the next learner. This process was continued for a total of nine learners,

producing the results shown in the figure. The likelihood and prior assumed by the

learners had σ2

Y = 0.0025, σ2

β = 0.005, and µβ = [1 0]T , corresponding to a strong prior

favoring functions with a slope of 1 and an intercept of 0.
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Footnotes

1In the case of language, demonstrating that iterated learning converges to the prior

distribution over hypotheses maintained by the learners should not be taken as implying

that linguistic universals are necessarily the consequence of innate constraints specific to

language learning. The biases encoded by the prior need not be either innate, as they

could result from experiences with data other than those under consideration, or language

specific, as they could include general-purpose constraints such as limitations on

information processing (see Griffiths & Kalish, 2006, for a more detailed discussion).

2Our use of function learning was also inspired by simulations of iterated learning of

languages, in which a language is often conceived of as a function mapping meanings to

utterances (e.g., Smith et al., 2003).
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Figure Captions

Figure 1. (a) Iterated learning. Each learner sees data produced by a learner in a previous

generation, forms a hypothesis about the process by which those data were produced, and

uses this hypothesis to produce the data that will be supplied to a learner in the next

generation. (b) Iterated learning with Bayesian agents. The first learner sees data d0,

computes a posterior probability distribution over hypotheses according to Equation 1,

samples a hypothesis h1 from this distribution, and generates new data d1 by sampling

from the likelihood associated with that hypothesis. This data is provided to the second

learner, and the process continues, with the nth learner seeing data dn−1, inferring a

hypothesis hn, and generating new data dn.

Figure 2. Iterated learning with Bayesian agents converges to the prior. (a) The leftmost

panel shows the initial data provided to a Bayesian learner, a sample of 20 points from a

function. The learner inferred a hypothesis (in this case a linear function) from these data,

and then generated the predicted values of y shown in the next panel for a new set of

inputs x. These predictions were supplied as data to another Bayesian learner, and the

remaining panels show the predictions produced by learners at each generation as this

process continued. All learners had a prior distribution over hypotheses favoring linear

functions with positive slope (see the Appendix for details). As iterated learning proceeds,

the predictions converge to a positive linear function. (b) The correlation between

predictions and the function y = x provides a quantitative measure of correspondence to

the prior. The solid line shows the median correlation with y = x for functions produced

by 1000 sequences of iterated learning like that shown in (a). The dotted lines show the

95% confidence interval. Using this quantitative measure, it is easy to see that iterated
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learning quickly produces a strong correspondence to the prior.

Figure 3. Iterated learning with human learners. The leftmost panel in each row shows the

data seen by the first learner, a sample of 50 points from one of four functions. The other

columns show the data produced by each generation of learners, trained on the data from

the column to their left. Each row shows a single sequence of nine learners, drawn at

random from the eight “families” of learners run with the same initial data. The rows

differ in the functions used to generate the data shown to the first subject: (a) is a linear

function with positive slope, (b) is a linear function with negative slope, (c) is a non-linear

function, and (d) is a random set of points. In each case, iterated learning quickly

converges to a linear function with positive slope, consistent with findings indicating that

human learners are biased towards this kind of function. (e) In a minority of cases (4 out

of 32) families were producing negative linear functions at the end of the experiment,

suggesting that such functions receive some weight under the prior. (f) The median

correlation with y = x across all families was assessed for the four conditions illustrated

in (a)-(e). Regardless of the initial data, this correlation increased over generations as

predictions became more consistent with a positive linear function.
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