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Abstract 

Embodied theories of cognition propose that symbol 
systems are analogue (e.g. Barsalou, 1999; Glenberg, 
1997), as opposed to the classicist view that they are 
amodal e.g. Newell and Simon (1976), Fodor (1998).  
The fundamental problem of symbol grounding (Harnad, 
1990) is resolved in embodied theories by admitting only 
theories of symbolic representation that are grounded in 
the perceptual system’s representation (rather than by 
reference or mapping of amodal symbols through the 
sensory systems of the agent).  These are often called 
analogical representations (Mandler, 1998).  Barsalou’s 
(1999) proposal for perceptual symbol systems (PSS) 
provides just such a framework for how analogue 
symbols might come into being, but remains agnostic on 
the implementation of these PSSs.  In this paper, we 
advance an implementation of PSSs which might fill this 
explanatory gap.  We provide descriptions, an 
implementation and results from a model and its 
consequences for Barsalou’s theory and embodied 
representations generally.  We constrain our model to the 
visual modality, but without loss of generality.  
 

1. Introduction 
Embodiment theories generally speculate on the 

overall architecture of cognition (e.g. Clark, 1998; 
Glenberg, 1997; van Gelder and Port, 1995).  Barsalou’s 
(1999) theory moves such theories forward by providing 
details of how cognitive agents might function with 
perceptual symbol systems (PSSs).  In this paper we 
propose a mechanism for how an agent’s neural 
machinery might implement elements of a PSS.  Before 
continuing, we briefly reprise the relevant parts of 
Barsalou’s theory. 

A symbol acts as a proximal representation of some 
distal object for cognitive activities directed towards 
that object (especially in its absence).  The classical 
view (Fodor, 1998; Newell, 1990, Newell and Simon, 
1976) holds that sensory transduction and perception 
yield a percept which is then transformed into a 
discrete, amodal symbol – say the token “CAR”  for the 
percept of a car.  By amodal, it is meant that the symbol 
or token “CAR”  bears no systematic morphological 
relationship to the percept of a car (that is, the integrated 
multimodal perceptual experience of a car).  The 

relationship between the symbol (“CAR”) and its 
reference to the natural kind and specific instances (e.g. 
cars) is the symbol grounding problem (Harnad, 1990).  
In contrast, Barsalou’s (1999) theory of perceptual 
symbol systems proposes that analogical symbols are 
those where the representation (i.e. the token) is 
identified with the perceptual information.  There is a 
systematic, mechanical transformation from the distal 
object’s impression on the sensory surfaces to an 
internal code (see also, Dretske, 1995).  Specifically, 
Barsalou proposes that: 
• perceptual symbols are not recordings, but specific 

combinations of relevant neural activities induced 
by current perceptual state -- to include not only 
visual but all aspects of perceptual experience 
(Barsalou, 1999; pp 584).  

• perceptual symbols extracted for entities (cars) or 
events (the driving of a car) are collected together 
in a frame - a structure consisting of many 
perceptual symbols for the “car”  category as it has 
been experienced in the past 

• a simulation is a productive combination of 
perceptual symbols where a perceptual symbol and 
its frame relationships are brought into play to 
produce a potentially infinite set of “concepts”  
(where a simulation is identified with a concept). 

 
Essentially, PSSs, frames and simulations are 

abstractions on how experience comes to be a memory 
and the related structures which appear to support 
inferences, categories, the support of concepts and so 
on. 

2. Requirements 
To proceed, then, we must specify the essential 
characteristics of a perceptual symbol system’s 
implementation.  We will focus on the visual aspect of 
PSSs.  First, an implementation must capture the 
relevant and salient neural recoding of the sensory 
information (recall that not everything is captured at any 
one time in a perceptual symbol).  Second, objects (and 
therefore, events involving objects) rarely exist in 
temporal isolation and as such, capturing the neural 
coding must respect the temporal properties of the 
object (e.g. a symbol is not a static “snapshot”  of a 



modality).  Third, an implementation must provide for 
categorical representation, e.g. there should be some 
information in the perceptual symbol that helps it serve 
as a category exemplar (not necessarily a prototype, but 
an example of some category).  We propose these as at 
least necessary for the implementation of a perceptual 
symbol system.  We do not claim the following model 
to be a complete instantiation of Barsalou’s theory, but 
a plausible mechanism for its foundation. 

 
3. Example Application 

The network processes labelled video sequences, such 
as the one shown in  Figure 1 (the system is trained on 
many videos). As a suitable (and plausible) input 
representation, we propose a “what+where”  code (see 
also Edelman, 2002); that is, the input consists of an 
array of some 9x12 activations (representing 
retinotopically organised and isotropic receptive fields) 
where each activation records some visual stimulus in 
that area of the visual field.  In addition to the “ field”  
representation, we augment a distributed object identity 
code.  These codes were produced by an object 
representation system (Joyce, Richards, Cangelosi, 
Coventry, 2002; based on Edelman’s (1999) theory) 
using the same videos.  In Figure 2, we show such a 
coding for the liquid in the video of  Figure 1.  The 
distributed object code (bottom left of Figure 2) is 
appended to each input field.  
 

4. Connectionist M odel 
Our model consists of a predictive, time-delay 

connectionist network similar to Elman’s (1990) simple 
recurrent network (SRN), which we refer to hereafter as 
the Connectionist Perceptual Symbol System Network 
(CPSSN).  Figure 3 shows the CPSSN network as an 
Elman SRN, but “ folded”  about the hidden layer.  So, 
there will be some sequence of neural representations 
(as described above).  The CPSSN is given one set of 
activations as input which feedforward to the hidden 
units.  In addition, the previous state of the hidden units 
is fed to the hidden units simultaneously (to provide a 
temporal context viz. Elman’s (1990) SRN model).  The 
hidden units feedforward producing an output which is 
a prediction of the next sequence item. Then, using the 
actual next sequence item, back propagation is used to 
modify weights (see Figure 3) to account for the error.  
The actual next sequence item is then used as the new 
input to predict the subsequent item and so on. Using 
the coding scheme discussed, we have a total input 
vector of length 116 (where 8 of these 116 elements 
code for each object, e.g. liquid, bowl, cup etc.).  The 
output is similarly dimensioned, and there were 10 
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Figure 2 - Example Field Coding for Video (Sequence is presented from top left to bottom right; the reproduced object code is 
shown in the bottom left, alongside the key showing activation levels.  Note that activation of a node is represented at the intersection of the 

ordinate and abscissa lines) 

 

 Figure 1 - Example video 



hidden units (and 10 corresponding time-delayed hidden 
state nodes).   

The network training regime was as follows: a 
collection of sequences are shown to the network in 
random order (but of course, the inputs within a 
sequence are presented one after another).  Each 
sequence contains a field and object code for the 
“ liquid”  in the videos.  Multiple CPSSN networks 
would be required to account for the other objects in the 
scenes.  A root-mean-square error measure is used to 
monitor the network’s performance, and the ordering of 
sequences is changed each time (to prevent destructive 
interference between the storage of each sequence).  
Initially, the network is trained with a learning rate of 
0.25, and after the RMS error stabilises, this is reduced 
to 0.05 to allow finer modifications to weights.  For 6 
sequences, a total of about 150 presentations are 
required (each sequence is therefore presented 25 times) 
to reduce RMS averaged over the whole training set 
from around 35 to around 0.4.   

 
5. Results 

It is quite obvious that this network is hetero-associating 
successive steps in the sequence of fields, but in 
addition, the network is performing compression and 
redundancy reduction (in the hidden layer) as well as 
utilising the state information in the time-delayed state 
nodes.  It is also coding for the changes between 
sequence items (e.g. the dynamics of how the object 

moves over time) rather than coding individual 
sequence items (which would be auto-association).  The 
model embodies the idea that representation is 
inherently dynamic.  The network should, naturally, be 
able to make a prediction about a sequence given any 
item in the sequence.  Intuitively, the network should be 
capable of this in the case where a cue is the first item 
of a sequence, since the time-delayed state is irrelevant 
(i.e. there can be no temporal context accumulated in 
the time-delay nodes).   
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Figure 4 - Sequence Recalled by CPSSN (Sequence reproduced by the network top-left to bottom-right; the reproduced object 
code is shown in the bottom left, alongside the key showing activation levels.  Note that activation of a node is represented at the intersection 

of the ordinate and abscissa lines) 
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Figure 3 - Schematic of CPSSN Model 
 



However, we propose that the network is a 
mechanism for implementing perceptual symbols, and 
therefore, a requirement is that it can “replay”  the 
properties of the visual episode that was learned.  Given 
a cue, the network should produce a prediction, which 
can be fed-back as the next input to produce a sequence 
of “auto-generated”  predictions about a sequence (viz, a 
perceptual symbol).  Figure 4 shows the result of such a 
test.  As can be seen, for the video shown in  Figure 1, 
the movement of the liquid is reproduced with 
considerable accuracy (compare with the actual training 
sequence in Figure 2). 

However, there are cases in the training data where 
there is ambiguity that can only be resolved as the 
sequence evolves and the hidden node states accumulate 
evidence (that is, as the network produces a number of 
subsequent, auto-generated steps in the sequence).  
Figure 5 shows the result of auto-generation when, from 
a cue early in the sequence, there is ambiguity about 
which sequence to generate.  The top row shows the 
final step of 4 of the sequences used in training.  They 
have different outcomes (the liquid “splashes”  or enters 
and is contained by the cup) or geometric arrangements, 
but initially, the flow of liquid will be quite similar.  
The network reflects this uncertainty (t=3, bottom row) 
and eventually produces a final activation state which 
more closely resembles the target. 

Examining the evolution of the hidden state reveals 
an interesting (and useful) property.   Again, the auto-
generation from first sequence item paradigm was used, 
and the final hidden-node activation vectors recorded (4 
in total, one for each case shown in the top row of 
Figure 5).  16 pairwise distances were computed, and 
the resulting matrix of similarities submitted to multi-
dimensional scaling, resulting in the 2D projections 
shown in Figure 6.   Notice the linear separability (cf. 

more complex piecewise discriminants) based on two 
different categorical features; outcome of the sequence 
(corresponding to liquid splashes or is contained) and 
the direction of flow.  This suggests that categorical 
information summarising the event/episode is readily 
available in the CPSSN (allowing for further recoding 
for specific cognitive or motoric tasks). 

 

 

6. Conclusion 
It is proposed that the CPSSN model presented captures 
some of the properties of PSSs.  With respect to the 
criteria from Section 2: 
• it captures the relevant and salient neural 

recoding of the sensory information – the input 
representation captures only relevant neural coding 
filtered by selective attention (i.e. only the liquid 
object is processed for the events described; see 
section 3) 

• the neural coding must respect the temporal 
proper ties of the object or  event – in fact, in 
CPSSN, perceptual symbols are only coded for 
with respect to the time-evolving dynamics of the 
visual input.  The network can reproduce these 
(with some uncertainty in ambiguous cases) from a 
cue (so called auto-generation of the sequence) akin 
to the properties of Barsalou’s (1999) simulations.  
Our model is also congruent with a dynamical 
systems theory of embodiment (e.g. van Gelder and 
Port, 1995; Clark, 1998).  The hidden state 
activations are a context-sensitive representation of 
the evolving state of the final categorical 
information as a simulation (e.g. auto-generation 
from a cue) proceeds.   
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Figure 5 - Sequence Generation with Ambiguity (Same legend as for Figure 4.  Top row: the final steps in four videos used in 

network training for which ambiguity might arise in the early steps of the sequence.  Thick black box indicates the video that was used to cue 
auto-generation shown in the bottom row.  Bottom row: last four sequence steps auto-generated by the network.  The thick black corresponds 
to the final state as indicated in the top row.  As for Figure 4, only the first step in the sequence was given; the remaining steps are auto-
generated) 



• an implementation must provide for  categor ical 
representation – as described above, the system’s 
evolving, cumulative hidden-node state information 
results in a categorical representation, grounded in 
the representation (perceptual symbol) and 
dynamics (the replaying of a sequence from cue) of 
what was experienced.  As Figure 6 shows, a 
discriminant can be induced that might be relevant 
for further cognitive processing e.g. inferencing – 
see Barsalou (1999). 

6.1 - Implications for  Representation 
If Barsalou’s PSS theory of embodied representation is 
implemented in the kinds of computational paradigms 
we have presented, there are implications for 
representational kinds; for example, whether space, time 
or dynamics (e.g. causal effects of forces playing out 
over time) are the core representational kind upon 
which others are parasitic e.g. Lakoff and Johnson 
(1999). Mandler (1998) also suggests that analogical 
symbols (as we propose the CPSSN model for) hold 
principle position in the developmental debate: “ there 
need be no propositional representation until language 
is learned; before that time, infants can use their ability 
to simplify perceptual input, including objects 
participating in events, to form analog sketches of what 
they perceive. These sketches (image-schemas) provide 
the first meanings that the mind forms”  pp. 264.   
Additionally, Freyd and Finke (1984) defined the term 
representational momentum (RM) to describe the 
tendency for memory to be distorted in the direction of 
an implied transformation (another argument for 
analogical symbol kinds).  The CPSSN mechanism only 
codes for changes between sequence items.  If such a 
mechanism underpins perception (and it is intuitive that 
it might, since the ability to predict and anticipate 
motion confers a survival advantage – see Hubbard 
(1998) for discussion), then the kinds of RM effects 
discovered may be explicable in terms of the CPSSN 
implementation of PSSs.  Such a hypothesis has been 
recently advanced by Amorim et al. (2000) in 
magnetoencephalography brain imaging studies of RM: 
“… we hypothesize that RM is a further processing 
stage that builds on structures devoted to visual motion 
perception and imagination (mental rotation)”  (pp. 578) 
cf. “replaying”  / simulation of events involving 
perceptual symbols.  Futterweit and Beilin (1994) 
repeated the Freyd study with adults and children, and 
also found a forward-transformation effect, but only 
when the photographic images suggested motion.  A 
CPSSN network trained on images showing no motion 
would likewise not produce a forward-transformation, 
whereas for motion, it would.   

6.2 - Implications for  Barsalou’s Theory 
We propose that CPSSN captures some fundamental 
aspects of how PSSs might be implemented.  While we 
do not claim that they implement all of Barsalou’s 
proposals, we believe it may provide a foundation.  
Implications for PSS theory as Barsalou proposes are in 
how Barsalou views compositionality.  In connectionist 
models, compositionality is of the superpositional, 
rather than the classical componential kind (van Gelder, 
1990).  Barsalou appears to favour classical 
compositionality in his structural descriptions of frames 
(e.g. he use role-attribute binding of the kind found in 
prepositional theories).  We suggest that this may not be 
plausible, given the way PSSs are likely to be 
instantiated.   

 
6.3 – Future Work 
We propose that future work should explore more 
detailed neuroscientific grounding of such a model.  
While we consider the kinds of recurrency used here as 
“ in paradigm”  with current computational theorising in 
the cognitive neurosciences, more explicit work is 
required to ground such a model in recent findings.  In 
parallel, we propose exploration of the ability of such a 
model to accurately replicate experimental findings 
such as Freyd’s RM effects would contribute to the 
ongoing theoretical debate on the ontology of 
representational kinds e.g. Mandler (1998).   
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