Team Learning of Formal Languages

Sanjay Jain
Dept. of Info. Systems & Computer Science
National University of Singapore
Singapore 0511, Republic of Singapore
sanjayQ@iscs.nus.sg

Abstract

A team of learning machines is a multiset of
learning machines. A team is said to success-
fully learn a concept just in case each member
of some nonempty subset, of predetermined
size, of the team learns the concept.

Team learning of computer programs for
computable functions from their graphs has
been studied extensively. However, team
learning of languages turns out to be a
more suitable theoretical model for studying
computational limits on multi-agent machine
learning. The main reason for this is that
language learning can model both learning
from positive data and learning from positive
and negative data, whereas function learning
models only learning from positive and neg-
ative data.

Some theoretical results about learnability of
formal languages by teams of algorithmic ma-
chines are surveyed. Some new results about
restricted classes of languages are presented.
These results are mainly about two issues: re-
dundancy and aggregation. The issue of re-
dundancy deals with the impact of increasing
the size of a team and increasing the number
of machines required to be successful. The
issue of aggregation deals with conditions un-
der which a team may be replaced by a single
machine without any loss in learning ability.

Scenarios which can be modeled by team
learning are also presented.

1 INTRODUCTION

Algorithmic identification in the limit of two concept
classes, computable functions and recursively enumer-

Arun Sharma
School of Computer Science and Engineering
The University of New South Wales
Sydney, NSW 2052, Australia
arun@cse.unsw.edu.au

able languages, have been studied extensively in the
computational learning theory literature.

We first describe the learning of a computable func-
tion. A learning machine is fed the graph of a com-
putable function, and the machine, from time to time,
conjectures a sequence of computer programs. The
machine is said to learn the function just in case its
conjectures converge to a program for the function.
Recently, learning of functions by teams of learning
machines has become a very active area of research and
has been suggested as a theoretical model for multi-
agent learning (for example, see [17, 16, 7, 4, 3, 12]).

We argue that the utility of function learning as a
model for machine learning is somewhat limited. Data
available to most learning systems are of two kinds:
positive data and complete (both positive and nega-
tive) data. Function learning models only the later.
Since the input to a function learning machine is the
graph of a function, the negative data is implicitly
available to the learning machine. To see this: if the
ordered pair (2,5) is encountered in the graph, then
a learning machine can safely assume that each pair
(2,2), x # 5, does not belong to the function.

However, this problem does not arise in the case of
identification in the limit of recursively enumerable
languages (described in the next section), as both
learning from positive data and complete data can be
modeled. For this reason, we suggest that team learn-
ing of languages is a more suitable model of multi-
agent learning.

In what follows, we proceed formally. In Section 2,
we introduce the preliminary notions about identifica-
tion in the limit of languages by single machines. In
Section 3, we motivate and describe identification of
languages by teams of machines. Section 4 contains
a survey of fundamental results about team learning
of languages. In Section 5, we summarize new results
about team learning of restricted classes of languages.

In Section 6, we describe two hypothetical scenarios
that may be modeled using team learning. Finally, in
an appendix, we sketch one of the proof techniques.

2 LEARNING BY A SINGLE
MACHINE

Let N denote the set of natural numbers, {0,1,2,...}.
As already noted our domain is the collection of re-
cursively enumerable languages over N. A grammar
for a recursively enumerable language L is a computer
program that accepts L (or, equivalently, generates L
[6]). For any recursively enumerable language L, the
elements of L constitute its positive data and the ele-
ments of the complement, N — L, constitute its nega-
tive data. We next describe notions that capture the
presentation of positive data and presentation of both
positive and negative data.

Definition 1 A text for the language L is an infi-
nite sequence (repetitions allowed) consisting of all and
only the elements of L. T denotes a typical variable
for texts.

So, a text for L represents an instance of positive data
presentation for L. The next definition introduces a
notion that represents an instance of both positive and
negative data presentation for L.

Definition 2 An informant for L is an infinite se-
quence (repetitions allowed) of ordered pairs such that
for each n € N either (n,1) or (n,0) (but not both)
appear in the sequence and (n, 1) appears only if n € L
and (n,0) appears only if n ¢ L.

A learning machine may be thought of as an algorith-
mic device that takes as input finite initial sequences
of texts and informants and that from time to time
conjectures computer programs as hypotheses. M de-
notes a typical variable for learning machines. We now
consider what it means for a learning machine to suc-
cessfully learn languages. The criterion of success con-
sidered in the present paper is Gold’s [5] identification
in the limit. We first introduce it for learning from
positive data.

Definition 3 [5]

(a) M TxtEx-identifies an r.e. language L just in case
M, fed any text for L, converges to a grammar for L.
In this case we say that L € TxtEx(M).

(b) M TxtEx-identifies a collection of languages, £,
just in case M TxtEx-identifies each language in L.

(¢) TxtEx denotes all such collections £ of r.e. lan-
guages such that some machine TxtEx-identifies L.

The class TxtEx is a set theoretic summary of the
capability of machines to TxtEx-identify collections of
r.e. languages. Intuitively, if a collection £ € TxtEx,
then there exists a machine that TxtEx-identifies each
language in the collection L.

It is easy to see that any singleton class of languages
is identifiable because a “dumb” machine that ignores
its input and keeps on emitting a grammar for the
only language in the class is successful on that lan-
guage; however, such a machine is unsuccessful on ev-
ery other language. It is precisely for this reason, that
we introduced Part (b) in the above definition because
machines that learn only one language are not very in-
teresting. Also, FIN, the collection of finite languages,
belongs to TxtEx because a machine employing the
heuristic of emitting a grammar for all the elements it
has seen at any given time will suffice because eventu-
ally it will see all the elements in the finite language.

We now define identification from both positive and
negative data.

Definition 4 [5]

(a) M InfEx-identifies an r.e. language L just in case
M, fed any informant for L, converges to a grammar
for L. In this case we say that L € InfEx(M).

(b) M InfEx-identifies a collection of languages, L,
just in case M InfEx-identifies each language in L.

(¢) InfEx denotes all such collections £ of r.e. lan-
guages such that some machine InfEx-identifies L.

3 LEARNING BY A TEAM

A team of learning machines is a multiset! of learn-
ing machines. Before we formally define learning by
a team, it is worth considering the origins of team
learning. Consider the following theorem for TxtEx-
identification.

Theorem 1 [2] There are collections of languages L4
and Ly such that

(a) £; € TxtEx,
(b) Ls € TxtEx, but
(c) (L1 U L) € TxtEx.

The above result?, popularly referred to as the “non-
union theorem,” says that the class TxtEx is not

LA multiset is like a set, but elements need not be dis-
tinct. For example, the cardinality of set {2, 2,3} is 2, but
the cardinality of the multiset {2, 2, 3} is 3.

2Taking £; = {N} and £> = FIN yields a proof be-
cause of Gold’s [5] result that no collection of languages

closed under union. In other words, there are collec-
tions of languages that are identifiable, but the union
of these collections is not identifiable. This result may
be viewed as a fundamental limitation on building a
general purpose device for machine learning, and, to
an extent, justifies the use of heuristic methods in Ar-
tificial Intelligence. However, this result also suggests
a more general criterion of identification in which a
team of learning machines is employed and success of
the team is the success of any member in the team.
We illustrate this idea next.

Consider the collections of languages £1 and L5 in
Theorem 1. Let M; TxtEx-identify £; and M,
TxtEx-identify £2. Now, if we employed a team of
M; and M, to identify £y U £, and weakened the
criterion of success to the requirement that success is
achieved just in case any one member in the team is
successful, then the collection £; U £, becomes identi-
fiable by the team consisting of M; and M under this
new criterion of success. This idea can be extended to
teams of n machines out of which at least m (m < n)
are required to be successful. The formal definitions
for team identification of languages are presented next.
J. Case first suggested the notion of team identifica-
tion for functions based on the non-union theorem of
the Blums [2], and it was extensively investigated by
C. Smith [17]. The general case of m out of n teams
is due to Osherson, Stob, and Wienstein [13]. Jain
and Sharma [8] first investigated team learning for lan-
guages.

Definition 5 Let m,n € N and 0 < m < n.

(a) A team of n machines {M;,Mo,,...,M,}
is said to Team, TxtEx-identify a language L
just in case at least m members in the team
TxtEx-identify L. In this case we write L €
Team, TxtEx({M;,Ms,...,M,}).

(b) A team of n machines {Mj,Ma,..., M.} is said
to Team,' TxtEx-identify a collection of languages £
just in case the team Team) TxtEx-identifies each
language in L.

(c) Team, TxtEx is defined to be the class of sets £
of r.e. languages such that some team of n machines
Team, TxtEx-identifies L.

We can similarly define the class Team, InfEx for
team learning from both positive and negative data.

that contains all the finite languages and an infinite lan-
guage can be identified in the limit from only positive data.

4 RESULTS

We now survey some of the results about team learn-
ing of languages. The results that we present here
are about redundancy and aggregation. We direct the
reader to [8, 10, 9, 11] for additional results.

First, it is easy to see the following proposition.

Proposition 1 Let k,m,n € N such that0 <m <mn
and k > 1.

(a) Team™ TxtEx C Team”"F TxtEx.
(b) Team™ InfEx C Team!"F InfEx.

The above proposition says that for both texts and in-
formants, all the collections of languages that can be
learned by a given team can also be learned if we mul-
tiply the size of the team and the number of machines
required to be successful by the same factor. In other
words, introducing redundancy does not hurt. The
question is: Does it help ? We consider team learning
from informants first, followed by team learning from
texts.

4.1 TEAM LEARNING FROM
INFORMANTS

For identification from both positive and negative
data, introducing redundancy in the team does not
yield any extra learning ability.

Theorem 2 Let k,m,n € N such that 0 < m < n
and k > 1. Then Team”'InfEx = Team!" *InfEx.

The above result says that the collections of languages
that can be identified by teams employing n machines
and requiring at least m to be successful are exactly
the same as those collections which can be identified
by teams employing n - kK machines and requiring at
least m - k to be successful.

We next consider the question of aggregation, that is,
under what conditions can a team be replaced by a
single machine without any loss in learning ability.
Part (a) of the next result says that if a majority of
the members in the team are required to be successful,
then employing a team does not yield any extra learn-
ing ability. Part (b) of the result says that 1 is indeed
the cutoff. In the sequel, we refer to such cutoff points
as aggregation ratios.

Theorem 3 (a) (Vm,n | 2 >)[Team InfEx =
InfEx].

(b) InfEx C Team}InfEx.

A proof of the above result can be worked out using
techniques from Pitt [15].

4.2 TEAM LEARNING FROM TEXTS

Surprisingly, introducing redundancy in the team does
help sometimes in the context of learning from only
positive data. The following result says that there are
collections of languages that can be TxtEx-identified
by teams employing 4 machines and requiring at least
2 to be successful, but cannot be TxtEx-identified by
any team employing 2 machines and requiring at least
1 to be successful. D denotes proper superset.

Theorem 4 Team>TxtEx D Team,TxtEx.

Even more surprising is the next theorem which im-
plies that the collections of languages that can be
TxtEx-identified by teams employing 6 machines and
requiring at least 3 to be successful are exactly the
same as those collections that that can be TxtEx-
identified by teams employing 2 machines and requir-
ing at least 1 to be successful.

Theorem 5

(V9) [Teamij-i;TxtEx = Team} TxtEx].

The complete picture is actually quite complicated.
The status of teams with success ratio % is completely
known, but only partial results are known for other
team ratios (¢,k > 2); we direct the reader to [9].

The next result sheds light on when a team learning
languages from texts can be aggregated into a single
machine without loss in learning ability. Part (a) of the
result says that if more than two-thirds of the members
in the team are required to be successful, then employ-
ing a team for learning languages from texts does not
yield any extra learning ability. Part (b) of the result
says that 2 is indeed the cutoff.

Theorem 6 (a) (Ym,n | Z > 2)[Team) TxtEx =
TxtEx].

(b) TxtEx C Team; TxtEx.

5 TEAM LEARNING OF
RESTRICTED CLASSES OF
LANGUAGES

It may justifiably be argued that recursively enumer-
able languages are too general to usefully model con-
cepts of practical interest. For this reason, it is worth
considering the effects of team learning on restricted
collections of languages. In this section, we summa-

rize results about redundancy and aggregation for the
following two restrictions on r.e. languages.

o Recursive languages: These are languages that
have an algorithmic decision procedure. We de-
note the class of recursive languages by REC.

e Indexed families of recursive languages: A se-
quence of nonempty languages Lo, Li,... is an
indexed family just in case there exists a com-
putable function f such that for each i € N and
for each z € N,

. _J1 ifz e L;,
f(i,2) = {0 otherwise.
In other words, there is a uniform decision proce-
dure for languages in the class. Angluin [1] was
the first researcher to restrict investigations to in-
dexed families of recursive languages; she was mo-
tivated by the fact that most language families of
practical interest are indexed families (e.g., the
collection of pattern languages).

We now report on redundancy and aggregation issues
for these classes. We restrict ourselves to texts, as
informants do not yield any new insight.

5.0.1

Identification of Recursive Languages

It turns out that even for recursive languages, redun-
dancy does help sometimes. Our proof of Theorem 4
also implies the following because the language class
constructed as the witness for Team; TxtEx being a
strict super set, of TeamyTxtEx consist only of recur-
sive languages. (Notation: The power set of a set A is
denoted 24.)

Theorem 7 (TeamTxtEx N
(Team?TxtEx N 2REC),

For similar reasons, the aggregation ratio for team
identification of recursive languages turns out to be
2, as recorded in the following theorem.

Theorem 8 (a) (Vm,n | Z > 2) [(Team], TxtEx N
2REC) — (TxtEx N 2REC)].

(b) (TxtEx N 2RFC) C (Team3TxtEx N 2RFC),

It may be argued that if we are restricting ourselves
to learning of recursive languages then we should con-
sider identifying decision procedures instead of gram-
mars (accepting procedures). The following definition
formalizes this notion. (Notation: A characteristic
function of a language A is the function which is 1
on elements of A and 0 on non-elements of A.)

Definition 6 [5]

(a) M TxtExClI-identifies a recursive language L just
in case M, fed any text for L, converges to a program
that computes the characteristic function of L. In this
case we say that L € TxtExCI(M).

(b) M TxtExClI-identifies a collection of languages,
L, just in case M TxtExCI-identifies each language
in L.

(¢) TxtExCI denotes all such collections £ of re-
cursive languages such that some machine TxtExCI-
identifies L.

It should be noted that the hypothesis space of the
learner in the above definition is still the set of all pro-
grams; it is only required that the final converged pro-
gram compute the characteristic function of the lan-
guage being learned. Osherson and Weinstein [14] ob-
served the following fact which implies that there are
collections of recursive languages for which a grammar
can be identified from texts, but for which a decision
procedure cannot be identified from texts.

Theorem 9 [14] TxtExCI C (TxtEx n2REC)

We next consider team identification of decision proce-
dures for recursive languages from texts. Clearly, the
class Team] TxtExCI can be defined. Until now,
we have seen that in the case of learning from only
positive data (texts), redundancy sometimes results in
increased learning ability. Surprisingly, the following
theorem shows that redundancy does not pay when
the team is learning decision procedures.

Theorem 10 Let k,m,n € N such that 0 <
m < n and k > 1. Then Team] TxtExCI =
Team™ " TxtExCI.

We sketch a proof of the above result in the Appendix.
The aggregation ratio for TxtExCI turns out to be %
as shown by the following theorem.

Theorem 11 (a)
(Vm,n | 2 > 1)[Team] TxtExCI = TxtExCI].

(b) TxtExCI C Team}TxtExCI.

5.0.2 Indexed Families of Recursive
Languages

Until now, we have considered learning criteria involv-
ing the following concept classes.

e recursively enumerable languages;

e recursive languages.

For both the concept classes, the hypothesis space was
the set of all computer programs.

We now consider learning scenarios where the concepts
classes are indexed families of recursive languages. We
introduce some notation. Let ¥ be a fixed terminal
alphabet. A grammar G over X defines an accepting
grammar. Lang(G) is the language accepted by G.

Since we now exclusively deal with indexed families
L ={L; | i € N}, we take as hypothesis space some
enumerable family of grammars Go,G1,Ga,... over &
such that £ C {Lang(G;) | i € N}. We also require
that the membership in Lang(G;) is uniformly decid-
able over all ¢ € N and all strings s € ¥*. When a
learning machine emits ¢, we interpret it to mean that
it is conjecturing the grammar G;.

Gold’s criterion of identification in the limit can be
adapted to the identification of indexed families as fol-
lows:

Definition 7 Let £ be an indexed family and let G =
{Gi|i € N} be a hypothesis space.

(a) Let L € L. A machine M TxtEx-identifies with
respect to G just in case M, fed any text for L, con-
verges to j and L = Lang(G;).

(b) A machine M TxtEx-identifies £ with respect to
G just in case for each L € £, M TxtEx-identifies L
with respect to G.

(c) [TxtEX]index denotes the collection of all indexed
families L for which there is a machine M and a hy-
pothesis space G such that M TxtEx-identifies L with
respect to G.

Similarly, we can define a hypothesis space of deci-
sion procedures and define the class [TxtExCI]index-
It turns out that for indexed families of recursive lan-
guages, learning grammars and decision procedures are
equivalent.

Proposition 2 [TxtEx|index = [TXtExCI]index-

Hence we only consider grammar identification in our
investigation of team learning for indexed families.
One can define the class [Team; TxtExX|index in a
natural way.

The following two theorems summarize that in the case
of learning indexed families of recursive languages from
texts, redundancy does not pay and the aggregation
ratio is 1.

Theorem 12 Let k,m,n € N such that 0 < m <
n and k > 1. Then [Team) TxtEX|index =

[Team™ F TxtEx]index-

Theorem 13 (a) (Vm,n | o >
[Team] TxtEx|naex = [TxtEx]index)-

(b) [TxtEx]index C [Team}TxtEx]imdex-

Finally we would like to note that if considered learn-
ing of indexed families where the hypothesis space was
not restricted, that is we allowed the learning machine
to emit any computer program, then it can be shown
the redundancy pays in some cases, and the aggrega-

tion ratio is 2.

We are also able to study the effects of team learn-
ing on various strategies of identification in which suc-
cessive conjectures of a learning machine satisfy cer-
tain constraint (for example, successive conjectures are
generalizations or specializations). These results will
be presented in a fuller version of this paper.

6 SETTINGS FOR TEAM
LEARNING

Finally, it is worth noting an aspect of team identi-
fication that cannot be overlooked, namely, it may
not always be possible to determine which members
in the team are successful. This property seems to rob
team identification of any possible utility. However,
we present below scenarios in which the knowledge of
which machines are successful is of no consequence, all
that matters is some are.

First, consider a hypothetical situation in which an in-
telligent species, somewhere in outer space, is attempt-
ing to contact other intelligent species (such as humans
on earth) by transmitting radio signals in some lan-
guage (most likely alien to humans). Being a curious
species ourselves, we would like to establish a com-
munication link with such a species that is trying to
reach out. For this purpose, we could employ a team of
language learners each of which perform the following
three tasks in a loop:

(a) receive and examine strings of a language (eg., from
a radio telescope);

(b) guess a grammar for the language whose strings
are being received;

(c) transmit messages back to outer space based on
the grammar guessed in Step (b).

If one or more of the learners in the team is actu-
ally, but, possibly unknowingly, successful in learning
a grammar for the alien language, a correct commu-
nication link would be established between the two
species.

Consider another scenario in which two countries, A

and B, are at war with each other. Country B uses
a secret language to transmit movement orders to its
troops. Country A, with an intention to confuse the
troops of country B, wants to learn a grammar for
country B’s secret language so that it can transmit
conflicting troop movement instructions in that secret
language. To accomplish this task, country A employs
a team of language learners, each of which perform the
following three tasks in a loop:

(a) receive and examine strings of country B’s secret
language;

(b) guess a grammar for the language whose strings
are being received;

(c) transmit conflicting messages based on the gram-
mar guessed in Step (b) (so that B’s troops think that
these messages are from B’s Generals).

If one or more of the learners in the team is actually,
but possibly unknowingly, successful in correctly learn-
ing a grammar for country B’s secret language, then
country A achieves its purpose of confusing the troops
of country B.

It should be noted that the notion of team learning
models only part of the above scenario, as we ignore in
our mathematical model the aspect of learners trans-
mitting messages back. We also mathematically ig-
nore possible detrimental effects of a learner guessing
an incorrect grammar and transmitting messages that
could interfere with messages from a learner that in-
fers a correct grammar (for example, the string ‘baby
milk powder factory’ in one language could mean the
string ‘ammunition storage’ in another!). In no way
are these issues trivial; we simply don’t have a formal
handle on them at this stage.

Acknowledgements

We thank the referees for useful suggestions. Research
of Arun Sharma has been partially supported by a
grant from the Australian Research Council.

References

[1] D. Angluin. Finding patterns common to a set
of strings. Journal of Computer and System Sci-
ences, 21:46-62, 1980.

[2] L. Blum and M. Blum. Toward a mathematical
theory of inductive inference. Information and
Control, 28:125-155, 1975.

[3] R.P. Daley, B. Kalyanasundaram, and M. Velau-
thapillai. Breaking the probability 1/2 barrier in

[4]

[10]

[11]

[12]

[13]

fin-type learning. In Proceedings of the Fifth An-
nual Workshop on Computational Learning The-
ory, Pittsburgh, Pennsylvania, pages 203-217. A.
C. M. Press, 1992.

R. P. Daley, L. Pitt, M. Velauthapillai, and
T. Will. Relations between probabilistic and team
one-shot learners. In L. Valiant and M. Warmuth,
editors, Proceedings of the Workshop on Compu-
tational Learning Theory, pages 228-239. Morgan
Kaufmann Publishers, Inc., 1991.

E. M. Gold. Language identification in the limit.
Information and Control, 10:447-474, 1967.

J. Hopcroft and J. Ullman. Introduction to
Automata Theory Languages and Computation.
Addison-Wesley Publishing Company, 1979.

S. Jain and A. Sharma. Finite learning by a team.
In M. Fulk and J. Case, editors, Proceedings of
the Third Annual Workshop on Computational
Learning Theory, Rochester, New York, pages
163-177. Morgan Kaufmann Publishers, Inc., Au-
gust 1990.

S. Jain and A. Sharma. Language learning by
a team. In M. S. Paterson, editor, Proceed-
ings of the 17th International Colloquium on Au-
tomata, Languages and Programming, pages 153—
166. Springer-Verlag, July 1990. Lecture Notes in
Computer Science, 443.

S. Jain and A. Sharma. Computational limits on
team identification of languages. Technical Re-
port 9301, School of Computer Science and Engi-
neering; University of New South Wales, 1993.

S. Jain and A. Sharma. Probability is more power-
ful than team for language identification. In Pro-
ceedings of the Sixzth Annual Conference on Com-
putational Learning Theory, Santa Cruz, Califor-
nia, pages 192-198. ACM Press, July 1993.

S. Jain and A. Sharma. On aggregating teams of
learning machines. Theoretical Computer Science
A, 137(1):85-108, January 1995.

S. Jain, A. Sharma, and M. Velauthapillai. Finite
identification of function by teams with success
ratio 1/2 and above. Information and Computa-
tion, 1995. To Appear.

D. Osherson, M. Stob, and S. Weinstein. Aggre-
gating inductive expertise. Information and Con-
trol, 70:69-95, 1986.

[14] D. Osherson, M. Stob, and S. Weinstein. Systems
that Learn, An Introduction to Learning The-
ory for Cognitive and Computer Scientists. MIT
Press, Cambridge, Mass., 1986.

L. Pitt. Probabilistic inductive inference. Journal
of the ACM, 36:383-433, 1989.

[15]

[16] L. Pitt and C. Smith. Probability and plurality for
aggregations of learning machines. Information
and Computation, 77:77-92, 1988.

[17] C. Smith. The power of pluralism for automatic
program synthesis. Journal of the ACM, 29:1144—

1165, 1982.

APPENDIX

We now sketch a proof technique that is crucial in
showing when a team of machines can be aggregated
into a single machine. The technique originates in the
work of Pitt [15]. To facilitate the description, we first
introduce some notation.

Notation: We let ¢ denote an acceptable programming
system. Since there are countably infinite number of
programs in the programming system ¢, we refer to
each program with its index (or, its number). We let ;
stand for the partial computable function computed by
the program with index ¢ in the ¢-system. We denote
@i(x)d to mean that the program with index i in the
p-system on input z is defined. We write ¢;(z)) = v,
or simply ¢;(x) = y, to mean that the program with
index i in the @-system outputs y. We write ¢;(x)1 to
denote that the program with index ¢ in the ¢-system
on input z does not halt.

We refer to i as a grammar (acceptor) for L just in
case L is the domain of ¢;. That is, L is the recursively
enumerable language accepted by the p-program with
index i. A recursive language has a computable deci-
sion procedure. We refer to i as a decision procedure
(or, the chracteristic index) for a recursive language
L just in case p;(z) = 1 if z € L and ¢;(z) = 0 if
x & L. Suppose ¢ is not a decision procedure for L,
then we consider two kinds of errors that ¢ can make
in deciding if a element belongs to L. Suppose p;(z)}
and either ¢;(z) # 1 when z € L or p;(z) # 0 when
xz ¢ L, then we say that ¢ makes an error of commis-
sion at z. On the other hand if ()1, then we say
that ¢ makes an error of omission at x.

Finally, for a finite set S of programs, let unify(S) be
a program defined as follows:

Punify(s) (z)
Search for ¢ € S such that ;(z)J.
If and when such an 4 is found, let Punify(s) (z) =

pi(z)-
End

Intuitively, unify(S) just computes the union of func-
tions computed by programs in S (on inputs where
more than one program in S converge but to differ-
ent values, unify(S) can arbitrarily choose one of the
converging programs). It is easy to observe that if S
contains either decision procedures for L or programs
that make only errors of omission in deciding mem-
bership in L, then unify(S) is a decision procedure for
L. This observation will be useful in extracting (in the
limit) a decision procedure for a recursive language L
from a set of programs F', at least one of which is a
decision procedure for L, and a text for L. This is the
subject of the next claim.

Claim 1 Given a finite set of programs, F', and a text
T for L, such that at least one of the programs in F is
a decision procedure for L, one can find, in the limit,
on F and T a decision procedure for L.

Proor. (Sketch) Suppose F, and a text T for L be
given. We show how to construct a decision procedure
for L in the limit.

Let Sy ={i€ F| (3z € L)[pi(z)] = 0]}.

So, programs in S; are not decision procedures for L.
S> below tries to search for programs which accept
elements in the complement of L.

Let So ={i€e F—51| (37 € F—51)(32)[pi(z)] #
0 A ¢j(z)) = 0]}. Note that if i € F'—S; as witnessed
by x and j, then z ¢ L (since otherwise j would be in
S1).

It should be noted that both S; and Sy will be con-
structed from F and T in the limit.

We now claim that unify(F — (S; U S2)) is a decision
procedure for L. To see this first note that all pro-
grams in F' which reject an element of L are in Sj.
Thus all elements in F'— .S, either accept each element
of L or diverge on elements of L. Also since there is
a decision procedure for L in F' (there exists one such
by the assumption), it follows that there is a decision
procedure for L in F' — S;. Now for any element i in
F — Sy such that for some z ¢ L, @;(z)} = 1, we have
that i € S. This follows by the definition of Ss and
the fact that there exists a decision procedure for L in
F — S;. Now it is straightforward to see that for each

j € F—(S1US,), for each z, either ¢;(z)1 or ;(x)
correctly determines the membership of z in L; that
is, j is either a decision procedure for L or only makes
errors of omission. It follows that unify(F — (S; USs))
is a decision procedure for L. |

We now sketch how the above claim can be used
to establish Theorem 10. We will first show
that for arbitrary m and n, Team] TxtExCI C
Teamltn/mJTxtExCI. From this it follows that,

Team} " TxtExCI C Teamin/mj TxtExCIL. It

is also easy to see that Teamin/mJTxtExCI c
Team, TxtExCI. The theorem follows.

We now show that
Team,, TxtExCI C Teamtn/mJ TxtExCI.

Suppose My, Moy,,M,, are given. Suppose further
that these machines Team,' TxtExCI identify L, and
T is a text for L. We observe the following:

(a) The number of machines converging to a program
(perhaps an incorrect one) among M;, Ma,, M,, on
text T lies in one of the intervals, [i - m, (i + 1) - m)
where 1 < i < [n/m] and

(b) if the number of converging machines lies in the
interval [i - m, (i + 1) -m), then at least one of the first
1-m converging machines on T' converges to a decision
procedure for L.

We now construct [n/m] machines as follows: machine
M where 1 < i < [m/n], on text T, searches for the
first ¢ - m machines converging on 7. Let F; be the set
of programs to which these machines converge to. M,
then, assuming that F; contains a decision procedure
for L, using the above claim tries to find a decision
procedure for L.

Note that the assumption — F; contains a decision
procedure for L — is true for at least one ¢, and
thus at least one of the |n/m| machines succeeds in
TxtExClI-identifying L.

