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Abstract

In this paper we present our work on developing a shared repertoire of action categories through imitation.
A population of robotic agents invents and shares a repertoire of action categories by engaging in imitative
interactions. We present an experimental set-up which enables us to investigate what properties agents should
have in order to achieve this. Among these properties are: being able to determine the other’s actions from
visual observation and doing incremental unsupervised categorisation of actions.

1 Introduction

Most of the work that has been published on imitation in
robots focuses on the learning of action categories in a
teacher - student context (Vogt, 2000; Billard and Hayes,
1997; Alissandrakis et al., 2002) . In such a set-up one
agent acting as teacher already has action categories. By
observing the teacher who is executing actions, the ac-
tion categories can be passed on to the student: by imi-
tating the teacher’s action using for instance inverse kine-
matics and evaluating that action, the learner can know
whether he correctly reconstructed the observed action.
However, such a set-up does not explain how action ca-
tegories emerge. How does the teacher acquire its ca-
tegories when they are not preprogrammed by a human
operator?

We propose a set-up in which new action categories
can emerge when imitation of actions fails. This is done
in a population of agents engaging in imitative interac-
tions, called imitation games. Action categories are only
learned if they can be successfully imitated. If an action
is hard to observe or to imitate, it will not be learned by
other agents. The experiments are conducted both in si-
mulation and on real robots, however results presented in
this article were only obtained in simulation. Our con-
cept of imitation games strongly resembles the concept
of imitation games used in (de Boer, 2000) in the context
of vowel systems. The imitation game presented in this
paper is work in progress.

In section two, our experimental set-up is proposed.
Section three presents the actual imitation game, section
four proposes objective measures for determining how
successful the imitation game is and results are presented
in section six. Future work is discussed in section seven.

Figure 1: The experimental set-up, consisting of a stereo
head and a robot arm.

2 Experimental set-up

An agent consists of a stereo camera head and a robot arm,
see figure 1. With the arm it can make different kinds of
gestures which it can observe through a vision system.
Gestures are restricted to motion trajectories from one
point to another. Gestures do not involve manipulations
of other objects and do not carry any meaning, yet.

Using this set-up, we are investigating how a repertoire
of grounded action categories can emerge. For investi-
gating how this repertoire can be shared through a po-
pulation of agents, we use several agents which interact.
However, at this stage of the project we do not have mul-
tiple physical installations. One robot arm and one vision
system are used by all agents of the population. Agents
take turns in using the arm and stereo head1.

1A solution also used in a previous experiment investigating the
emergence of word-meaning lexicons on embodied agents (Steels and
Kaplan, 1999).



2.1 The robot arm

We use a readily available commercial robot arm, called
Teach-robot2. It has six degrees of freedom and is
equipped with a gripper. The forward and inverse kine-
matics are known (De Vylder, 2002). The robot arm is
position-driven: one can send goal motor positions to it
and query its current position but one cannot control the
velocity of the movement nor query the robot while it is
moving. At the moment the gestures the robot makes are
only interpreted on the basis of the gripper’s trajectory.
No attention is paid to movements of other joints. The
gripper is clearly marked with a bright colour to facilitate
image processing.

2.2 The vision system

The observation of an action results in a series of gripper
coordinates. These three dimensional time series will be
categorised during the imitation game. The vision sys-
tem focuses on finding the 3D gripper coordinates in the
captured images. We use a MEGA-D stereo head for ac-
quiring both left and right images and the Small Vision
System (SVS) from Konolige 3 for obtaining a depth map.
Using colour templates, the left image is segmented into
gripper and non-gripper regions, the right image is left un-
processed. Using simple tracking mechanisms, the most
probable gripper regions are extracted. From the gripper
segment, a set of features is extracted, such as colour and
size. From all gripper pixels in the left image, the 3D co-
ordinates are obtained using the SVS. Finally, the position
of the gripper is defined as the average of all coordinates
obtained. If the stereo matching in the SVS fails, the right
image is segmented as well. The centre of the left image
gripper region and the centre of the right image gripper
region are then assumed to correspond. Using this corre-
spondence, the 3D coordinates of the gripper can be ap-
proximated. The entire process is repeated approximately
25 times per second. We assume an agent knows when it
needs to start and stop observing its own actions and we
explicitly tell the agent when it needs to observe another
agent which is executing an action. In principle, the sec-
ond agent could determine on its own when a new action
begins, for instance by splitting sequences at the frames
in which no change is observed.

Using the methods described above, the observation of
an action results in a sequence of 3D coordinates repre-
senting the position of the gripper at different time steps
during execution of an action. There is no restriction on
the length of such sequences. As conditions of our exper-
imental set-up are not tightly controlled, the calculated
gripper positions are not accurate and subject to large
amounts of noise, caused by changing light conditions,
people passing by or the presence of other disturbing fac-
tors. Filtering could improve the quality of the time series.

2Microelectronic Kalms, http://www.teach-robot.de/
3http://www.ai.sri.com/konolige/svs/Papers
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Figure 2: The motor space, action space and observation
space and their relations

2.3 The agent architecture

An action category is a tuple containing an action and
an observation. The action is a sequence of 3D points,
consisting of consecutive target coordinates of the grip-
per. In our experiments, we use only two points, i.e. a
start point and an end point. The action executed by the
robot is the movement of the gripper from start point to
end point. The target coordinates are defined in an action
space, defined by the coordinate system of the robot arm.
The different spaces and the mappings between them are
shown in figure 2. The robot arm is position driven, mean-
ing that for each of the six motors, a target position needs
to be specified. So, the robot is controlled by sending
it 6-tuples of target positions, called motor commands.
The motor commands define a motor space. The map-
ping from action space to motor space (1) is defined by
the inverse kinematics which is assumed to be known to
the agents. Note that action categories contain actions de-
fined in the action space and not motor commands. Both
approaches are equivalent, but it is easier to define actions
in the action space, as the Euclidean distance holds in the
action space.

Using its vision system, the robot observes the execu-
tion of actions as sequences of 3D gripper coordinates,
called observations. The gripper coordinates are defined
in the camera coordinate system, defining an observation
space. There is a mapping from points in the observa-
tion space to points in the action space (2), defined by a
ca-libration matrix which is known to the agents. Note
that there is also a direct mapping from motor space to
observation space (3). This mapping does not need not
to be preprogrammed, as the agent can execute a mo-
tor command and observe the result of its own execu-
tion. The agent can obtain the inverse mappings of (1),(2)
and (3) by concatenating its known mappings. Using the
mappings explained above, an agent can always know
which observation corresponds to a given action, by using
inverse kinematics and executing the appropriate motor
commands. In the pseudo-code used in this document,
this synthesis step is called S. From an observation, the
corresponding action can be derived by the agent using



the calibration. This step is called ��� ��� in the pseudo-
code. It is our goal to show that action categories can even
be learnt without inverse kinematics being known to the
agents and without inverse kinematics. At the beginning
of the imitation games, all agents start empty, they have
no preprogrammed action categories. During the imita-
tion games, agents learn action categories for the actions
they observe. Those learnt action categories are stored in
an action category memory.

3 Building a repertoire of basic ac-
tion categories

The goal of the imitation game presented in this section is
to develop a shared repertoire of action categories. As we
do not investigate how imitation itself could emerge, we
assume that all agents have the same learning mechanism
and engage in preprogrammed imitation games.

The imitation game is a simple interaction between two
agents comprising three essential elements of imitation:
(1) the observation of an action, (2) the classification of
the observed action and (3) the imitation of the observed
action.

How an agent observes actions was described in section
two. The observation results in a time series of 3D points.
In the memory of action categories, the agent finds the
action category with an associated observation closest to
the new observation. This action category is the represen-
tation of the observed action. Imitation is performed by
executing the action associated with the recognized action
category.

For finding the action category with an associated ob-
servation closest to the observation just made, the agent
needs a method to evaluate the distance between obser-
vations. We use Dynamic Time Warping (DTW)(Myers
and Rabiner, 1981) as distance metric on observations of
actions. DTW was for instance used in (Corradini, 2001).

Figure 3: The imitation game. In this example it fails, as
the imitation is categorised as a ��	��
 instead of a.

For every game two agents are randomly selected from
the population. One agent will take the role of initiator,
the other agent will be the imitator. Both agents use the

vision system and the manipulator. In figure 3 the ob-
servation space for both the initiator and the imitator is
depicted. The larger dots indicate the observations asso-
ciated with the action categories, the small dots indicate
the actual observations. The game starts when the initia-
tor selects a random action category a from its memory.
If its memory is still empty, a random action category is
first added. The initiator executes the action that is asso-
ciated with the action category a. The imitator observes
this action and calls its observation �� . Then it tries to
categorise the observation �� . If it finds a category, this
category will be called � �	��
 . If the imitator has no cate-
gories yet, a new category � �	��
 is added for the observa-
tion �� . The imitator now executes the action associated
with the category � �	��
 . The initiator observes this action
and calls its observation ��� . The initiator categorizes this
observation and calls the category ����	��
 . If the initial ca-
tegory and the category of the imitated action are equal
( ��������	��
 ), then the initiator decides that the game suc-
ceeds, otherwise it fails. The initiator sends non-verbal
feedback about the outcome of the game to the imitator.
If the game succeeded, the imitator shifts the category
it used closer to the observation �� of the initiators ac-
tion. If the game fails, two different update strategies are
considered. If the success-ratio of the category the imita-
tor used is above a certain threshold (e.g. 0.5), it means
that the action category itself has been successful in the
past. So, the failure in this game is probably caused be-
cause the initiator executed an action the imitator does
not know yet. In this case a new category is constructed
for the observation. If the success-ratio of the category
used is below the threshold, the category itself is prob-
ably not very good. In that case, the category is shifted
towards the observation. As a last step of the game, both
the initiator and the imitator update their repertoire of ac-
tion categories. They remove action categories that have
proven not to be successful in the past and with a small
probability they add new action categories to their reper-
toire. This forces the agents to optimise their growing
repertoire. The general outline of the game can be seen in
figure 4 in pseudo-code.

The addition of a new action category to the action ca-
tegory memory is done by generating a random action.
The new action category consists of this random action
and its observation.

Shifting an action category c towards an observation O
means that the action category c is slightly changed such
that the associated observation � 
 resembles the obser-
vation O more closely. First the action A corresponding
to the observation O and the difference between the ac-
tions A and � 
 are calculated. The action associated to
the shifted action category ��� will be the original action
� 
 added to a small portion of this difference, such that
the actions A and � 
 are now closer to each other. By
executing this shifted action ��� the shifted observation
��� can be obtained.

A new action category for an observation is calculated



model imitator

if A ¹ Æ

a ¬ random from A

a.usage ¬ a.usage + 1

execute S(a.production)

observe O1

if A = Æ

A ¬ new random action

else

arec ¬ action from A such that

arec.observation closest to O1

execute S(arec.production)

observe O2

a
’
rec ¬ action from A such that

a
’
rec.observation closest to O2

if arec = a
’
rec

a.success ¬ a.success + 1

send non-verbal feedback : success

update-feedback(arec, O1, success, A)

else

send non-verbal feedback : failure

update-feedback(arec, O1, failure, A)

do-other-updates()

else A ¬ A È a new random action

do-other-updates()

Figure 4: The outline of the imitation game

using a similar technique. The pseudo code for these dif-
ferent update procedures is given in figure 5.

The result of a single imitation game is that the imitator
adapts its action category memory such that it resembles
the action categories of the initiator more closely. The
imitator continues to adapt until it would perfectly imi-
tate the initiator. However, all agents continuously add
new random action categories, which forces them to keep
on adapting. It is obvious that only a limited number of
action categories can be learnt, as the execution and ob-
servation of action categories are bounded by the range of
the robot arm and as they are both prone to noise.

As all agents engage many times in imitation games—
both in the role of initiator and imitator—action catego-
ries are adapted as long as agents do not successfully im-
itate all actions. The imitation of an action can only be
successful if the initiator’s categorization and the imita-
tor’s categorization of the same action are close to each
other. In the long run, this leads to a repertoire of action
categories, shared by all agents.

4 Measures

In order to evaluate whether a population of agents can
indeed develop a shared repertoire of action categories,
three measures have been defined : Imitative success,
number of categories and category variance. None of
those measures operates on a single agent, they are all
defined over the entire population.

The imitative success is simply the fraction of success-
ful imitation games, averaged per 100 imitation games.
As such, this measure shows how good the agents are ca-
pable of imitating each other and therefore it is a good
measure of the quality of the action categories developed

do-other-updates(A)

" actioncategory Î A do

if actioncategory.success / actioncategory.usage < *throwawaytreshold* and

actioncategory.usage > *minuses*

A ¬ A \ actioncategory

with probability *addprobability* do A ¬ A È newactioncategory

update-feedback(arec,O1,signal,A)

arec.usage ¬ arec.usage + 1

if signal = positive

arec.success ¬ arec.success + 1

shiftcloser(arec,O1)

else

if arec.success / arec.usage > *threshold*

A ¬ A È findaction(O1)

else

shiftcloser(arec, O1)

shiftcloser(a, O)

a.action = a.action + *shifttreshold* x [ Sinv(O) - a.action ]

a.observation = S(a.action)

findaction(O)

a.action = Sinv(O)

a.observation = O

return a

Figure 5: Pseudo-code for the different update procedures

by all agents. However, if all agents only develop a single
action category, imitative success reaches its maximum.
Therefore, the imitative success must be compared to the
number of categories the agents develop on average. Af-
ter every imitation game, the number of categories of all
agents is averaged. Those averages are averaged per 100
imitation games.

Using both the imitative success and the number of
categories as measures, one can investigate whether all
agents are capable of developing a repertoire of action ca-
tegories which is suited for playing successful imitation
games. Although it is easy to understand that successful
imitation is not possible if the agents have very differ-
ent action categories, it must be shown that the categories
are shared throughout the population. Therefore we need
to define how similar the categories of two agents are,
or—in general—how similar two sets of points are in an
N-dimensional space. Note that two agents can develop
a different number of categories, so the sets can contain
different numbers of points. The metric used here is taken
from Belpaeme (2002). The similarity measure of the ca-
tegories of two agents Category Distance (CD) is based
on the weighted sum of minimum distances metric and is
given in equation 1.

����� �����
	 �
�
�������� �� ���� � ������	�� �

� ������ ����� � � ������	 
�
 !" �  (1)

We can now calculate the Category Variance (CV) (see
equation 2) of the population of agents, indicating how
much the categories of all agents deviate from each other.

�$#%� &�'�&)(+* �-,/. '10 	 � 2354 � 476 2 	
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(2)



As opposed to the imitation success and the number
of categories, the category variance is not averaged over
100 games. In order to reduce computation time in the
simulations, it was only calculated every 100 games.

5 Results

The results presented in this section were obtained from
simulation and will be validated using the experimental
set-up described in section 2, however the results pre-
sented here serve as a proof of concept.

In the simulation, all generated action trajectories are
taken within the reachable area of the robot arm. New
action categories were added with a small probability of
0.02. Action categories that were used more than 5 times
but had a success-ratio below 0.7 were removed. Only
categories with a success-ratio below 0.5 can be shifted in
case of a failing imitation game. These parameter settings
are the same as those used in the context of vowel systems
in (de Boer, 2000).
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Figure 6: Imitative success and action categories devel-
oped over 10000 imitation games played by two agents.
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Figure 7: Category variance for the same 10000 imitation
games played by two agents.

In figures 6 the imitative success and the number of ca-
tegories for a population of two agents are shown. The
experiments are averaged over 10 runs. In figure 7 the

category variance is shown for the same 10000 imitation
games. These results show that a shared repertoire of ac-
tion categories can indeed emerge from a population of
two agents.
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Figure 8: Imitative success and action categories devel-
oped over 10000 imitation games played by five agents.
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Figure 9: Category variance for the same 10000 imitation
games played by five agents.

More interesting is that similar results can be obtained
for larger populations, as can be seen in the figures 8 and
9 for a population consisting of five agents. These re-
sults show that agents are capable of transmitting action
categories from one agent to another using imitation. We
have shown that this is possible without the roles of ini-
tiator and imitator being predefined and without prede-
fined action categories. All agents take turns in teaching
and learning, which causes the action categories to spread
into the entire population. Due to the pressure of adding
random action categories and adapting those categories
depending on the outcome of the game, the action catego-
ries can emerge while the agents are interacting. In this
game it is assumed that the agents know the inverse kine-
matics of their robot arm and the relation between the ob-
servation space and action space. In the next section, it
is investigated whether imitatable action categories could
be learnt successfully without those two assumptions.



model imitator

if A ¹ Æ

a ¬ random from A

a.usage ¬ a.usage + 1

execute a.production

observe O1

if A = Æ

A ¬ findaction(O1)

else

arec ¬ action from A such that

arec.observation closest to O1

execute arec.production

observe O2

a
’
rec ¬ actioncategory from A such

that a
’
rec.observation closest to O2

if a = a
’
rec

a.success ¬ a.success + 1

update-feedback(a, a
’
rec, success, A)

else

update-feedback(a, a
’
rec,failure, A)

do-other-updates()

else A ¬ A È random actioncategory

do-other-updates()

Figure 10: Overview of the game in which the initiator is
learning.

do-other-updates(A)

" actioncategory Î A do

if actioncategory.success / actioncategory.usage < *throwawaytreshold* and

actioncategory.usage > *minuses*

A ¬ A \ actioncategory

with probability *addprobability* do A ¬ A È newactioncategory

update-feedback(a, arec, signal, A)

a.usage ¬ a.usage + 1

if signal = positive

a.success ¬ a.success + 1

shiftcloser(a, arec)

else

if a.success / a.usage < *threshold*

shiftcloser(a, arec)

shiftcloser(a, arec)

a.action = a.action + *shifttreshold* x [ a.action - arec.action ]

a.observation = observe execute a.action

Figure 11: Update procedures for the game in which the
initiator is learning.

6 A variation on the imitation game

In the game described in the previous section the imitator
adapts its repertoire of action categories by shifting its ac-
tion categories towards those of the initiators, see figures
4 and 5. This shifting is performed by calculating the ac-
tion that resulted in the actual observation. The action as-
sociated with the action category the imitator used is then
modified to resemble this calculated action more closely.
Finally, a new observation is obtained for the shifted ac-
tion. The shifted action and the shifted observation to-
gether constitute the shifted action category. This opera-
tion requires calibration between action and observation
space (for obtaining the action corresponding to the ob-
servation) and requires inverse kinematics (for executing
the shifted action).

In the modified imitation game we describe here, ac-
tion categories are not shifted towards observations. A
new shift operation is introduced, which shifts an action
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Figure 12: Imitative success and number of categories de-
veloped over 100000 imitation games in which the initia-
tor learns.

category towards another. This means that the shift could
be performed in the action space directly, which elimi-
nates the requirement of calibration between action and
observation space. This works on condition that if an ac-
tion a is closer to an action b than to an action c, the same
relation holds for the associated observations. This is the
case, as the action space and the observation space are re-
lated to each other by a rotation and a translation. Thus,
by introducing a modified shift operation, the calibration
is no longer required. The modified shift operation is not
applicable to the case of the learning imitator in the game
described above, as the imitator can never know the cate-
gory of the action observed by the initiator.

Therefore, a modified game is introduced in which the
initiator and not the imitator adapts its categories. As will
be seen, this enables us to perform the shift operation di-
rectly in the action space. The pseudo-code for this game
is given in figure 6. Again, two agents are randomly se-
lected from a population of agents and start an imitation
game. The initiator randomly selects an action category a
from its repertoire and executes the associated action. The
imitator observes this and categorizes its observation as
� �	��
 . The imitator executes the action associated with this
category. This is observed and categorized by the initiator
as ����	��
 . If the initial action category chosen by the initia-
tor equals the category of the imitated action ( � � � ��	��
 ),
the game succeeds, otherwise it fails. In this game, the
initiator and not the imitator updates its repertoire of ac-
tions, so no feedback about the outcome of the game is
required. In case of success, the initiator shifts the action
category a towards the action category � ��	��
 . In case of
failure, the update depends again on the success-ratio of
the action category a. If a was not successful in the past, a
will be shifted towards ����	��
 . If a was successful, nothing
is done. In the first game, a new action category is created
in that case. This can not be done in this game, because
the newly created category would be equal to � ��	��
 . This
would confuse the agent.

Now one could ask whether it is possible to adapt the
game even further such that no inverse kinematics is re-
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Figure 13: Category variance for the same 100000 imita-
tion games.

quired. It is possible to modify the action space such that
it contains direct motor commands instead of target posi-
tions. In that case, the shift operation must be performed
on the motor space. However, if one motor command a
is closer to a motor command b than to a motor com-
mand c, the same relation is not guaranteed to hold for
the associated observations. So, it is not sure whether this
would work. However, as can be seen in figures 12 and
13, two agents are actually capable of developing a shared
repertoire of action categories playing imitation games.
The initiator uses the imitation of its own action by the
imitator to update its action categories to resemble more
closely to those of the imitator. This game appears not to
work for populations of more than two agents. It needs to
be investigated how this game could be modified in order
to overcome this.

7 Parallel and Future work

In parallel with the work on the experimental set-up, in-
cluding the vision system, and the work on unsupervised
incremental clustering of action categories, we are also
studying batch unsupervised clustering of action cate-
gories. We used DTW as a distance metric in the ob-
servation space. Hierarchical agglomerative clustering
(Everitt, 1993) was used to extract clusters in the agents’
observation space. Both a stop criterion based on the t-
test (Oates et al., 1999) and one based on the Hartman
(Tibshirani et al., 2000) criterion were found to give fairly
good results. This clustering is however not incremental
and the categories developed by each individual agent do
not resemble each other. This means that this method can-
not be used directly and must be adapted before it can be
useful in unsupervised action categorization.

Three important research issues should be addressed in
the near future using the experimental set-up described in
this paper.

1. What are the exact conditions required for imitation
to emerge? As argued in this paper, we believe that

agents can develop shared action categories through
imitation without predefined action categories.

2. How can more complex actions be learned? At the
moment, actions are movements from one coordi-
nate to another. One of the most natural extensions
is that actions are trajectories defined by a sequence
of coordinates. This will lead to more complex ob-
servations, requiring advanced distance metrics and
clustering methods.

3. In the long run, the most challenging research is-
sue is the question on how actions that carry mean-
ing could emerge. We believe this question can be
answered if actions involving object manipulations
could emerge.

8 Conclusion

In this paper we propose an experimental set-up, based
on imitation, suited for conducting experiments on the
exact conditions required for shared action categories to
emerge in a population of real-world agents. We have
shown that these categories can be shared in the popu-
lation without a fixed teacher - student pattern of imi-
tation where the teacher already has fully developed ca-
tegories. Instead, the action categories can emerge and
become shared through multiple imitation games in a po-
pulation of agents where all agents can act as a teacher or
student. The learnt actions can be observed, categorized
and imitated by other agents, which is not guaranteed in
set-ups where a teacher starts with built-in action catego-
ries and transfers those categories to the student(s).

Preliminary simulation results show that using imita-
tion games, shared repertoires of action categories can be
obtained. These repertoires are non-trivial, as they consist
of multiple action categories. They are also very success-
ful: for populations of only two agents imitation success
is always in the 90% range even though noise is present.
In larger populations the imitation success is lower, but
still better than random repertoires would achieve. Imita-
tion games in this setup are based on the imitator of the
imitation game updating its action categories. In this case
calibration, inverse kinematics and non-verbal feedback
are required.

If the population is restricted to only two agents, action
categories can emerge and be shared without the action
space and the observation space are calibrated (1), with-
out feedback between the agents about the outcome of the
game (2) and without the agents have built-in notion of the
inverse kinematics of their manipulator (3).
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