
ARTICLE IN PRESS

Journal of Theoretical Biology 253 (2008) 131– 141
Contents lists available at ScienceDirect
Journal of Theoretical Biology
0022-51

doi:10.1

� Tel.:

E-m
journal homepage: www.elsevier.com/locate/yjtbi
Evolutionary stability conditions for signaling games with costly signals
Gerhard Jäger �

University of Bielefeld, Faculty of Linguistics and Literature, PF 10 01 31, 33615 Bielefeld, Germany
a r t i c l e i n f o

Article history:

Received 30 July 2007

Received in revised form

18 February 2008

Accepted 19 February 2008
Available online 5 March 2008

Keywords:

Signaling games

Evolutionary game theory

Costly signaling

Evolutionary stability

Neutral stability
93/$ - see front matter & 2008 Elsevier Ltd. A

016/j.jtbi.2008.02.039

+49 521106 3576; fax: +49 521106 5844.

ail address: Gerhard.Jaeger@uni-bielefeld.de
a b s t r a c t

The paper investigates the class of signaling games with the following properties: (a) the interests of

sender and receiver coincide, (b) different signals incur differential costs, and (c) different events

(meanings/types) have different probabilities. Necessary and sufficient conditions are presented for a

profile to be evolutionarily stable and neutrally stable, and for a set of profiles to be an evolutionarily

stable set.

The main finding is that a profile belongs to some evolutionarily stable set if and only if a maximal

number of events can be reliably communicated. Furthermore, it is shown that under the replicator

dynamics, a set of states with a positive measure is attracted to ‘‘sub-optimal’’ equilibria that do not

belong to any asymptotically stable set.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In his book Convention, Lewis (1969) gave a game theoretic
formalization of strategic communication. Lewis showed that a
convention which guarantees successful communication can be
self-reinforcing provided the interests of the communicators are
sufficiently aligned. In game theoretic parlance, communication
conventions are Nash equilibria. As the phenomenon of commu-
nication is of high relevance for many scientific disciplines, Lewis
style signaling games and similar game theoretic models of
communication received a great deal of attention since then
(see for instance Spence, 1973; Crawford and Sobel, 1982 in
economics, Grafen, 1990; Nowak and Krakauer, 1999; Hurd, 1995
in biology, Skyrms, 1996 in philosophy, Hurford, 1989; van Rooij,
2004 in linguistics and much subsequent work in all mentioned
disciplines). The common theme of all these models can be
summarized as follows:
�
 There are two players, the sender and the receiver.

�
 The sender has private information about an event that is

unknown to the receiver. The event is chosen by nature
according to a certain fixed probability distribution.

�
 The sender emits a signal which is revealed to the receiver.

�
 The receiver performs an action, and the choice of action may

depend on the observed signal.

�
 The utilities of sender and receiver may depend on the event,

the signal and the receiver’s action.
ll rights reserved.
Depending on the precise parameters, signaling games may
have a multitude of equilibria. Therefore the question arises how a
stable communication convention can be established. A promising
route is to assume that such equilibria are the result of biological
or cultural evolution. Under this perspective, communication
conventions should be evolutionarily stable in the sense of
evolutionary game theory.

Trapa and Nowak (2000) consider the class of signaling games
where signaling is costless (i.e. the utility of sender and receiver
does not depend on the emitted signal) and the interests of sender
and receiver completely coincide. Furthermore, they assume that
the actions of the receiver are isomorphic to the set of events. So
the task of the receiver is essentially to guess the correct event.
They also assume a uniform probability distribution over events.
Under these conditions it turns out that the evolutionarily stable
states (in the sense of Maynard Smith, 1982) are exactly those
states where the sender strategy is a bijection from events to
signals, and the receiver strategy is the inverse of the sender’s
strategy. This means that in an evolutionarily stable state, the
receiver is always able to reliably infer the private information of
the sender.1

Pawlowitsch (2007) investigates the same class of games, with
the additional restriction that the number of events and signals
must be identical. She shows that each such game has an infinite
number of neutrally stable strategies (NSSs) (again in the sense of
Maynard Smith, 1982) that are not evolutionarily stable. In these
states, communication is not optimal because certain events
1 Similar results have also been obtained by Wärneryd (1993). Since he only

considers pure strategies though, his results are perhaps less general.

www.sciencedirect.com/science/journal/yjtbi
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2 See for instance Trapa and Nowak (2000) on the matrix representation of

signaling games.
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cannot be reliably communicated. Perhaps surprisingly, these sub-
optimal equilibria attract a set of states with a positive measure
under the replicator dynamics. Natural selection alone thus does
not necessarily lead to perfect communication.

In many naturally occurring signaling scenarios emitting or
observing a signal may incur a cost to the players. Games with
costly signaling have been studied extensively by economists (like
Spence, 1973) and biologists (as Grafen, 1990) because costs may
help to establish credibility in situations where the interests of
sender and receiver are not completely aligned (an effect that is
related to Zahavi’s, 1975 famous handicap principle).

The idea that signals have differential costs is also a standard
assumption in linguistics. It comes in many variants, including
Grice’s (1975) Maxim of Manner, Zipf’s (1949) Principle of Least

Effort, the concept of markedness in functional linguistics (see for
instance Greenberg, 1966), etc. An evolutionary interpretation of
the idea that high complexity of a signal may lead to low utility
(i.e. low fitness under cultural evolution) can be traced back to the
19th century, as the following quotation from Charles Darwin
shows:

The formation of different languages and of distinct species,
and the proofs that both have been developed through a
gradual process, are curiously parallel. . . . Max Müller has well
remarked: ‘A struggle for life is constantly going on amongst
the words and grammatical forms in each language. The better,
the shorter, the easier forms are constantly gaining the upper
hand, and they owe their success to their inherent virtue.’ To
these important causes of the survival of certain words, mere
novelty and fashion may be added; for there is in the mind of
man a strong love for slight changes in all things. The survival
or preservation of certain favored words in the struggle for
existence is natural selection. (Darwin, 1871:465f.)

van Rooij (2004) and Jäger (2007) formalize certain linguistic
phenomena as signaling games with completely aligned interests
of sender and receiver, costly signaling, and non-uniform prob-
ability distributions over events. The purpose of these works is to
show that grammatical patterns that are typologically common or
even universal among the languages of the world are evolutiona-
rily stable.

The present paper studies the issue of evolutionary stability in
this class of games (costly signaling and a non-uniform prob-
ability distribution over events) systematically. For simplicity’s
sake, the investigation is confined to games where any two events
have pairwise different probabilities and any two signals incur
pairwise different costs. This limitation seems legitimate as
almost all parameter settings belong to this class.

In the subsequent sections, necessary and sufficient (static)
conditions of neutral and evolutionary stability, as well as for a
class of profiles to form an evolutionarily stable set (cf. Thomas,
1985), are developed. Briefly put, evolutionary stability always
amounts to a bijective map between events and signals (such that
the receiver’s strategy is the inverse of the sender’s strategy),
possibly extended by non-communicable events or unused signals
if the number of signals and events do not coincide. If the number
of signals exceeds the number of events, the most expensive
signals are never used by the sender. If, on the other hand, the
number of events exceeds the number of signals, some events (not
necessarily the least likely ones) are never inferred by the receiver.

In a neutrally stable state, the sender always plays a pure
strategy that is the unique best response to the receiver’s strategy.
It is possible though that in such a state certain signals are never
used by the sender, such that the best response of the receiver to
the sender’s strategy may be mixed. There are neutrally stable
states that do not belong to an evolutionarily stable set. These are
sub-optimal states where certain signals remain unused even
though using them (and interpreting them appropriately) would
increase the utility of both players. As in the class of games
investigated by Pawlowitsch (2007), the set of sub-optimal
neutrally stable states attracts a set of states with a positive
measure under the replicator dynamics.
2. Setting the stage

A signaling game is an extensive form game between two
persons, the sender and the receiver. The sender has some private
information about an event e that is chosen by nature according to
some fixed probability distribution from the set of events E. The
sender makes the first move by emitting a signal s from some set
F that can be observed by the receiver. The receiver in turn
chooses some action a from a set A. The utility of the players
depend on e, s and a.

In this paper I will study the conditions for evolutionary
stability of a subclass of normalized and symmetrized signaling
games. In particular, I restrict attention to games where
�
 E;F , and A are finite,

�
 E ¼ A (the receiver’s action is to guess an event),

�
 there are functions c1 and c2 that assign to each signal s certain

numbers c1ðsÞ and c2ðsÞ (intuitively, c1ðsÞ represents the
sender’s benefit/cost of using s, and likewise c2 is the receiver’s
cost function), and

�
 the extensive form utility functions are

uiðe; s; aÞ ¼ de;a þ crðsÞ

(with r 2 f1;2g).

(The d used in the last condition is the Kronecker function, i.e.
de;a ¼ 1 if e ¼ a, and de;a ¼ 0 otherwise.)

The last condition states that the interests of the players are
identical except for the costs that the transmitted signal incurs.
Also, the condition entails that the cost of sending/receiving a
certain signal only depends on the signal itself, not on its intended
or inferred interpretation.

The set of pure sender strategies is the set of functions E 7!F ,
and the set of pure receiver strategies is the set of functions F 7!E.
Let us assume there are n different events and m different signals.
Then each pure sender strategy can be represented by an n�m-
matrix that has one 1 per row and 0 otherwise. Likewise, a
receiver strategy corresponds to an m� n-matrix of this form.2 Let
S be the set of sender strategies, and R the set of receiver
strategies (in matrix notation).

The matrix notation can easily be extended to mixed strategies.
Let x be a mixed sender strategy, i.e. a probability distribution
over S. We then define

Sx
¼
X
S2S

xðSÞS.

Mixed strategy matrices for receiver strategies are defined
likewise. Note that Sx (Ry) is always a stochastic matrix (i.e. each
row sums up to 1) if x (y) is a probability distribution.

Nature’s probability distribution over the set of events E can be
represented by a probability vector ~e of length n. The costs of the
various signals can be represented by vectors ~c1 (for the sender)
and ~c2 (for the receiver) of length m. Intuitively all cr;i should be
negative or zero because costs are negative payoff, but this
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restriction has no impact on the properties of the game and can
thus be ignored.

The utility function over pure strategies can be represented in
the following way (where r 2 f1;2g):

urðS;RÞ ¼
X

i

ei �
X

j

sijðrji þ cr;jÞ.

Note that this can be rewritten as

urðS;RÞ ¼
X

i

ei

X
j

sijrij þ
X

i

ei

X
j

sijcr;j.

Now suppose two signaling games G� and G��, with the utility
functions u�r and u��r , respectively, are completely identical except
for the receiver’s cost vector, which is ~c�2 for G� and ~c��2 for G��.
(This means that n and m, ~e and ~c1 are identical for the two
games.) It then follows from the above equation that the sender’s
utility function is identical in the two games, and that for all S

and R,

u�2ðS;RÞ � u��2 ðS;RÞ ¼
X

i

ei

X
j

sijðc
�
2;j � c��2;jÞ.

This means that the receiver’s utilities u�2ðS;RÞ and u��2 ðS;RÞ in the
two games always differ by an amount that only depends on the
sender’s strategy S. So the receiver’s payoff matrix for G�� (where
the receiver is assumed to be the column player) can be obtained
from the corresponding matrix for G� by adding a constant
amount to each row. In other words, there is a function f from
sender strategies to real numbers such that

u�2ðS;RÞ ¼ u��2 ðS;RÞ þ f ðSÞ.

G� and G�� are thus equivalent for all intents and purposes that
are relevant in the context of this paper.3 Likewise, it is easy to see
that similar equivalences hold between the symmetrized versions
of G� and G��. They have the same evolutionarily stable states, the
same evolutionarily stable sets, the same neutrally stable states,
and the same replicator dynamics. From the last point it follows
that the symmetrized version of G� and G�� have the same
dynamic stability properties.

Since any two signaling games that only differ with respect to
~c2 are thus equivalent, it is convenient to consider only one
representative of each equivalence class, namely one where
~c1 ¼~c2, i.e. where sender and receiver happen to have the same
cost function. This is a convenient choice because these games are
partnership games. In the following, I will thus always assume,
without restriction of generality, that ~c1 ¼~c2, and drop the role
subscript.

As a further simplification, we observe that adding the same
constant to each element of~c amounts to adding that constant to
3 To see why, observe that for each pair of mixed strategies ðx; yÞ of the

asymmetric game,

u�2ðx; yÞ ¼ u��2 ðx; yÞ þ
X

S

xðSÞf ðSÞ.

So we have for all x; y; and z: u�2ðx; yÞ � u�2ðx; zÞ ¼ u��2 ðx; yÞ � u��2 ðx; zÞ. This entails that

G� and G�� have the same Nash equilibria and strict Nash equilibria, and that they

share their asymmetric replicator dynamics.

The same point can be made for the symmetrized version of the two games. It

follows from the definition of the symmetrization of an asymmetric game (see

below) that there is function g from mixed symmetric strategies to real numbers

such that

u�symðx; yÞ ¼ u��symðx; yÞ þ gðyÞ,

where u�sym and u��sym are the mixed strategy utility functions of the symmetrized

versions of G� and G�� respectively. So here we have for all x, y, and z:

u�symðx; yÞ � u�symðz; yÞ ¼ u��symðx; yÞ � u��symðz; yÞ. This entails that the symmetrized

games also share their Nash equilibria, strict Nash equilibria and replicator

dynamics, and they also share their ESSs and ESSets.
the utility of the normal form game. Since such a constant is
immaterial to the character of the game, costs can always be
normalized in such a way that the maximal cost is 0 and all other
costs are negative:

max
i

ci ¼ 0.

Events with zero probability have no impact on the utility and can
be ignored. Therefore I assume that 8i : ei40. Also, if the
difference between the costs of two signals exceeds 1, it is never
rationalizable to use the more expensive signal. We can therefore
restrict attention to games were 8i : ciX� 1.

Also, unless otherwise noted, I will only consider games that
are generic in the sense that small changes of the vectors ~e and ~c
do not change the qualitative character of the game. This amounts
to the requirement that two signals are never equiprobable, and
two signals are never equally costly: eiaej if iaj, and ciacj if iaj.
Also, genericity entails that 8i : ci4� 1.

It is convenient to assume that events are ordered according to
probability and signals according to their costs. I therefore
introduce the following convention without restriction of general-
ity:

ei4ej iff i4j,

ci4cj iff i4j.

So the first row of the S-matrix corresponds to the most frequent
event, the first column to the cheapest signal, etc.

To simplify notation, we introduce the following conventions:
�
 We construct a matrix P that is like S except that each row is
multiplied with the probability of the corresponding event,
and

�
 we construct a matrix Q that is like R except that to each cell,

the costs of the signal corresponding to the row of that cell is
added.

Definition 1.

pS
ij¼
:

sij � ei,

qR
ij¼
:

rij þ ci.

The S-matrix and R-matrix, as well as the parameters of the
game, can easily be recovered from the P-matrix and Q-matrix.

ei ¼
X

j

pij,

cj ¼

P
i qji � 1

m
,

sij ¼
pij

ei
,

rji ¼ qji � cj.

It is therefore usually more convenient to work directly with P and
Q, rather than with S and R.

With these conventions, the utility function for pure strategies
reduces to

uðS;RÞ ¼ trðPSQR
Þ. (1)

Let x and y be mixed strategies of the sender and the receiver,
respectively. Since there is a one–one map between ðS;RÞ-matrices
and ðP;Q Þ-matrices (for a given set of parameters), x and y

uniquely correspond to probability distributions over P-matrices
and Q-matrices, respectively. I will denote these derived prob-
ability distributions with x and y as well, because the context will
always make clear which interpretation is intended.

Also note that both matrix multiplication and the trace
function are linear functions. Let P be the set of P-matrices that
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correspond to pure strategies in S, and Q the set of Q-matrices
corresponding to pure R-matrices in R. The utility function for
pure strategies given in (1) thus readily extends to mixed
strategies:

uðx; yÞ ¼
X
S2S

xðSÞ
X
R2R
ðyðRÞuðS;RÞÞ

¼
X
S2S

xðSÞ
X
R2R
ðyðRÞtrðPSQR

ÞÞ

¼
X
P2P

xðPÞ
X
Q2Q
ðyðQ ÞtrðPQ ÞÞ

¼ trðPxQy
Þ. (2)

The utility function (2) defines an asymmetric partnership
game. Such a game can be transformed into a doubly symmetric
game (i.e. a symmetric partnership game) in the standard way. A
strategy of the symmetrized game is a pair of strategies for the
asymmetric game, one for each role. The symmetric utility
function is derived from the asymmetric one in the following way:

usymððS1;R1Þ; ðS2;R2ÞÞ ¼ uasymðS1;R2Þ þ uasymðS2;R1Þ.

Most authors multiply the symmetrized utility by 1
2 to capture

the intuition that each player finds himself in each role with equal
probability. I drop this constant factor for convenience, as it has no
bearing on the structure of the game. Also, I will denote the
symmetric utility function simply as u from now on.

Let x be a mixed strategy of the symmetrized game. The
matrices Px and Qx corresponding to this strategy are defined as

Px
¼
: X
ðP;Q Þ2P�Q

xððP;Q ÞÞP,

Qx
¼
: X
ðP;QÞ2P�Q

xððP;Q ÞÞQ .

It is easy to see that the symmetric utility function for mixed
strategies comes down to

uðx; yÞ ¼ trðPxQy
Þ þ trðPyQx

Þ.

Nash equilibria and strict Nash equilibria can be characterized
in terms of P-matrices and Q-matrices.

Lemma 1. x is a Nash equilibrium if and only if the following

conditions are fulfilled:
1.
 If px
ij40, then qx

ji ¼maxj0 q
x
j0i

.

2.
 If qx

ji4cj, then px
ij ¼ maxi0 p

x
i0j

.

See the Appendix for a proof.

Lemma 2. x is a strict Nash equilibrium if and only if
1.
 x is a Nash equilibrium, and
2.
 Each column in Px and in Qx has a unique maximum.
The proof is given in the Appendix.
3. Some examples
Example 1. One might hypothesize that the number of events n

provides an upper bound on the number of useful signals m. This
is not necessarily so, as the following example demonstrates:

~e ¼ h:6; :4i,

~c ¼ h0;�:1;�:9i,
Sx
¼

:5 :5 0

:75 0 :25

� �
; Rx

¼

:9 :1

1 0

0 1

0
B@

1
CA,

Px
¼

:3 :3 0

:3 0 :1

� �
; Qx

¼

:9 :1

:9 �:1

�:9 :1

0
B@

1
CA

x is a Nash equilibrium. Even though there are more signals than
events, each signal is used in equilibrium.

Example 2. Likewise, there are Nash equilibria where the number
of events exceeds the number of signals, like the following:

~e ¼ h:5; :3; :2i,

~c ¼ h0;�:1i,

Sx
¼

1 0

1=3 2=3

0 1

0
B@

1
CA; Rx

¼
1 0 0

0 :1 :9

� �
,

Px
¼

:5 0

:1 :2

0 :2

0
B@

1
CA; Qx

¼
1 0 0

�:1 0 :8

� �
.

In this equilibrium, each event is a possible interpretation of
some signal.

We now turn to a game that is perhaps the simplest
conceivable non-trivial example for this class of games. Let ~e ¼
h:75; :25i and ~c ¼ h0;�:1i.

Example 3. In symmetrized asymmetric games, the ESSs are
exactly the strict Nash equilibria. In the game at hand, there are
two of them, namely:

Sx1 ¼
1 0

0 1

� �
; Rx1 ¼

1 0

0 1

� �
,

Px1 ¼
:75 0

0 :25

� �
; Qx1 ¼

1 0

�:1 :9

� �

and

Sx2 ¼
0 1

1 0

� �
; Rx2 ¼

0 1

1 0

� �
,

Px2 ¼
0 :75

:25 0

� �
; Qx2 ¼

0 1

:9 �:1

� �
.

Example 4. Recall that a profile x in a symmetric game is
neutrally stable if and only if it is a Nash equilibrium, and
uðx; yÞXuðy; yÞ for all (alternative best replies) y with
uðy; xÞ ¼ uðx; xÞ. (The only difference to evolutionary stability is
that in the latter notion, the last inequality has to be strict.) Next
to the two ESSs just given, there is an infinity of NSSs that form a
linear manifold, namely

Sx
¼

1 0

1 0

� �
; Rx

¼
1 0

a 1� a

� �
,

Px
¼

:75 0

:25 0

� �
; Qx

¼
1 0

a� :1 :9� a

� �

for a 2 ð:9;1�.
The unique best response to Qx is Px. There are two pure best

responses to Px, namely

R1 ¼
1 0

1 0

� �
,
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Q1 ¼
1 0

:9 �:1

� �

and

R2 ¼
1 0

0 1

� �
,

Q2 ¼
1 0

�:1 :9

� �
.

We have

trðPxQ1Þ ¼ trðPxQ2Þ ¼ trðPxQx
Þ ¼ :75.

Hence x is in fact neutrally stable.

Example 5. If a ¼ :9, we get another equilibrium:

Sx
¼

1 0

1 0

� �
; Rx

¼
1 0

:9 :1

� �
,

Px
¼

:75 0

:25 0

� �
; Qx

¼
1 0

:8 0

� �
.

One possible best response to this is

Sy
¼

1 0

0 1

� �
; Ry

¼
1 0

0 1

� �
,

Py
¼

:75 0

0 :25

� �
; Qy

¼
1 0

�:1 :9

� �
.

Now we have

trðPxQx
Þ ¼ trðPyQx

Þ ¼ trðPxQy
Þ ¼ :75otrðPyQy

Þ ¼ :975.

Hence x is not neutrally stable.

Example 6. There is yet another Nash equilibrium of this game,
which is also not neutrally stable:

Sx
¼

1=3 2=3

1 0

� �
; Rx

¼
:9 :1

1 0

� �
,

Px
¼

:25 :5

:25 0

� �
; Qx

¼
:9 :1

:9 �:1

� �
.

A possible best response to this is

Sy
¼

0 1

1 0

� �
; Ry

¼
0 1

1 0

� �
,

Py
¼

0 :75

:25 0

� �
; Qy

¼
0 1

:9 �:1

� �
.

Now we have

trðPxQx
Þ ¼ trðPyQx

Þ ¼ trðPxQy
Þ ¼ :7otrðPyQy

Þ ¼ :925.

Hence x is not neutrally stable either.

There are no more Nash equilibria of this game.
4. Evolutionary stability

As shown by Selten (1980), the ESSs in a symmetrized
asymmetric game are exactly the strict Nash equilibria. Conse-
quently, neither the P-matrix nor the Q-matrix in an ESS contains
any multiple column maxima. In particular, the P-matrix cannot
contain any zero-columns. Also, strict equilibria are always pure
strategies. So in an ESS, each row of the P-matrix contains exactly
one positive entry; all other entries are 0. As a result, a game can
only have an ESS if mpn.
Suppose n ¼ m. If P is pure and does not contain zero-columns,
the corresponding S-matrix must be a permutation matrix. If each
column of P thus contains exactly one entry 40, the unique
best response to this is an R-matrix that is a transpose of S. Since
ci4� 1 for all i, it follows that all non-zero entries of R correspond
to column maxima in Q. Hence P is the unique best response to Q.

These considerations can be summarized in the following

Observation 1. If n ¼ m, x is an ESS if and only if Sx is a permutation

matrix and Rx its transpose.

Finally, consider the case where mon. Any pure S-matrix now
necessarily contains columns with multiple one-entries. However,
due to genericity, the corresponding P-matrix nevertheless has a
unique maximum in each column. So there is a unique best
response R to such a P-matrix. R has at least one zero-column.
Again, due to genericity, the corresponding columns in the
Q-matrix still have a unique maximum each, namely the entry
in the first row (which is 0, while all other entries are negative).
Since ðP;Q Þ is a Nash equilibrium, the rows of P corresponding to
the zero-columns of R have their unique non-zero entry in the first
column. It thus follows that only the first column of P contains
more than one positive entry. So we have:

Observation 2. If x is an ESS and mon, then:
�
 the first column of Px has n�mþ 1 positive entries,

�
 each other column of Px has exactly one positive entry, and
�
 qx
ji4cj iff i ¼ minðfi0 : px

i0j
40gÞ.
These observations can be combined into:

Theorem 1. x is an ESS if and only if
1.
 mpn,

2.
 the first column of Px has n�mþ 1 positive entries,

3.
 each other column of Px has exactly one positive entry, and
4.
 qx
ji ¼ 1þ cj iff i ¼ minðfi0 : px

i0 j
40gÞ, otherwise qx

ji ¼ cj.
The proof of the only–if direction is given above. The if-direction
is proved in the Appendix.

If mon, there are necessarily some events that are never
inferred by the receiver in an ESS. Note that these need not be the
least likely events though. The following profile is an ESS, even
though the second event is never correctly communicated, while
the less likely third event is correctly communicated.

~e ¼ h:5; :3; :2i,

~c ¼ h0;�:1; i,

Sx
¼

1 0

1 0

0 1

0
B@

1
CA; Rx

¼
1 0 0

0 0 1

� �
,

Px
¼

:5 0

:3 0

0 :2

0
B@

1
CA; Qx

¼
1 0 0

�:1 �:1 :9

� �
.

There is no guarantee that the evolutionary dynamics will carry
a population to some ESS. Some games do not even have ESSs, like
those games considered here where m4n. It is nevertheless
possible to make predictions about the long-term behavior of
populations that do not converge to some ESS. The notion of an
evolutionarily stable set is of central importance here. Briefly put, it
can be shown that the replicator dynamics plus a small amount of
random drift will guarantee that a population eventually



ARTICLE IN PRESS
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converges to such a set. The details of this are spelled out in
Section 6.

The notion of evolutionarily stable sets goes back to Thomas
(1985); the definition used here is taken from Cressman (2003).

Definition 2. A set A of symmetric Nash equilibria is an
evolutionarily stable set (ESSet) if, for all x� 2 A;uðx�; xÞ4uðx; xÞ

whenever uðx; x�Þ ¼ uðx�; x�Þ and xeA.

Every ESS forms a singleton ESSet.
A simple example for a non-singleton ESSet would be the

following, with—for instance—~e ¼ h:8; :2i and ~c ¼ h0;�:1;�:2i:

x : Sx
¼

1 0 0

0 1 0

� �
; Rx

¼

1 0

0 1

a 1� a

0
B@

1
CA and a 2 ½0;1�

8><
>:

9>=
>;.

In fact, all non-singleton ESSets are sets of a similar shape (or
unions of such sets).

Theorem 2. A set of strategies A is an ESSet iff for each x 2 A, x is an

ESS or
1.
 m4n,

2.
 the restriction of Px to the first n columns and the restriction of Qx

to the first n rows form an ESS, and
3.
 for each y such that Px
¼ Py, and Qx and Qy agree on the first n

rows: y 2 A.

The proof, given in the Appendix, makes use of the notion of
neutral stability, which is discussed in the next section.

The result is intuitively unsurprising. If m4n, we have more
signals at our disposal than necessary to achieve optimal
communication. Therefore only the n cheapest signals are ever
used. Since the other signals are not used, their interpretation has
no impact on fitness, and natural selection does not operate on
this aspect of the strategies.
5. Neutral stability

As illustrated in Example 4, there may be equilibria that are not
evolutionarily but neutrally stable. To characterize the properties
of neutral stability, the following lemma proves useful.

Lemma 3. If x is a Nash equilibrium, and both 0opx
i� j�

oei� and

cj�oqx
j�i�

o1þ cj� for some i�; j�, then x is not neutrally stable.

A proof is given in the Appendix.
We can make the following observation:

Lemma 4. If x is an NSS, Px is a pure strategy.

There are thus no neutrally stable states in the interior of the
state space.

Qx may be mixed in an NSS, as Example 4 illustrates. Regarding
to Qx, we can make the following observation:

Lemma 5. If x is an NSS, Qx does not contain multiple column

maxima.

The proofs of these lemmas are given in the Appendix.
The opposite direction actually holds as well, which leads to a

concise characterization of neutral stability:

Theorem 3. x is an NSS if and only if it is a Nash equilibrium and Qx

does not contain multiple column maxima.

Proof. The forward direction corresponds to Lemma 5. As for the
backward direction, suppose x is Nash, and Qx does not contain
multiple column maxima. It follows immediately that for all
y 2 BRðxÞ : Py
¼ Px. So there cannot be a y with 2 trðPxQx

Þ ¼

trðPxQy
Þ þ trðPyQx

Þo2 trðPyQy
Þ. Hence x is neutrally stable. &

In an NSS, non-determinism thus can only occur in the receiver
strategy. It is quite restricted insofar as it can only occur as
response to some zero-column in P:

Observation 3. If x is an NSS and there are some i; i0; j with

cjoqx
ji; q

x
ji0
o1þ cj, then 8i0 : px

i0j
¼ 0.

This follows directly from the facts that non-determinism can
only occur in response to multiple column maxima, which, due to
genericity, can only occur in a zero-column of P if P is pure.

Note that neutral stability without evolutionary stability is
quite a pervasive phenomenon.

Observation 4. If m;nX2, there is always at least one NSS that is

not element of an ESSet.

For instance, putting all probability mass into the first column
both on the sender side and the receiver side leads to an NSS that
is obviously not contained in any ESSet.
6. Dynamic stability and basins of attraction

The games considered in this paper are symmetrized asym-
metric (or bimatrix) games. As developed in detail in Cressman
(2003), there is a tight connection between static stability and
dynamic stability under the replicator dynamics for this class of
games. Most notably, a set of strategies is asymptotically stable
under the replicator dynamics if and only if it is an ESSet. As a
corollary, it follows that the asymptotically stable states are
exactly the ESSs.

Let us have a look at the dynamic properties of the set of
neutrally stable equilibria. It is rather obvious that all ESSs are
isolated points in the sense that each ESS has a neighborhood that
does not contain any other Nash equilibria. This follows from the
facts that (a) all Nash equilibria are fixed points under the
replicator dynamics and (b) each ESS is asymptotically stable
under the replicator dynamics.

The set of NSSs that are not ES has a richer topological
structure. (I use the usual Euclidean norm here, i.e. kx� yk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðP;Q Þ2P�QðxðP;Q Þ � yðP;Q ÞÞ2
q

.)

Lemma 6. Let x� be an NSS that is not an ESS. There is some �40
such that for each Nash equilibrium y with kx� yko�,
1.
 y is itself neutrally stable, and
2.
 for each a 2 ½0;1�, ax� þ ð1� aÞy is neutrally stable.
See the Appendix for a proof.

We say that two NSSs x and y belong to the same continuum of
NSSs if for each a 2 ½0;1�, ax� þ ð1� aÞy is neutrally stable.

Theorem 4. Each NSS x has some non-null neighborhood A such that

each interior point in A converges to some neutrally stable

equilibrium y under the replicator dynamics that belongs to the

same continuum of NSSs as x.

Proof. The proof basically follows the strategy of the correspond-
ing proof in Pawlowitsch (2007). In Thomas (1985) it is shown
that each NSS x is Lyapunov stable under the replicator dynamics.
This means that for each �-environment of x there is a
neighborhood A of x such that each point in A remains within
the �-environment of x in positive time. We also know (part of
the so-called ‘‘folk theorem of evolutionary game theory’’,
cf. Hofbauer and Sigmund, 1998) that each convergent trajectory
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in the interior of the state space converges to a Nash equilibrium.
Finally, in Akin and Hofbauer (1982) it is proven that in doubly
symmetric games, each trajectory converges. According to Lemma 6,
there is some �-environment of x such that all Nash equilibria
within it belong to the same continuum of NSSs as x. So there is
some neighborhood A of x such that all points in A remain within
the �-environment of x. Hence all interior points within A converge
to some NSS that belongs to the same continuum of NSSs as x. &

We get the immediate corollary:

Corollary 1. Each NSS belongs to some continuum of NSSs that

attracts a set of states with a positive measure.

Proof. As A is a neighborhood of x, it has a positive measure. The
boundary of the state space has measure zero. Hence the set of
interior points within A has a positive measure. &

It is obvious that each ESSet has a basin of attraction with a
positive measure—this follows directly from the fact that each
ESSet is asymptotically stable. The corollary shows though that
the basins of attraction of the ESSets do not exhaust the state
space. As pointed out in Observation 4, there are NSSs that do not
belong to any ESSet. As ESSets are asymptotically stable, each
ESSet has a neighborhood that does not contain any NSSs. Hence if
an NSS x does not belong to any ESSet, the entire continuum of
NSSs that x belongs to is disjoint from the ESSets. We thus get the
additional corollary:

Corollary 2. The set of Nash equilibria that do not belong to any

ESSet attracts a set of states with a positive measure.

One might conjecture that Nash equilibria that are not stable do
not have a basin of attraction with a positive measure—or, to put
it the other way round, that almost all initial states converge to an
NSS. While this seems plausible, this issue is, to my knowledge,
still unsolved.

So in the absence of neutral drift, there is no guarantee that a
population will converge to some ESSet under the replicator
dynamics. However, it can be shown quite easily that a
combination of natural selection and neutral drift leads into some
ESSet from any arbitrary initial state. (A similar result is given by
Trapa and Nowak (2000) for the class of games considered there.)

Theorem 5. Given any strategy profile x1, there is a finite sequence

of profiles ðxiÞipn for some n 2 N such that
1.
 there is an ESSet E such that xn 2 E, and
2.
 uðxiþ1; xiÞXuðxi; xiÞ 8ion.
Proof. see Appendix.

If uðxiþ1; xiÞXuðxi; xiÞ, this means that an xi-population can
successfully be invaded and replaced by xiþ1-mutants, either due
to natural selection (if the inequality is strict) or by neutral drift (in
case of equality). So the theorem entails that from each point there
is at least one trajectory that leads to some ESSet if the effects of
neutral drift are taken into account. ESSets, however, are protected
against the effects of drift because they are asymptotically stable.
4 Pawlowitsch does not explicitly discuss ESSets beyond ESSs, but it is easy to

see that there are no ESSets in the class of games investigated by her that do not

consist solely of ESSs. Suppose otherwise. As shown in Cressman (2003), ESSets of

symmetrized asymmetric games are sets of Nash equilibria that are closed under

best response. So if E is an ESSet and x 2 E is not a strict equilibrium, there must be

a best response y to x such that y is pure and y 2 E. If Sy is a permutation matrix,

then Ry must be its transpose (and vice versa), i.e. y would be strict. But since x

must be a best response to y, x would also be strict, contra assumption. So both Sy

and Ry must contain at least one zero-column. As shown by Pawlowitsch, such a

state cannot be neutrally stable, but all elements of some ESSet must be neutrally

stable, so we have a contradiction.
7. Relation to previous work

Results that are similar to those presented above have been
obtained by Pawlowitsch (2007) for the class of signaling games
where m ¼ n, all events have the same probability, and signaling is
costless (or, equivalently, all events incur the same costs). In these
games too, if nX3 there are sets of neutrally stable states not
belonging to any ESSet that attract a set of initial states with a
positive measure.4 Despite this global similarity, the structure of
these neutrally stable sets are quite different in the two classes of
games. The only neutrally stable states of a game with generic
probabilities and payoffs (and n ¼ m) that remain neutrally stable
when ~e and ~c are replaced by constant vectors (i.e. when a game
from the class considered here is transformed into an isomorphic
game from the class considered in Pawlowitsch’s paper) are the
ESSs.

To see why, consider some neutrally, but not evolutionarily,
stable state x of a game from the class considered here, with
m ¼ n. It cannot be a strict equilibrium, because otherwise it
would be an ESS. However, according to the Lemmas 4 and 5, Px is
a pure strategy that is the unique best response to Qx. So there
must be multiple best responses to Px. As Px is pure and
probabilities are generic, Px must contain a zero-column. Let us
say that the j1th column of Px is a zero-column. Since n ¼ m, Px

must also contain a column with multiple positive entries. Let us

say that this column is j2, and that i1 and i2 are the two smallest
row indices such that px

i1j2
; px

i2 j2
40. Since x is a Nash equilibrium,

rx
j2i1
¼ 1, and thus rx

j2i2
¼ 0.

An example of this configuration was given in Example 4 and is
repeated here:

Sx
¼

1 0

1 0

� �
; Rx

¼
1 0

a 1� a

� �
,

Px
¼

:75 0

:25 0

� �
; Qx

¼
1 0

a� :1 :9� a

� �

for some a 2 ð:9;1�. Here j1 ¼ 2, j2 ¼ 1, i1 ¼ 1 and i2 ¼ 2. Now

suppose x is also a Nash equilibrium for constant ~e and ~c. Then

each 1-entry in Sx must correspond to a column maximum in Rx.

Since rx
j2i2
¼ 0, the i2th column of rx must be a zero-column. In the

example, this entails that a ¼ 1.

Sx
¼

1 0

1 0

� �
; Rx

¼
1 0

1 0

� �
.

So both Sx and Rx have at least one zero-column. As proven in

Pawlowitsch (2007), if~e and~c are constant vectors, such a strategy
is not neutrally stable.

So if the vectors ~e and ~c are transformed from generic to
constant (or vice versa), all properly neutrally stable states cease
to be stable, while new continua of neutrally stable states emerge.
Future research will have to show whether it is possible to
develop a characterization of neutral stability that does not
impose restrictions on ~e and ~c, such that Pawlowitsch’s and the
present results come out as special cases. For the time being, I
have to leave this issue open.

A similar but more general result is proven by Huttegger
(2007). He investigates the class of signaling games where n ¼ m

and signals are costless, but he drops the assumption that events
are equiprobable. Neither does he assume that event probabilities
are generic; no restrictions whatsoever are placed on ~e. He shows
that if nX3, there is always a set of neutrally stable states that
attracts a set of initial states with a positive measure. If event
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probabilities are generic, this result even extends to the case
where n ¼ m ¼ 2.

Evolutionary stability conditions for games with costly signaling
are also investigated in Blume et al. (1993). They consider a wider
class of utility functions, which contains the one considered here as
a special case. On the other hand, they restrict attention to games
where m42mþn

þ n, none of which has ESSs. The authors focus on
the set-valued stability concept of an equilibrium evolutionarily

stable set (EES set; cf. Swinkels, 1992), which is related, but not
identical to the notion of an ESSet. Hence the issues addressed in
their paper are complementary to the ones discussed here.
8. Conclusion

The paper investigated the conditions for static and dynamic
stability for a certain class of signaling games. Specifically, I
focused on games where the interests of sender and receiver are
identical except possibly regarding signaling costs, signals incur
differential costs and events have differential probabilities. The
investigation was restricted to generic parameter configurations.
It turned out that essentially those languages are evolutionarily
stable where sender and receiver use the same bijective map
between events and signals. If the number of events exceeds the
number of signals, some events are never communicated though.
If, on the other hand, the number of signals exceeds the number of
events, the most expensive signals are never used.

One might argue that actually only the case with m ¼ n is
relevant. It is always possible to introduce new signals via some
kind of mutation if mon, and signals that are never used (in case
of m4n) are virtually non-existent. Whether or not this is really
the case perhaps depends on the precise physical and cognitive
boundary conditions. While for instance natural languages can
use recursivity to create an unbounded number of signals, this
complexity comes at a cost that in some cases may be so high that
the signal in question turns out to be useless.

The second finding of the paper concerns neutral stability. Each
of the investigated games has an infinity of neutrally stable states
that are not included in any ESSets. Furthermore, these sub-
optimal states jointly attract a set of states with a positive
measure. So if evolution consisted only of natural selection, we
would predict that such states are in fact empirically observable.
They are not protected against neutral drift though, so depending
on the force of drift, neutral stability may or may not be relevant
empirically. If the population is sufficiently large (as it has to be if
the replicator dynamics is applicable) and the mutation rate is
low, it may take an arbitrarily long time until a population leaves
some continuum of sub-optimal states.

These weakly stable states are characterized by the fact that
certain potentially useful signals are in fact never used. One might
argue that such situations are in fact attested in historical
linguistics. For instance, the Proto-Indo-European long vowels
/a:/ and /o:/ collapsed into /o:/ in Proto-Germanic, leaving the
latter language with the phonetic slot of the long /a:/ unfilled. This
process must have taken place within the first millennium BCE.
Due to a seemingly unrelated process of linguistic change,
Germanic short vowels were lengthened in certain words during
the transition from Proto-Germanic to Old High German.5 In this
way, Old High German re-acquired the long vowel /a:/. This
(probably) happened several centuries later. One might hypothe-
size that the Proto-Germanic vowel system was neutrally but not
evolutionarily stable. If correct, this would be an indication that
5 More precisely, a Proto-Germanic sequence of short vowelþ nasal consonant

þ voiceless uvular fricative was replaced by a sequence of long vowel þ fricative in

Old High German.
neutrally stable states can persist a significant amount of time
even if they are not protected against drift.

Be this as it may, the issue whether or not—or under what
conditions—neutrally but not evolutionarily stable states are
expected to be observable empirically is an intriguing one that
deserves further investigation.

A final point concerns the issue of symmetric versus asym-
metric dynamics. The present paper only investigated the stability
properties of symmetrized signaling games. This is justified in
scenarios where each individual can act both as a sender and as a
receiver. This is valid in many domains of application—especially
in linguistics, but also for certain signaling systems in biology and
economics. However, various scenarios for the evolution of
signaling games involve a genuinely asymmetric situation, like
signals being sent from males to females, interspecific commu-
nication, signaling from seller to buyer, etc. Fortunately all results
for the symmetrized games straightforwardly carry over to the bi-
population replicator dynamics of the corresponding asymmetric
game. In particular, it follows from results given in Cressman
(2003) that a set of profiles is asymptotically stable according to
the symmetrized replicator dynamics if and only if it is
asymptotically stable under the asymmetric replicator dynamics.

Likewise, the proofs of the statements from Section 6 regarding
neutral stability carry over the asymmetric setting without
problems. So in particular the two corollaries (with ‘‘ESSet’’
replaced by ‘‘SESet’’ in the second corollary) also hold for the bi-
population dynamics.
Appendix

Proof of Lemma 1. The proof relies on the assumption that each
stochastic matrix M can be represented as the expected value of a
probability distribution over pure stochastic matrices, i.e. ma-
trices with exactly one 1 per row and 0 everywhere else. This can
be shown by induction over the number of cells with values in
ð0;1Þ. If there are no such cells, M is already pure. So let us assume
that M contains n values in ð0;1Þ, and let mij ¼ a 2 ð0;1Þ be the
smallest of these values.

Then let M0 be a pure stochastic matrix which has all its 1-

entries at positions where M has positive entries. Furthermore,

m0ij ¼ 1. M00 ¼ ð1� aÞ�1
ðM � aM0Þ is then a stochastic matrix

containing n� 1 positive entries, and M ¼ ð1� aÞM00 þ aM0. By

induction hypothesis, M00 is the weighted average of a set of pure

matrices. Hence M is the weighted average of a set of pure

matrices as well, which concludes the induction step.

Now suppose x is a Nash equilibrium and px
ij40. Also, suppose

there is some j0 such that qx
j0i
4qx

ji. Let y be so that Py is exactly like

Px except that py
ij ¼ 0 and py

ij0
¼ px

ij0
þ px

ij. (It follows from the

construction given in the previous paragraph that such a y always

exists.) Then trðPyQx
Þ � trðPxQx

Þ ¼ px
ijðq

x
j0 i
� qx

jiÞ40, so Px is not a

best response to Qx. This contradicts the assumption that x is

Nash, 1 must in fact hold. The proof of 2 is entirely analogous.

As for the other direction, suppose Px is not a best response to

Qx. Hence there is some best response Py to Qx with

trðPyQx
Þ4trðPxQx

Þ. So there must be at least one i withX
j

py
ijq

x
ji4

X
j

px
ijq

x
ji.

Let

i� ¼ arg
i

max
X

j

py
ijq

x
ji �

X
j

px
ijq

x
ji

0
@

1
A.
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G. Jäger / Journal of Theoretical Biology 253 (2008) 131–141 139
So necessarily

X
j

py
i� j

qx
ji�4

X
j

px
i� jq

x
ji� .

Let j� be such that qx
j� i�

is maximal within its column. Then for

some matrix Pz which is exactly like Py except that pz
i�j�
¼ 1 we

have

X
j

pz
i� jq

x
ji� ¼ qx

j�i� .

Hence, because Py is a best response to Qx,

X
j

py
i� j

qx
ji� ¼ qx

j�i�

as well, and thus

X
j

px
i� jq

x
ji�oqx

j� i� .

So there must be some i0 with px
i0j�
40 and qx

j� i0
oqx

j� i�
.

By contraposition of this argument, we infer that if the

assumption 1 is met, Px is a best response to Qx. By a similar

argument it can be shown that assumption 2 entails that Qx is a

best response to Px. These two implications jointly entail the

lemma. &

Proof of Lemma 2. Suppose x is a strict Nash equilibrium, and

suppose px
ij ¼ px

i0 j
are both column maxima with iai0. Let y and z be

so that ðPy;Qy
Þ and ðPz;Qz

Þ are exactly like ðPx;Qx
Þ except that

qy
ji ¼ 1þ cj and qz

ji0
¼ 1þ cj. Both y and z are then best responses to

x, so x cannot be a strict Nash equilibrium.

Now suppose x is Nash, and each column in Px and Qx has a

unique maximum. It follows from Lemma 1 that Px has non-zero

entries only at positions that correspond to column maxima in Qx.

Since column maxima are unique, there cannot be a y with PyaPx

such that y would be Nash as well. Likewise, Qx has entries qx
ji4cj

only at positions that correspond to column maxima in Px. By a

similar argument, Qx must be a unique best response to Px. So x is

in fact strict. &

Proof of Theorem 1. The proof for the only–if direction is given in
the text. So suppose all four assumptions on the right-hand side
hold. It follows that each column of Px has exactly one maximum.
According to Lemma 2, it remains to be shown that x is a Nash
equilibrium.

It follows from the assumptions 2 and 3 that there are n positive

entries in Px—one per row. So if px
ij40, then px

ij ¼ ei. Due to

genericity, therefore each column in Px has unique maximum. For

the first column, this must be the one with the lowest index. From

assumption 4 it follows that the second condition of Lemma 1 is

fulfilled.

Likewise, each column of Qx has a unique maximum. If

qx
ji ¼ 1þ cj, qx

ji is the unique maximum of the ith column of Qx.

If qx
ji ¼ cj for all j, the maximum of the ith column must be qx

1i.

Suppose j�41, and px
i� j�

40. Because of assumption 3

i� ¼minðfi0 : px
i0 j�
40gÞ, and hence qx

j� i�
¼ 1þ cj� due to assumption

4. So qj�i� is a column maximum.

Now assume px
i�140. If px

i�1 is a column maximum, rx
1i�
¼ 1, and

hence qx
1j�

is a column maximum. If px
i�1 is not a column maximum,

rx
1i�
¼ 0. We have to show now that qx

1i�
is a column maximum.

Suppose it is not. Then there must be a j�41 with qx
j� i�
¼ 1þ cj� . By
assumption 4, px
i� j�

40. This is not possible though because the i�th

row of Px contains exactly on positive entry (due to assumptions 2

and 3), which is px
i�1 by assumption. Hence qx

1i�
is a column

maximum. So according to Lemma 1, x is a Nash equilibrium, and

according to Lemma 2, it is a strict equilibrium. Hence it is an

ESS. &
Proof of Theorem 2. Suppose A is an ESSet, x 2 A and x is not an
ESS. Cressman (2003, 46,47) proves that if y 2 A and
uðy; xÞ ¼ uðx; xÞ, then uðx; yÞ ¼ uðy; yÞ. Furthermore, according to
the definition, if yeA and uðy; xÞ ¼ uðx; xÞ, then uðy; yÞouðx; xÞ. So in
either case, if y is a best response to x, then uðy; yÞpuðx; xÞ, so x is
neutrally stable.

According to Lemma 4, Px is a pure strategy, and according to

Lemma 5, Qx does not contain multiple column maxima. If x is not

an ESS, there must be an alternative best response y with uðy; xÞ ¼

uðx; xÞ and uðy; yÞ ¼ uðx; xÞ. Since Px is the unique best response to

Qx, Py
¼ Px. Since Px is pure and xay, either Qx is mixed and

Qy
¼ Qx or QyaQx. In either case, it follows that there are

multiple best responses to Px. So Px must have at least one column

with multiple maxima. Because Px is pure, this must be a zero-

column. Let the j�th column be the zero-column of Px with the

lowest index. Since Px is a best response to Qx, no entry in the j�th

row of Qx can be a column maximum. Now suppose there is

some j4j� and some i such that qji is a column maximum. Let z

be exactly like x except that qz
j� i
¼ 1þ cj� (and all other entries

in this row are cj� ). Since Qz is still a best response to x, it

follows from the assumptions that z 2 A. On the other hand, z is

not a Nash equilibrium because the only positive entry in the ith

row of Pz is in the jth column, but the column maximum of the ith

column of Qz is in the j�th row. So z 2 A and z is not Nash, which is

a contradiction. Therefore, if the j�th column of Px is a zero-

column, all column maxima in Qx must have a lower row index

than j�.

All columns in Px with an index joj� are not zero-columns.

Therefore each of these columns has a unique maximum. As x is a

Nash equilibrium, the corresponding rows in Rx are pure (do not

contain entries strictly between 0 and 1). Hence there cannot be

several column maxima within one row in Qx. So j� ¼ nþ 1, and

hence nom.

We thus established that the first n rows of Qx contain all the

column maxima of Qx. Since Px is a pure best response to Qx, all

positive entries in Px must be located within the first n columns.

But this entails that the restriction of Sx to the first n columns is a

permutation matrix. Since Qx is a best response to Px, the

restriction of Rx to the first n rows must be a transpose of Sx, so

the restriction of Px to the first n columns and of Qx to the first n

rows do in fact form an ESS.

Now suppose m4n, Px
¼ Py, and Qx and Qy agree on the first n

columns. By the argumentation given above, all column maxima

of Qx are located in the first n rows. Hence Qx and Qy agree on the

location of the column maxima. They only disagree on the rows

with an index 4n, and these rows correspond to zero-columns in

Px=Py. Hence uðx; xÞ ¼ uðy; xÞ ¼ uðy; yÞ, and therefore y 2 A.

Now let us turn to the other direction. Suppose the conditions

1–3 are fulfilled and x 2 A. To prove that A is an ESSet, we have to

show that for each y with uðy; xÞ ¼ uðx; xÞ and uðx; yÞpuðy; yÞ, it

holds that y 2 A. (I use the transpose of the formulation given in

Definition 2.) So let us assume that uðy; xÞ ¼ uðx; xÞ and

uðx; yÞpuðy; yÞ.
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According to assumptions 1 and 2 the restriction of Rx to the

first n rows is a permutation matrix. Hence the first n rows of Rx

are pure. This entails that Qx cannot contain multiple column

maxima. Rather, all column maxima of Qx are located within the

first n rows where Rx contains 1-entries. So Px is a best response to

Qx. Likewise, according to assumption 2, Qx is a best response to

Px. Hence x is a Nash equilibrium. Since uðy; xÞ ¼ uðx; xÞ, y is a best

response to x. Since Qx does not contain multiple column maxima,

there is a unique best response to it, so Px
¼ Py. Likewise, the first

n columns of Px have unique column maxima, so Qx and Qy must

agree on the first n rows. According to assumption 3, y 2 A. &

Proof of Lemma 3. Suppose x is a Nash equilibrium with
0opx

i� j�
oei� and cj�oqx

j� i�
o1þ cj� . If px

i� j�
40, qx

j� i�
must be a column

maximum according to Lemma 1. Also, there must be some jaj�

with px
i�j
40, and hence qx

ji�
is a column maximum as well, hence

qx
ji�
¼ qx

j� i�
. Likewise, if qx

j� i�
4cj� , there must be some iai� with

qx
j� i
4cj� , and hence px

ij�
¼ px

i� j�
are both column maxima.

We can construct a strategy y such that ðPy;Qy
Þ is exactly like

ðPx;Qx
Þ, except that:

py
i�j�
¼ px

i� j� þ px
i� j,

py
i�j
¼ 0,

qy
j� i�
¼ qx

j� i� þ qx
j�i � cj� ,

qy
j�i ¼ cj� ,

trðPxQy
Þ ¼ trðPyQx

Þ ¼ trðPxQx
Þ, so uðy; xÞ ¼ uðx; xÞ. However,

trðPyQy
Þ � trðPxQx

Þ ¼ px
i� j
ðqj� i � cj� Þ40, hence uðy; yÞ4uðx; xÞ. So x

cannot be neutrally stable. &

Proof of Lemma 4. Suppose otherwise. Then there must be at
least one row i in Px with multiple positive entries that are smaller
than ei. This in turn implies that the corresponding column in Qx

has multiple maxima. So at least one of these positive entries in Px

must correspond to some qx
ji with cjoqx

jio1þ cj. According to
Lemma 3, x cannot be neutrally stable then. &

Proof of Lemma 5. Suppose x is an NSS, and Qx contains multiple

column maxima. Let us say that the ith column of Qx has multiple

maxima. Let j1 ¼ minðfjjqx
ji ¼maxj0 q

x
j0i
gÞ, and let j2 2 fjjq

x
ji ¼

maxj0 q
x
j0 i
g � fj1g. Obviously j1oj2.

Since qx
j2ip1þ cj2

and cj1
4cj2

, qx
j1 io1þ cj1

. So there must be

some i1 with qx
j1 i1

4cj1
. Hence both px

ij1
and px

iij1
are column maxima

because of Lemma 1. As x is NSS, Px is pure according to Lemma 4.

Hence the j1th column of Px is a zero-column, so px
ij1
¼ 0. Hence

there must be some j�aj1 such that px
ij�
40. Therefore qx

j� i
is a

column maximum, so qx
j� i
¼ qx

j1 i.

We construct a y such that ðPy;Qy
Þ is exactly like ðPx;Qx

Þ, except

that

py
ij1
¼ px

ij� ,

py
ij�
¼ 0,

qy
j1 i ¼ qx

j1 i þ qx
j1i1
� cj1

,

qy
j1 i1
¼ cj1

.

It follows that trðPyQx
Þ ¼ trðPxQy

Þ ¼ trðPxQx
Þ, but trðPyQy

Þ�

trðPxQx
Þ ¼ px

ij�
ðqx

j1i1
� cj1
Þ40. So uðy; xÞ ¼ uðx; xÞ, and uðx; yÞo

uðy; yÞ, hence x is not neutrally stable. &

Proof of Lemma 6. If x� is not an ESS, Qx is not the unique best
response to Px. Hence Px must contain columns with multiple
column maxima. As x is neutrally stable, these must be zero-
columns.

The minimal difference between a column maximum and the

second largest entry in some column in Px is en (the smallest

positive entry in Px; the non-maximal entries all equal 0). Hence if

�oen=2, the configuration of column maxima in P is preserved in y

provided kx� yko�.

Let dj be the difference between the column maximum in Qx
j

and the second largest entry within this column:

dj¼
:

min
i0

arg max
i

qx
ji � qx

ji0

� �
.

We assume that �ominðminj dj; enÞ=2. In this way we ensure that

for each strategy z within the �-environment of x, each column

maximum in Pz and Qz corresponds to a column maximum in Px

or Qx, respectively. Since Px contains zero-columns, not each

column maximum of Px must correspond to a column maximum

of Pz though.

Let y be a Nash equilibrium within the �-environment of x.

Suppose the j�th column of Px is a zero-column. Then none of the

entries in the j�th row of Qx is a column maximum. Accordingly,

the j�th row of Qy does not contain any column maxima either.

Because y is Nash, the j�th column of Py must also be a zero-

column. This in fact entails that Px
¼ Py. Since x and y have the

same configuration of column maxima, BRðxÞ ¼ BRðyÞ.

Now suppose z is a best response to y. Then it is also a best

response to x:

uðz; yÞ ¼ uðz; xÞ ¼ uðy; yÞ ¼ uðx; xÞ.

Because x is neutrally stable, uðx; xÞXuðz; zÞ. Hence uðy; yÞXuðz; zÞ.

This establishes that y is neutrally stable.

Suppose w is a convex combination of x and y: w ¼ axþ ð1� aÞy.

w thus has zero-entries wherever both x and y have zero entries.

Therefore w has the same configuration of column maxima as x

and y. Therefore BRðwÞ ¼ BRðxÞ. Due to the linearity of the utility

function, w 2 BRðwÞ, so w is a Nash equilibrium. By the same

argument used for y, we can prove that w is also neutrally

stable. &

Proof of Theorem 5. Suppose x is not a Nash equilibrium. Then
either Px is not a best response to Qx or vice versa. Let us assume
the former is the case. Then there is some pure sender strategy P

with

trðPQx
Þ4trðPxQx

Þ.

For one pure receiver strategy Q in the support of x, it must be the
case that

trðPQ ÞXtrðPQx
Þ.

If Qx is not a best response to Px, the argumentation is analogous.
So in sum we see that from each non-equilibrium strategy x we
can reach a pure strategy y with uðy; yÞ4uðx; xÞ with at most two
better-response steps. If y is not a Nash equilibrium, we can
continue this construction. This procedure will necessarily lead to
a Nash equilibrium after finitely many steps because (a) the
number of pure strategies is finite and (b) the fitness always
strictly increases in each double-step.

So suppose x is a Nash equilibrium that does not belong to any

ESSet. It is shown in Cressman (2003) that in a symmetrized

asymmetric game, a set of Nash equilibria is an ESSet if and only if

it is closed under mixed-strategy best replies. So if x does not

belong to any ESSet, there must be a finite number of best-reply



ARTICLE IN PRESS
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steps starting from x that lead to some point y that is not a Nash

equilibrium.

So starting from some arbitrary point, I will always reach a pure

strategy equilibrium with finitely many better-response steps. A

pure strategy equilibrium x either belongs to some ESSet or I can

reach another pure strategy equilibrium y from x with

uðy; yÞ4uðx; xÞ. Since there are only finitely many pure strategies,

it follows that I can reach some ESSet from any arbitrary point in

finitely many steps. &

(Note that the argument does not depend on the specific
properties of signaling games but applies to each symmetrized
asymmetric partnership game.)
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