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Abstract

This paper discusses the signi�cance of communication between individual agents that are

embedded into learning Multi-Agent Systems. For several learning tasks occurring within

a Multi-Agent System, communication activities are investigated and the need for a mutual

understanding of agents participating in the learning process is made explicit. Thus, the

need for a common ontology to exchange learning-related information is shown. Build-

ing this ontology is an additional learning task that is not only extremely important, but

also extremely di�cult. We propose a solution that is motivated by the human ability

to understand each other even in the absence of a common language by using alternative

communication channels, such as gestures.

1 Introduction

Learning in Multi-Agent Systems has become a major research �eld within Distributed

Arti�cial Intelligence and Machine Learning [20, 17]. It is motivated by the insight that

it is impossible to determine a-priori the complete knowledge that must exist within each

component of a distributed, heterogeneous system in order to allow satisfactory performance

of that system. Especially if we want to exploit the potential of modularity, such that it is

possible for individual agents to join and leave the Multi-Agent System, there's a constant

need for the acquisition of new and the adaption of already existing knowledge, i.e., for

learning.

Within this setting, di�erent kinds of learning tasks must be investigated, such as "tra-

ditional" single agent learning tasks, learning in teams, learning to act within a team,

and learning to coordinate other agents. To solve any of these tasks, the existence of ap-

propriate information that can be communicated to the learning agents is of primary

importance. Since any learning agent may represent its individual knowledge by means of

a formalism that will { in the general case { not to be known to other agents, a common,

agent-independent language must be used for communication during task negotiation, co-

operative task execution, and, especially, learning. More important, the communicating

agents must share a common ontology, i.e., any agent receiving a message must under-

stand it exactly in the way it was meant. Especially during communication between pupil

and teacher, this is a crucial point.

However, when designing such a language we experience the same dilemma that initially

motivated the use of learning: If we have a known, agent-independent "area" that we want



to describe by a language, both syntax and semantics of that language can be de�ned a-

priori. KQML [4] is a good example of such a language that has been designed speci�cally

to facilitate communication in a content-independent manner. If the area or function we

want to describe is not a-priori given or su�ciently complex, a general-purpose language

such as KIF [5] is a reasonable choice. Nevertheless, the problem of "meaning" still exists:

Imagine an agent a joins a team and wants to inform the members of the team that it has a

capability c: If the team members know c; and the new agent and the team share the same

symbol for c; that's no problem. In the general case, however, c may be completely new for

the team, the symbol used by a to describe c may mean nothing (or something di�erent) to

the team, and the symbols used by the team may mean nothing to a; such that it cannot

translate its internal representation appropriately. All these things can happen despite

a common communication language and a common content language. This problem, for

which currently solutions are being sought via tools for creating, accessing, and maintaining

ontologies [3], results therefore in another learning task, the task to learn the meaning

of symbols.

Throughout this paper, we will analyze the learning tasks existing within a Multi-Agent

System with respect to their requirements regarding the communication between the agents

involved. We'll show that understanding each other is of primary importance during learn-

ing, and what understanding really means with respect to a speci�c learning task and

scenario. Finally, we will present an approach to learn the meaning of symbols in a co-

operative way, which exploits "non-verbalizable" knowledge within several agents and the

language-related competence of a knowledgeable agent, should the latter exist. To provide

the formal basis for these investigations, we'll employ state space models, following previous

work by Beer [1] and ourselves [9].

2 Modeling Multi-Agent Systems

2.1 Single agent model

Our model of an agent a is that of a skilled subsystem. A single agent is able to perform

competent actions that are related to its locally (possibly internally) de�ned goal and

facilitate goal-oriented state transitions. More speci�cally, an important component of an

agent a is the agent's strategy Cg

a
with

C
g

a
(x) = u: (1)

C
g

a
(x) determines the goal-oriented action u that the agent executes if it is in state x: To

actually perform such a competent action requires perceptual capabilities (to determine

x), cognitive capabilities (to calculate u), and e�ectual capabilities (to execute or apply

u, respectively). The action itself may be a physical one, such as the motion of a robot,

or some "intellectual" e�ort, such as a request for data or a planning step. Similarly, the

state x may include physically measurable information about the current situation of the

agent with respect to its environment as well as internal, "mental" state variables such as

estimations of the validity of internal models etc.

2.2 Multi-Agent System model

The Multi-Agent System is also a skilled system. Its actions { being compositions of the

actions of all agents in the system { should be competent with respect to a system-wide



goal. Therefore, a Multi-Agent System is modeled by a strategy function

C
G(X) = U ; (2)

where G denotes the current global goal of activity that is being pursued, X is the system's

state and U is the calculated action.
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Figure 1: Example for the de�nition of the system's state vector, action vector,

and task space on the lowest level of abstraction, i.e., by means of local, single

agent related subgoals. Cooperation related subgoals require abstraction.

On the lowest level of abstraction, the state vectorX of a Multi-Agent System is simply the

collection of all state vectors x1; : : : ;xn of all embedded agents a1; : : : ; an: Also, its action

vector U is built from the individual action vectors u1; : : : ;un; such that

X = (x1
T
; : : : ;xn

T )T

and

U = (u1
T
; : : : ;un

T )T ;

respectively. Fig. 1 illustrates this situation for a system (a service robot) consisting of

three agents, an active camera system C; a mobile platform P; and a manipulator M:

However, in the general case a process of abstraction is necessary to maintain modularity

and extendibility and to allow for coordinated actions. Abstraction, however, means to

associate signals (state vectors, action vectors), clusters of signals or sequences of signals to

symbols that have a common meaning for all agents within the system. In other words,

abstraction is a process that is complementary to explanation required for learning the

meaning of symbols, i.e., to explain the meaning of a symbol, we must reverse the process

of abstraction. We'll exploit this duality later.



3 Learning and Communication in Multi-Agent Systems

The purpose of learning in a Multi-Agent System is to enhance the system by extending its

general capabilities or by improving its performance with respect to a particular criterion. In

terms of the Multi-Agent System model (represented via equation (2)), learning comprises

to change an existing function C
G(X) as well as to newly de�ne functions CGn(X) that

enable the system to pursue a new goal Gn: Both tasks include several subtasks, such as

learning in a single agent (isolated learning), learning to act as a team1, building symbols

from signals, and learning the meaning of those symbols.

3.1 Isolated learning

Learning within a single agent a means to alter the action u calculated via C
g

a
(x) = u

from the state vector x or to build a new function C
h

a
(x) = u that enables the agent to

contribute to a subgoal h:

In the �rst case, each learning agent obtains speci�c feedback that can be used to alter its

action u: In the most simple case, the optimal action u� is communicated to the agent, such

that incremental supervised learningmay take place. [15] describes such a situation for

an agent (a robot) that learns directly from user demonstrations. As in adaptive control,

agents may also receive an indication of the direction �u into which to alter their actions,

instead of an optimal action [10]. Another prototypical setting is that of reinforcement

learning, in which the agent receives a possibly delayed reward r as feedback (see, for

example, [13]) and alters its actions in order to maximize the reward. This kind of learning

requires exploration, i.e., the systematic alteration of the calculated action in order to

estimate the optimal action.

In the second case, learning agents must discover that the instruction they get from the

teacher is related to a new subgoal h: Following that, they can build a function C
h

a
from

these instructions. This setting is typical for transferring skills from one agent (e.g., a

human) to another (e.g., a robot) [9].

3.1.1 Communication issues in isolated learning

In the isolated learning case, a single agent (the instructed agent or the "pupil") receives

feedback from another agent. This agent may be an arti�cial one (a softbot), or a human

supervisor. If learning takes place in a supervised manner, such that the given feedback

consists of an optimal action or a quantitative indication of the error made by the agent,

either

� the teacher must know the action space of the instructed agent and formulate the

advice appropriately,

or

� the instructed agent must be able to map the teacher's advice onto its own action

space.

1It should be noted that we use the term "learning to act as a team" instead of "team learning," in order

to distinguish the "team learning" scenario (multiple agents trying to learn the same concept/language, as
in [8]) from the situation considered here.



Both requirements are not trivial, especially if agents should learn from other agents that

are not structurally identical.

For learning on the basis of a scalar reward, the situation is very similar. Either

� the teacher must know the range of possible rewards used by the instructed agent

(i.e., what is the "good" and "bad" in terms of the pupil),

or

� the instructed agent must know the mapping between the teacher's reward and its

own range of rewards (what does the teacher mean by "good" and "bad").

In all cases, teacher or pupil must initiate the learning process. An important requirement

is also that the teacher knows the limits of the instructed agent, since it makes no sense to

try to teach an agent to go beyond its maximum capabilities (e.g., to try to position a robot

with a higher precision than it is capable of). To enable the teacher to take care of this

aspect requires the teacher to query these limits from an agent and to correctly interpret

the agent's answer. Similarly, the instructed agent must understand the teacher's request

and relate its capabilities properly to the task speci�ed by the teacher. Summarizing, the

following communication-related activities are parts of an isolated learning task:

1. Initiation of the learning process (activation of the pupil's "learning engine"), in-

cluding communication of the learning context (the agent-related subgoal g or a new

subgoal h) to the pupil.

2. Request a description of the pupil's limitations with respect to the current learning

task.

3. Communication of the pupil's limitations to the teacher.

4. Communication of a target value (u�;�u; r) from the teacher to the pupil.

5. If the teacher requires a model of the pupil, communication of information about

success/failure of the learning process from the pupil to the teacher.

3.2 Learning to act as a team

While learning to act as a team, the feedback available for learning is not related to the

performance of a single agent but to that of a team of agents. I.e., learning aims at improving

the performance of a team with respect to a common criterion. As in the isolated case, the

setting that is easiest to handle is that of incremental supervised learning. Here, a

teacher provides the optimal action that the team should take in each state. If team states

and team actions can be directly mapped onto single agent states and actions, this scenario

is equivalent to the one described in section 3.1, if also the function C
g

a
(x;u) (the relevant

subgoal) to be adapted is known for every single agent a: This is the case if we assume that

task negotiation and agent coordination (the association of ga1 ; : : : ; gan to agents a1; : : : ; an)

have been done properly, i.e., based on symbols that correctly describe agent capabilities

and constraints related to agent cooperation. As in the single agent case, agents ai may also

receive instructions to learn new functions Chi
ai
(x) that are related to individual subgoals

hi or functions C
h

ai
(x) related to team-speci�c subgoals h:

If only a scalar evaluation of the team's performance is available, the problem of credit

assignment becomes evident. In contrast to isolated learning, which may incorporate the
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Figure 2: Reduction of a task of learning to act as a team to isolated learning

tasks in both the supervised learning and the reinforcement learning scenario.

task of temporal credit assignment, i.e., the determination of those actions that are

responsible for a delayed reward, learning to act as a team from feedback also involves a

structural credit assignment problem. For each agent being a member of the team, its

contribution (positive or negative) to the obtained reward must be determined. If agents

are conscious about the performance of other members of the team, this process can be

supported by requesting team members to provide individual evaluations.

Once credit assignment has taken place and subgoals gaj (or hj or h; respectively) are known

for any of the team members, team learning is reduced to several parallel steps of isolated

learning (see Fig. 2 and, for example, [18]). It should, however, be noted that in some cases

additional constraints are to be observed, since a single agent's environment (and, possibly,

its target function) is continuously changing [16].

3.2.1 Communication issues in learning to act as a team

When learning to act as a team, the teacher instructs or evaluates a group of agents that

cooperate towards a common goal g: Here, the same communication requirements as in

the isolated learning case exist (see section 3.1.1). In addition, an agent a must be able

to identify which strategy C
g

a
should be subject to the taught changes. To facilitate this

identi�cation step, either

� the teacher is able to de�ne an appropriate subgoal gi for each agent ai in the team



or

� all instructed agents ai are able to determine their respective subgoal gi from the

team-related goal g:

Consequently, agents must share a common terminology { symbols that describe team

states, state-space trajectories, team actions, etc. Then, learning to act as a team comprises

the following activities related to communication:

1. Negotiation for credit assignment (if supported).

2. Isolated learning for all team members.

3. If the teacher requires a model of the team, communication of information about

success/failure of the learning process from each team member to the teacher.

3.3 Learning to communicate

The usefulness of communication depends on the ability of the communicating entities to

understand each other. This is especially true for the communication between teacher

and pupil, since the pupil performs self-modi�cations based on its understanding of the

information obtained from the teacher.

In a Multi-Agent System, also an agent that coordinates a team of agents as well as agents

cooperating in a team must be able to understand their respective counterparts { indepen-

dent on the coordination/negotiation technique (see [19, 12] for examples) that is actually

used. They must be able to understand what they are expected to do (or how they could

contribute), and must be prepared to formulate their requests in an understandable manner.

x11

x1n

xk1

xkn

Symbols

Abstraction Explanation

Figure 3: Duality of abstraction and explanation.

To understand the meaning of symbols used for communication, these symbols must be

grounded on the representation primitives of each agent { its state and its action vector

[14, 7]. Such symbols can be general, such that they describe phenomena that can only be

observed within a team or on the system level and are only partially understandable for

most individual agents. They may also be speci�c, such that they represent, for example,

a capability of a single agent. In both cases, however, a symbol is only useful if it is

understood by at least two agents, such that it can be used for coummunication purposes.

Consequently, it is not su�cient to provide means for building symbols (via abstraction),

it must also be possible to explain the meaning of symbols to agents (Fig. 3).



3.4 Abstraction: From signals to symbols

Learning to map signals onto symbols adds a new dimension to the relationship between

teacher and instructed agent. A new symbol a�ects all agents within the Multi-Agent

System, since it requires possibly all of them to extend their vocabulary. The targeted

construction and invention of a new symbol is an extremely di�cult task, and the individual

problems discussed in the following are in general not yet solved.

Nevertheless, we can identify three situations that require to build a new symbol:

1. The activities of an agent or a team of agents yield a system state (or state-space

trajectory) that is considered to be characteristic or useful, i.e., that represents a

subgoal.

2. For specifying a task, a new subgoal (to be pursued by a single agent or a team) must

be de�ned that is not yet represented by a symbol.

3. An agent or a team develops a new capability (or a new agent with a new capability

joins the Multi-Agent System) that is useful to know and to use when specifying and

negotiating about tasks.

Whenever such a situation occurs (this can possibly only be detected by a knowledgeable

agent, such as a human user), the symbol to be de�ned will be grounded on the current

state (or state-space trajectory) of the system, the respective team, or the respective agent.

In this sense, the symbol represents a concept that is to be learned in a supervised manner,

for example by methods such as those described in [6, 11].

In addition, the Multi-Agent System's task space must be extended by the new subgoal.

Task-specifying external agents and the Multi-Agent System itself must incorporate the new

symbol into their task-description language. To explain the meaning of the new symbol

to those agents that did not participate in the grounding process, this symbol must be

translated to those agents, as described in the next section.

3.5 Explaining the meaning of symbols

The communication activities related to the task of symbol learning di�er signi�cantly from

those occurring within other learning tasks. This is due to the fact that { following the

creation of a new symbol { we can't simply use that symbol for self-explanation. Instead,

we must explain what it means, i.e., we must circumscribe its meaning in already well-

established terms.

To perform this task, two possibilities exist. First, we may be lucky and �nd an agent

within the Multi-Agent System that understands both the symbol to be explained and

the language of the agent that needs explanation. For example, a human supervisor will

almost certainly be such a knowledgeable agent that may explain the meaning of the newly

generated symbol to the learning agent, e.g., via direct implementation.

Second, it might be possible to choose another communication channel di�erent from the

verbal/textual one to explain the symbol. In analogy to humans, this channel may be

something like the gestural-visual one. The meaning of a symbol is explained by demon-

stration, i.e., by performing the actions or establishing the state (or state-space trajectory)

that is represented by the symbol. Since there are agents on whose states, state-space tra-

jectories, or actions the symbol has initially been de�ned, these agents can literally show



what the symbol means, while the agent needing explanation observers and analyzes this

demonstration.

In principle, this mechanism works in two directions: Agents within a Multi-Agent System

can perform actions that are observed by an agent that has just joined the system, in order

to explain the meaning of symbols used for communication to that agent. Also, a new agent

can demonstrate the meaning of its own symbols to the members of a team or a Multi-Agent

System, in order to make himself understandable to those.

Obviously, observing other agents' actions and matching the observations against one's

internal representations is not a trivial task. However, many techniques developed within

the framework of Programming by Demonstration [2] may prove useful to support it. After

all, the idea to explain the meaning of symbols ("words") in a non-verbal manner is applied

very successfully in everyday human communication.

4 Summary and Conclusion

Throughout this paper, the individual learning tasks existing within Multi-Agent Systems

have been analyzed with respect to their requirements regarding the communication between

teacher and instructed agent(s). To support this analysis, a framework based on system

theory and state-space models has been employed.

Learning requires communication and depends crucially on a mutual understanding between

teacher and instructed agent. Within the developed framework,

1. the need for an ontology that is common to the teacher and the instructed agent, and

2. the need to extend this ontology in case agents or teams of agents develop new capabil-

ities, in case additional agents join the Multi-Agent System, and for the speci�cation

of and negotiation about tasks unknown so far,

have been made explicit. The necessity to explain newly generated symbols to agents

has been identi�ed, and a proposal to realize such explanation via "demonstration and

observation" has been presented.

As a conclusion, we have seen that communication and the generation of symbols for com-

munication are key components of learning, and, especially, of learning in Multi-Agent

Systems. To develop communication mechanisms that meet the requirements de�ned by

learning agents is a challenging task. However, its solution is mandatory to develop a general

understanding of and a general framework for learning in Multi-Agent Systems.
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