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Gärdenfors (2000) argues that natural denotations of natural language predicates are convex
regions in a conceptual space. Using techniques from evolutionary game theory, the paper
shows that this convexity criterion is a consequence of the evolutionary dynamics of language
use.

Evolutionary game theory (EGT) is a mathematical framework to model the con-
sequences of interaction between individuals for the evolutionary dynamics of a
population. Suppose a certain type of interaction between members of a popula-
tion has an impact on their fitness. Furthermore, the outcome of the interaction
depends on heritable traits (“strategies”) of the individuals involved. Under these
conditions, the interaction can be modeled as a strategic game, where utility can
be identified with fitness.

One of the appealing features of this model is the fact that the attractor points
of the ensuing dynamics (the “evolutionarily stable strategies”) can be character-
ized purely in terms of the utility matrix. This is particularly straightforward in
the case of asymmetric games. There, exactly thestrict Nash equilibria are evo-
lutionarily stable (as proved by Reinhard Selten in 1980). A pair of strategies is
a strict Nash equilibrium if each strategy is the unique best response to the other
strategies.

This model is applicable both to biological and to cultural evolution.
Applied to the cultural evolution of language, the individuals involved are
speakers/hearers-in-an-utterance, strategies are linguistic constructions, and fit-
ness is the likelihood of a construction to be imitated. We expect to find natural
languages in evolutionarily stable states most of the time. The notion of evolu-
tionary stability is thus a way to reduce linguistic universals to the evolutionary
dynamics of language use.

Gärdenfors (2000) argues the semantic domains that natural language deals
with have a geometrical structure. He gives evidence that simple natural language
adjective usually denote natural properties, where a natural property is aconvex
region of such a “conceptual space”. In this paper I will argue that under very



natural assumptions about the utility function, convexity of meanings falls out as
a consequence of evolutionary stability.

Imagine a simple communication game. The game leader, “Nature”, shows
one player (the sender S) a point in some continuous Euclidean space. S can send
one out of a finite set of signals to the receiver R. R in turn has to guess the point
that Nature showed to S.

The problem has the shape of a signaling game. Nature chooses some point in
the meaning space, according to some fixed probability functionpi. S and R have
the joint goal to maximize the similarity between Nature’s choice and R’s choice.

Formally, we say thatM is the set of meanings (points in the meaning space),
S is a function fromM into some finite setF of forms, andR is a function from
F to M . The utility of the communicators can be defined as

u(S, H) =
∑

m∈M

pi(m) · sim(m,R(S(m))) (1)

wheresimis a function that measures the similarity between two points. Similarity
between two points is a monotonically decreasing function of their distance in the
conceptual space. By convention, similarity is always positive, and every point
has a similarity of1 to itself. The interests of S and R are completely identical.
Also, the signals themselves come with no costs.

Suppose S knowsR, the interpretation function of the receiver. What would
be the best coding strategy then? For each possible signalf , S knows R’s inter-
pretation, namelyR(f). So for a given choicem of Nature, S should choose the
signalf that maximizessim(m,R(f)). In other words, each formf corresponds
to a uniqe pointR(f), and each input meaningm is assigned to the point which
is most similar tom, or, in other words, which minimizes the distance tom. This
kind of partitioning of the input space is called aVoronoi Tesselation. It is easy
to show that the Voronoi tessellation based on a Euclidean metric always results
in a partioning of the space into convex regions.
Since the meaning space is continuous, there may be pairs of functions fromM
to F that, though different, differ with a probability 0. (For instance if they only
differ with respect to a single point.) If we identify sender strategies with equiv-
alence classes of such functions rather than with such functions itself, there is
actually a unique best response to each receiver strategy—the equivalence class
of the Voronoi tessellation that is induced by that receiver strategy.

The best response of R to a given coding functionS is given by.

R(f) = arg max
m

∫
S−1(f)

pi(m′)sim(m,m′)dm′ (2)

The precise nature of such an optimal sender’s response depends on the details of
Nature’s probability functionpi, the similarity function, and the geometry of the



underlying space. Suffice it to say that for a closed space and continuouspi and
sim, the existence of such a best response is always guaranteed.

From these considerations it follows that in each game of the described class
(with a finite Euclidean meaning space and continuous similarity functions and
probability distributions), there are evolutionarily stable states, andin each evo-
lutionarily stable state, the meaning of each form is a continuous region of
the meaning space.

For the purpose of illustration, I did a few computer simulations of the dy-
namics described above (using a discrete approximation of a continuous space).
The meaning space was a set of squares inside a circle. The similarity between
two squares is inversely related to its Euclidean distance. All meanings were as-
sumed to be equally likely. The experiments confirmed the evolutionary stability
of Voronoi tesselations. The graphics in Figure 1 show stable states for different
numbers of forms. The shadings of a square indicates the form that it is mapped
to by the dominant sender strategy. Black squares indicate the interpretation of a
form under the dominant receiver strategy.

Figure 1. Evolutionarily stable states of the signaling game with a uniform probability distribution
over meanings

In the previous simulations, I assumed a uniform probability distribution over the
meaning space. This leads to an infinity of evolutionarily stable states. In the
remainder of the paper I will illustrate with an example that a skewed probability
distribution may reduce the number of equilibria quite drastically.

Let us assume that the meaning space contains finitely many, in fact very few,
small regions that are highly frequent, while all other meanings are so rare that
their impact on the average utility is negligible. For the sake of concreteness, let
us suppose that the meaning space forms a circle, and that there are just four mean-
ings that are frequent. Let us call them Red, Green, Blue and Yellow. Inspired by
the middle plane of the color space (supressing the brightness dimension), I as-
sume that all four prominent meanings are close to the periphery, and they are
arranged clockwise in the order Red, Yellow, Green, and Blue. Their positions are
not entirely symmetric. Rather, they are arranged as indicated in Figure 2.

Since the similarity between two points is inversely related to their distance, it
follows that Blue and Green are more similar to each other than Red and Yellow,
which are in turn more similar than the pair Green/Yellow and the pair Red/Blue.



Figure 2. Schematic arrangement of the four prominent meanings in the example

The pairs Blue/Yellow and Red/Green are most dissimilar.
We finally assume that the probabilities of all four prominent meanings are

close to25%, but not completely equal. For the sake of concreteness, let us assume
that

pi(Red) > pi(Green) > pi(Blue) > pi(Yellow) (3)

Now suppose the sender has just two forms at her disposal. What are the strict
Nash equilibria of this game?

A Voronoi tesselation induces a partition of the set{Red, Yellow, Green,
Blue}. The partition{Red, Green}, {Blue,Yellow} is excluded because it is not
convex. This leaves seven possible partitions:

1. {Red, Yellow, Green, Blue}/{} This is a weak Nash equilibrium; i.e., one
of the strategies involved is not theuniquebest response to the other player’s
strategy. It is thus not evolutionarily stable.

2. {Red}/{Yellow, Green, Blue} If the sender strategy partitions the meaning
space in this way, the best response of the receiver is to map the first signal to
Red and the second one to the point that maximizes the average similarity to the
elements of the second partition. If the probabilities of Yellow, Green and Blue
are almost equal and all other points have a probability close to 0, the average
similarity to Yellow, Green and Blue is a function with three local maxima, that
are located close to Yellow, Green and Blue respectively. So if the sender uses
this partition, the best response of the receiver is to map the first form to Red and
the second to the point with the highest average similarity to Yellow, Green and
Blue. This is one of the mentioned three local maxima. Since, by assumption,
Green is more probable than Yellow and Blue, the maximum close to Green is the
global maximum. But this entails that the sender strategy is not the best response
to the receiver, and thus this partition does not lead to evolutionary stability.

3. {Yellow}/{Red, Green, Blue} For similar reasons as in the previous case,
this partition thus does not correspond to a Nash equilibrium either.

4. {Green}/{Red, Yellow, Blue} Since Blue is closer to Green than to Red,
this partition does not correspond to an equilibrium for analogous reasons.



5. {Blue}/{Red, Yellow, Green} This case is analogous because Green is
closer to Blue than to Red.

6. {Red, Yellow}/{Green, Blue} The best response of the receiver here is to
map the first form to Red and the second to Green. The best response of the
sender to this strategy in turn is to map Red and Yellow to the first form, and
Green and Blue to the second. So this partition creates a strict Nash equilibrium.

7. {Red, Blue}/{Yellow, Green} The best response of the receiver here is to
map the first form to Red and the second to Green. The best response of the
sender in turn would be to to map Red and Yellow to the first form, and Green
and Blue to the second. Hence this partition does not induce a Nash equilibrium.

So it turns out that with two forms, only the bipartition{Red, Yellow}/{Green,
Blue} is evolutionarily stable.

Let us turn to the analogous game with three forms. Each sender strategy in
this game creates a tripartition of the meaning space. We only have to consider
convex tripartitions. All convex bipartitions are trivially also tripartitions, with
an empty third cell. It is also immediately obvious that such a partially trivial
partition cannot give rise to a strict Nash equilibrium. Besides, there are four
more, non-trivial convex tripartitions:

1. {Red}/{Yellow}/{Green, Blue} The best response of the receiver is to map
the first signal to Red, the second to Yellow, and the third to Green. The best
response of the sender to this strategy is to use the above-mentioned partition, so
this leads to a strict Nash equilibrium.

2. {Yellow}/{Green}/{Blue, Red} This does not correspond to a Nash equi-
librium because the best response of the receiver is to map the third form to red,
and since Blue is closer to Green than to Red, the best response of the sender
would be to switch to the previous partition.

3. {Green}/{Blue}/{Red, Yellow} The best response of the receiver is to map
the three forms to Green, Blue, and Red respectively, and the best response of
the sender in turn is to use the Voronoi tessellation that is induced by these three
points. This is exactly the partition in question, so it does lead to a strict Nash
equilibrium.

4. {Red}/{Blue}/{Yellow, Green} Since Yellow is closer to Red than to
Green, this does not lead to a Nash equilibrium either.

So in this game, we have two partitions that are evolutionarily stable, namely
{Red}/ {Yellow}/{Green, Blue} and{Green}/{Blue}/{Red, Yellow}. There is an
asymmetry between the two equilibria though. Recall that the evolutionary model
assumes that the strategy choice of the players is not fully deterministic but subject
to some perturbation. Suppose the system is in one of the two evolutionarily stable



states. Unlikely though it may be, it is possible that very many mutations occur
at once, and all those mutations favor the other equilibrium. This may have the
effect of pushing the entire system into the other equilibrium. Such an event is
very unlikely in either direction. However, it may be that such a switch from the
first to the second equilibrium may by more likely than in the reverse direction.
This would have the long term effect that in the long run, the system spends more
time in the second than in the first equilibrium. Such an asymmetry grows larger
as the mutation rate gets smaller. In the limit, the long term probability of the first
equilibrium converges to 0 then, and the probability of the second equilibrium to
one. Equilibria which have a non-zero probability for any mutation rate in this
sense are calledstochastically stable.

Computer simulations indicate that for the game in question, the only
stochastically stable states are those that are based on the partition{Red}/
{Yellow}/{Green, Blue}. In the simulation, the system underwent 20,000 up-
date cycles, starting from a random state. Of these 20,000 “generations”, the
system spent 18,847 in a{Red}/{Yellow}/{Green, Blue} state, against 1,054 in a
{Green}/{Blue}/{Red, Yellow} state. A switch from the first into the second kind
of equilibrium did not occur.

Figure 3 visualizes the stable states for the game with two, three and four dif-
ferent forms. As in Figure 1, the shade of a point indicates the form to which the
sender maps this point, while the black squares indicate the preferred interpreta-
tion of the forms according to the dominant receiver strategy. The circles indicate
the location of the four focal meanings Red, Yellow, Green and Blue.

Figure 3. Evolutionarily stable states of the signaling game with focal points

The last example sketched a hypothetical scenario which induces the kind of
implicative universals that are observed in natural languages with regard to color
universals. My choice of parameters was largely stipulative. However, it is hoped
that psycholinguistic research can supply empirically justified values for them.
Evolutionary consideration could then establish a link between psycholinguistics
and typology.
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