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INTRODUCTION

Human language provides, among other things, a mechanism for
distinguishing between relevant objects in the natural environment. This
mechanism is composed of two components — forms and meanings — which
must be shared by the community of language users. The lexicon constitutes
much of a language’s form, but its description as a set of shared form-
meaning resources for communication is seldom addressed by formal models
of language. This paper presents a simulation model of how shared symbols
(form-meaning pairs) can emerge from the interactions of simple cognitive
agents in an artificial world. The problem of creating a lexicon from scratch is
solved by having cognitive agents capable of organizing themselves
internally — that is, agents which can learn to classify a world of visual
phenomena - share their expressions of visual experience in interaction. The
model is seen as an instantiation of a theory of cognition which takes symbols
to be a product of inter- and intra-individual organizations of behavior, the
result of cultural process.

Below, we first present a theoretical stance which has been derived
(elsewhere) from empirical investigation of human cognitive phenomena.
This stance leads to the articulation of some simple information-processing
constraints which must hold for lexicons and their users. In the middle of the
paper, we present two simulations employing communities of simple agents
which allow us to model how a lexicon could come into existence or emerge
from the interactions between agents in an extremely simple world of
experience. The model allows us to explore issues which involve interaction
between group- and individual-level properties of cognition, social
organization, and communication. Near the end of the paper, we briefly
review some findings from the literature on lexicons of natural language. We
conclude the paper with an evaluation of the model as an instantiation of the
theoretical stance.

A COMMUNITY OF MINDS AS COGNITIVE SYSTEM

Recently, we have been exploring a novel approach to cognitive
anthropology. We've been trying to push the boundaries of a genuinely
cognitive unit of analysis out beyond the skin of the individual. Ever since
symbolic and cognitive anthropology embarked on their ideational odyssey in
the 1950s they have proceeded away from the material and the social aspects
of human life. Of course, many people are interested in social cognition in
which the social world is the content of cognition. And in fact, there are good
arguments for believing that human intelligence developed in the context of
reasoning about social situations (Byrne & Whiten 1988, Levinson, in press).
This kind of relationship between the social and the cognitive is important,



but it is still centered on the notion of the individual as the primary unit of
cognitive analysis. The social world is taken to be a set of circumstances
"outside" the individual, about which the individual reasons. What we
intend, instead, is to put the social and the cognitive on equal theoretical
footing by taking a community of minds as our unit of analysis.

This new perspective permits two things to happen that are not possible
from the traditional perspective. First, it permits inquiry about the role of
social organization in the cognitive architecture of the system and allows
description of the cognitive consequences of social organization at the level of
the community (Hazlehurst 1991, Hutchins, 1991). Second, it permits
symbolic phenomena that are outside the individuals to be treated as real
components of the cognitive unit of analysis (Hazlehurst 1994, Hutchins in
press, Sperber 1985).

Making this move also presents an opportunity to view language in a
new way. Cognitive science generally takes the existence of language as a
given and concerns itself with the sorts of cognitive processes that must be
involved when an individual processes language (in production and
comprehension). From the perspective of the community of minds as
cognitive system, a language’s information bearing capacity, conventions of
use, functionality, distribution, variability, etc. — all become determinants of
the cognitive properties of the community because these things are
instrumental in determining where, when, and what kinds of information
move through the system (cf. Freyd 1983). This attention to the movement of
information in the larger system necessarily brings the material world back
into play since, having acknowledged symbols outside the head, we now
must take seriously their material nature. Furthermore, we need not — indeed
must not — ignore the means individuals have or develop for incorporating
symbols into private as well as collective organizations of behavior. By
redefining our unit of cognitive analysis, it seems to us that progress may be
made towards reuniting the social and the material with the cognitive (cf.
Goody 1977).

A MODEL OF THE EMERGENCE OF SHARED LANGUAGE

The existence of shared language is one of the central facts of human
existence. Language appears to be closely tied to most high level cognitive
activities. It mediates most of the interactions among members of the most
social of all species. Once a language exists, it is not difficult to think of the
means by which it could be maintained and propagated from generation to
generation in a population. But without anyone to tell individuals which
language to speak, how could a language ever arise? How could something
structured come from that which is unstructured? It's a puzzle.



There is, of course, a vast speculative literature on the origins of
language which we will not attempt to treat here. Rather, this study focuses
more modestly on the development of sets of local lexical distinctions as may
arise in small groups of cognitive agents engaged in shared tasks. In this paper
we outline a scheme by which shared denotational resources, that will be
called symbols, arise in the interactions among the members of such a
community. This is certainly not a model of the development of a human
language, but it does demonstrate how simple shared structures can arise
where none existed before. These structures are products of a system whose
organizing dynamics are an interplay between intra-individual and inter-
individual coordinations.

In the presentation, these structures will be referred to as terms,
descriptions, words, or patterns of acoustic features. There is, however, no
strong a priori commitment to any particular level of linguistic
representation here, and the structures described might just as well be
thought of as patterns of denotational or even relational features. Each of the
above terms takes its meaning from a claim about the function of these public
representations in this artificial world. We take this stance to be an important
methodological and theoretical component of this work. Representations
don’t get to be symbols by virtue of us creating them or calling them such, but
rather, by our reading of what they do for the members of a community of
artificial cognitive agents (Clancey 1989).

The model is based on six central theoretical assumptions, derived from
a theory of distributed cognition (Hazlehurst 1991, 1994, Hutchins 1990, 1991,
1993, in press, Hutchins & Hazlehurst 1991, Hutchins & Klausen, in press).

1. No mind can influence another except via mediating structure. (The no
telepathy assumption.)

2. No social mind can become appropriately organized except via interaction
with the products of the organization of other minds, and the shared
physical environment. (The cultural grounding of intelligence
assumption.)

3. The nature of mental representations cannot simply be assumed, they
must be explained. (The shallow symbols assumption - in contrast with
the deep symbols assumption which brings symbols into the language of
thought as an article of faith rather than as a consequence of cultural
process.)

4. Symbols always have both a material and an ideal component. The
material component is what makes form, structure, and differences
possible. The ideal component is a function of the stance that organized
individuals take toward these material forms. (The material symbols
assumption.)



5. Cognition can be described as the propagation of representational state
across representational media that may be internal to or external to
individual minds. (The distributed information-processing assumption.)

6. The processes that account for the normal operation of the cognitive
system should also account for its development through time. (The no
developmental magic assumption.)

Below we present a computer simulation that is an implementation of
these assumptions. It turns out to be a very robust procedure by which a
community of individuals can develop a shared set of symbols. The
simulation is not to be taken seriously as a model of any part of human
history. It is the simplest possible scheme that captures the essential
properties of the system being modeled. The simulations are not to be taken
as representations of actual human cognition, language, culture, or
experience, but as existence proofs that a particular kind of process is capable
of producing a particular sort of outcome, in this case, a community with a
shared lexicon. One is certainly free to question the extent to which it is
reasonable to map this process onto plausible courses of human behavior and
in the discussion section we consider ways in which the model is consistent
with observations about human language.

THE CONSTRAINTS ON A SHARED LEXICON

The central problems of inventing a lexicon can be stated in terms of a
description of the outcome. Consider two individuals, A and B, and a set of
visual scenes or contexts in the world numbered 1,2,3,...,m. Let the description
that an individual uses for referring to a scene be denoted by the
concatenation of the letter designating the individual and the number of the
scene. For example, "B5" denotes the description that individual B uses for
referring to the fifth scene.l Now, if the lexicon is to be shared, the word that
A uses for any particular scene must be the same as that used by B. In
notation: Al = B1, A2 = B2,..., Am = Bm. Simultaneously, if the lexicon is to
be a lexicon at all, there must be differences between the material forms of the
words used by each individual for different scenes. In notation: A1 # A2
#..ZAm and Bl # B2 #...#Bm. (It wouldn't do to have a lexicon for m scenes

1 In fact, a description is a vector of real values which we imagine to be articulatory features
capable of generating a monolexemic word, a piece of agent-created structure, in this artificial
world. The act of "referring” is a property of our construction of the world—we have built into
the world the need for agents to internalize visual experiences and code that organization in
externally realizable structures. This, of course, bypasses a long history of evolution which
might select some of these properties as internal properties of agents. However, in granting
these (on face value, plausible) assumptions we are better able to address cognitive and cultural
issues with our simulations.



that were m homonyms.2) These two constraints must somehow be
simultaneously satisfied in any process that is to develop a shared lexicon. For
our purposes, a shared lexicon is a consensus on a set of distinctions.3

It is interesting that the same mathematical basis, although a different
computational procedure, was developed by Hinton and Becker (1989) to
show how modules in the brain could discover a shared communication
protocol without a supervisor to specify how to communicate. The problem
of discovering a lexicon may be quite general and seems to occur at a number
of levels of organization in cognitive systems. Independent of its relation to
problems solved by organic cognitive systems, the procedures described here
might provide a general engineering solution to problems where modules
must invent a means of communication but where the organization of the
communications protocol cannot be specified in advance.

Cultural Process

Before turning to the simulation, we need to say a few more words about
the theoretical stance. The six theoretical assumptions described previously
can be assembled into a model of cultural process, the temporal
characterization of distributed cognition shown in Figure 1. Our inventory of
representational structure includes natural structure in the environment,
internal structure in the individuals, and artifactual structure in the
environment. Artifactual structure is a bridge between internal structures.
Artifacts may provide the link between internal structures in one individual
and those in another individual (as is the case in communication), or
between one set of internal structures in an individual and another set of
internal structures in that same individual (as is the case in using written
records as a memory, for example). Internal structures provide bridges both
between successive artifactual structures and between natural and artifactual
structures. Following Sperber (1985, p. 76) we may say that "A representation
[artifactual or internal structure] is of something [natural, artifactual, or
internal structure] for some information processing device [internal or
artifactual structure].”

2 This model does not deal with homonyms or synonyms. However, note that it is a matter of
current debate whether such categories actually exist in human language when the perspective
of language use and learning is taken to examine instances claimed to be synonyms or homonyms
(Clark, 1987; Slobin, 1985).

3See Appendix for a more formal treatment of this analysis.
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Figure 1. The relations of natural, internal, and artifactual structure

which instantiate a cultural process. (The arrows represent the

propagation of constraints. Constraints may be propagated by many means. We
use the cover term coordination to refer to the satisfaction of constraints
regardless of the mechanism by which constraint satisfaction is achieved.)

Connectionist Networks As Simple Agents

In the past eight years, developments in computational modeling
employing connectionist networks have made it possible to think in new
ways about the relations between structure inside a system and structure
outside.? A network is composed of two kinds of mathematical objects: units
and connections. Units take on activation values, generally in the range of 0.0
to 1.0, and pass activation along one-way connections to other units. This
passing of activation along a connection is modulated by a real value
associated with that connection, the connection strength or weight. The
passing of activation from input units to output units of the network can be
treated as the implementation of a function, and viewed as the network’s
behavior in a given environment. Through modification of the network’s
weights, in time, the network adapts to the shape of that environment.

Connectionist networks of a class called autoassociators have particularly
nice properties with respect to the problem of discovering and encoding
structural regularities in their environment. Autoassociator networks learn

4The best background work on connectionism is the two volume set Parallel Distributed
Processing by Rumelhart et al. (1986), and McClelland et al. (1986). The behavior of
autoassociator networks is thoroughly analyzed in Chauvin (1988).



to duplicate on the output layer the identical pattern of activation presented
to the input layer. Figure 2 shows a simple autoassociator network. It consists
of three layers of units. Input units on the left, output units on the right, and
hidden units in the middle. Targets are real valued vectors which are
structurally similar to the output and input layers but, like inputs, are
thought of as information external to the network. Targets are part of the
environment which the network is made to learn (see below) — they provide
the teaching signal. In the case of autoassociators, the targets are simply the
input patterns themselves, allowing the network to learn about the
environment with no additional teaching signal.

Inputs

Input
Layer

Output
Layer
1 0
Targets
010

Figure 2. A typical autoassociation network and learning scheme.
(See text for explanation of network components.)

Limitations on space make a full description of this kind of information
processing system impossible. The following sentences will hopefully convey
the style of computation entailed, if not the details.

Every unit in the input layer of a network has a unique connection to
every unit in the hidden layer, and every unit in the hidden layer has a
unique connection to every unit in the output layer (see Figure 2). The



strengths of these connections can be adjusted. The activations of the input
layer are set by external phenomena. The activations of the other units are
determined by the activations of the units from which they have connections
and on the strengths of those connections. The task for the network is,
starting from random connection strengths, to discover a pattern of
connection strengths that will produce the desired output (i.e. the target) in
response to a given set of inputs. Incremental improvement in
accomplishing this task is referred to as learning. The networks modeled here
use a procedure called the back-propagation of error to find an appropriate set
of connection strengths. In this scheme, the output produced is compared to
the target,® and the difference between output and target is an error in the
network’s ability to perform this input-output mapping. The connections are
then adjusted to reduce this error on future trials at this task. The problem for
the network can be viewed as one of finding a set of weights which
simultaneously meets the constraints imposed by all of the input-output
mappings it is made to perform.

Meeting Constraint #1 Of The Lexicon: Words must discriminate between
objects in the environment

Rumelhart, Hinton, and Williams (1986) have shown that under certain
conditions, the activations of the hidden layer units of fully trained
autoassociator networks converge on efficient encodings of the structural
regularities of the input data set. That is, the connections between input and
hidden units must produce activations at the hidden layer which can be used
by the connections between hidden and output units to produce the target,
under the constraints of the function which propagates activation. For
example, given any four orthogonal input patterns and an autoassociator
network with two hidden units, the hidden unit activations for the four
input cases should converge on {(0, 0) (0, 1) (1, 0) (1, 1)}. This is because the
network must use the activations of the hidden units to encode the four cases
and the encoding scheme attempts to distinguish (optimally) among the
cases.

Producing these efficient encodings is equivalent to feature extraction.
That is, what the networks learn is how to classify the input data in terms of
distinctive features or principal components. If we fold an autoassociator in
half, and allow the hidden layer to produce representations which become a
material part of the shared environment of interaction, then the (now
"public") hidden layer encodings produce one of the properties we want in a

S5For an autoassociator, the target is identical to the input, thus reducing the problem to an
identity mapping on the input set.



lexicon.6 In Figure 3 we have relabeled these units Verbal Input/Output units
because this is the location where agents produce words and receive words for
comparison with the words of others.

If we take the remaining parts of the network to be a simple visual
system — capable of classifying scenes in the environment — then the Verbal
Input/Output layer is capable of generating patterns of activation in response
to each visual scene encountered, and these patterns are (or become)
maximally different from each other (within the boundaries set by learning
and resource limitations of the network). Regarding network A's descriptions
for the m scenes, this satisfies the constraints: A1 # A2 #...Am.

A

Verbal
Visual Input/

Ouput
Input Laver
Layer y

Al=A2=

Visual :
Output =Am
Layer

Figure 3. A modified autoassociator, with public hidden units. (By
"folding” an autoassociator back on itself, we create a system capable of
generating referentially meaningful, distinct representations of the m scenes.)

Meeting Constraint #2 Of The Lexicon: Word meanings must be shared

Virtually all work in connectionist modeling today is concerned with
using connectionist networks to model aspects of the cognition of
individuals. Our theoretical stance suggests that it might be useful to consider
the properties of communities of networks. Of particular interest here is the
fact that in traditional connectionist modeling, the programmer constructs
the world of experience from which the networks learn. Modeling
communities of networks suggests that the behavior of other networks might
also be an important source of structure from which each network could
learn. Connectionist programmers refer to the output patterns to be learned

6We thank Elizabeth Bates (personal communication, Feb., 1991) for coining the term public
hidden units for this construction.
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as the teachers for their networks. With a community of networks, we can let
an important part of the teacher be embodied in the behavior of other
networks. Thus, where traditional network modeling is concerned only with
the relation of structure in the environment to internal structure, a model of
interactions in a community of networks adds the universe of
communicational artifacts to the picture.

A

N

Al Bl
A2 = B2

)

Figure 4. A scheme for evolving consensus on a set of distinctions.
(By reciprocally constraining autoassociators at their hidden layers, consensus
about the representations used to classify the m scenes can be achieved.)

It is easy to show that consensus among two networks (say A and B) can
be achieved by making the output of one the teacher for the other. If each
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takes the behavior of the other to be the target, then consensus will result.
This satisfies the constraints that A1=B1, A2=B2,....,Am = Bm.

IMPLEMENTATION

The simulation proceeds via interactions — one interaction is one time
step in the simulation. An interaction consists of the presentation of a chosen
scene (from the set of m scenes) to two chosen individuals, a speaker and a
listener (from the set of n individuals). The functions which do this choosing
determine what we call the interaction protocol of the simulation. The typical
functions simply implement random selection from the domains of scenes
and individuals, respectively. One of the individuals chosen (say A) responds
to the scene by producing a pattern of activation on its verbal output layer (A
speaks). The other individual (say B) also generates a representation of what it
would say in this context but, as listener, uses what A said as a target to correct
its own verbal representation. The listener, (B), is also engaged in a standard
learning trial on the current scene, which means its own verbal
representation — in addition to being a token for comparison with A's verbal
representation — is also being used to produce a visual output by feeding
activation forward to the visual output layer. The effects of this learning on
B's future behavior can be stated as: (1) in this context produce a
representation at verbal output more like what A said, and (2) produce a
representation at visual output more like the scene itself.”

By randomly choosing interactants and scenes, over time every
individual has the opportunity to interact with all the others in both speaking
and listening roles in all visual contexts. The effect to be achieved is for the
population to converge on a shared set of patterns of activation on the verbal
output units that makes distinctions among the m scenes. That is, we hope to
see the development of a consensus on a set of distinctions.

Below we discuss the results of two different sets of simulations.
Simulation One was based upon a more complex network architecture and
set of scenes. Simulation Two used the simpler network architecture already
shown in Figures 3 and 4. The scenes of Simulation Two were simply the
four orthogonal vectors (1, 0, 0, 0), (0, 1, 0, 0), (0,0, 1, 0), and (0, 0, 0, 1). The
purpose of discussing Simulation One is to demonstrate the qualitative effects
of evolving a lexicon within a (relatively) complex system space. The purpose

7Implementing this combination of error signals is straightforward. One error signal is
computed from the difference between produced word and target word, the other error signal is
the usual error backpropagated from the visual output layer. These two signals are simply
added together, and backpropagated to the visual input layer.
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of discussing Simulation Two is to explore more analytically the nature of
this kind of dynamical system in a more manageable system space.

RESULTS AND ANALYSIS

Simulation One

In this simulation, each individual is an autoassociator network
consisting of 36 visual input units, 4 hidden units, 4 verbal input/output
units and 36 visual output units, as shown in Figure 5. Notice that an
additional layer of 4 hidden units appears in these networks. These additional
resources were required by networks in this simulation in order for the
community to converge on a shared lexicon.8 The scenes to be classified are 12
phases of a moon, represented as patterns in the 6 X 6 arrays shown in Figure
6.

81t is a well-known result from connectionist history that two layers of weights are required to
perform mappings from input to output which are not linearly separable (Rumelhart, Hinton, &
Williams, 1986). The range of verbal representations that individuals are attempting to map
to in this simulation may constitute such a set, thus requiring the extra hidden layer to perform
properly. We say “may,” because the mapping itself is evolving as the lexicon is being
constructed. Another reason for the required extra layer has to do with the large compression of
data from input (36 units) to verbal input/output layer (4 units). This compression tends to
swamp the verbal output layer with large activation values (even for an untrained network),
reducing the network’s flexibility to learn. Since the learning problem is composed from the
behaviors of other (now inflexible) agents, the community is unable to converge upon a shared
lexicon.

13
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Figure 5. Network architecture for Simulation One. (Not all of the
connections between layers are shown.)

14



1st QUARTER

FULL

LAST QUARTER NEW

Figure 6. The scenes utilized in Simulation One. (These can be
thought of as representations of the visual field associated with sight of the
moon in 12 different phases.)

Developing consensus on a set of distinctions appears to be a highly
likely final stable state of this dynamical system. Since the initial connection
strengths of individuals are mid-range values and randomly assigned, early
verbal representations do not differentiate between the scenes. Figure 7 shows
the activation levels of the 4 verbal output units in response to the 12 scenes
for some typical individuals, at the start of a simulation run. It is easy to see
that there is little variation in the response of any individual to the different
scenes. It is also easy to see that consensus (defined in terms of the degree of
variance in terms used by individuals to represent the same scene) is quite
high. That is, individuals’ responses do not carry information which
distinguishes the scenes, and these responses are highly similar across
individuals in the community at the start of the simulation run.?

9The consensus in the starting state of the simulation is a product of the fact that random
weights in the network tend to produce mid-range output values regardless of input to the
network.
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Figure 8 shows the same individuals after an average of 2000 interactions
with each of the other individuals in the 5 member community. For the most
part, individuals now respond differently to each of the 12 scenes, and all of
the individuals agree with each other on how to respond. That is, we have a
consensus on a set of distinctions. Due to the random starting weights of the
networks, and the random interaction protocol functions which organize
their learning experiences, there is no way to predict which lexicon will
develop — but the procedure is robust in the sense that some well-formed
lexicon or another develops nearly every time.10

10see The formation of dialects, section (below) for a discussion of some observed exceptions.
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Figure 7. Four individuals of a five-member community at the start
of a simulation run. (The surface represents the value of each verbal output
unit, in the range 0.0 to 1.0, in response to each moon scene.)

17



Figure 8. Four individuals of a five-member community after 50000
interactions. (Each individual has had, on average, 2000 interactions with
each of the other four individuals. Half of these were in the role of listener and
half in the role of speaker. The surface represents the value of each verbal
output unit, in the range 0.0 to 1.0, in response to each moon scene.)
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Simulation Two

In this set of simulation runs, we attempt to map out more analytically
some of the properties of a simpler system. In particular, we view each
simulation run as one of a large number of dynamical systems that are
possible, given different initial conditions and parameter settings (Abraham
& Shaw 1987, following Thom 1972). This infinite-dimensional space D of
dynamical systems can be modeled by a function F which maps the following
independent variables and functions into an instance of a dynamical system:

Scenes:
m = number of scenes

S = set of scenes {s1, s2,..,sm}.

Individuals:

f-arch = function which determines network architecture of an
individual

n = number of individuals in community at start
W = set of starting weights of individuals
u =learning rate

y =learning momentum.11

Interaction protocol:
f-pop = population control function for community

f-scene = function which picks scene for an interaction

UThe learning rate is a parameter controlling the magnitude of effect one learning trial has on
a network, i.e., the scale of magnitude by which changes are made to weights on each learning
trial. The learning momentum is a parameter which influences the effects that variability in
the learning set has upon network learning performance. That is, the learning momentum
parameter determines the scale of magnitude by which recent learning trials continue to effect
the current learning trial. (See McClelland, 1988, for implementation details regarding these
learning parameters.) These two parameters could, conceivably, vary among individuals,
perhaps also as functions of time. In the simulations of this paper we chose to fix these
parameters, and not let them vary across individuals or time, in order to simplify the task of
understanding the set of dynamical systems we are dealing with.
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f-ind = function which picks individuals for interaction.

Instantiation of these variables and functions (by the application of F)
determines a unique dynamical system which evolves in time (t = cycles of
simulation or interactions). In general, we expect different instantiations of
these parameters to generate qualitatively different dynamical systems in D.

The parameter settings of simulation two

In order to analyze a small portion of the huge space D, we can make the

following simplifications during the remainder of this simulation (i.e. apply
F as follows):

Fix scenes to 4 orthogonal vectors of length 4:

m=4

S={(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0, 1)}.

Fix individuals with identical network architecture, but initial weights

are random values:

f-arch = instantiate all individuals as shown in Figure 3

n = to vary across experiments

W = a set of random numbers in the range -0.5 to +0.5

Fix learning parameters in time and across individuals:

u=.075
Ww=0.

Grant individuals immortality, and no new individuals can be
generated. Make interaction protocol functions random:

f-pop = individuals live forever during a simulation run, and no new
individuals are introduced.

f-scene = random selection from the set of scenes S
f-ind = random selection from the community of individuals.
One benefit of establishing the three parameters W, f-scene, and f-ind as

random variables is that (given statistically relevant samples of simulation
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runs) these parameters can be approximated as fixed, thereby isolating the
dynamical systems” dependence upon the one remaining variable, namely
the number of individuals in the community (n).

Measures of the emerging lexicon: AVGI and AVG2

Finally, having established a simulation run (or, preferably, a sample of
simulation runs) as an instance of a dynamical system (by setting ), we can
monitor the system’s evolution with two measures of the community’s
language through time, Avgl(t) and Avg2(t). Avgl is a measure of the
average difference in each individual’s verbal representations (i.e. it measures
the average “term distinctiveness,” across all scenes as denoted by each
individual, averaged across all individuals). Avg2 is a measure of the
variability in the community of individuals’ verbal representations (i.e. it
measures the average term variability for each scene across individuals,
averaged across all scenes).12 Our expectation is that Avgl will tend toward 1.0
(the maximum difference in terms used across scenes) and Avg2 will tend
toward 0.0 (the minimum difference in terms used by the community for
each scene) as the system evolves. That is, we expect to see a consensus on a
set of distinctions emerge.

Figures 9 and 10 show a simulation run with a community of 5
individuals (n = 5). The graphs of Figure 9 show the phase space of verbal
representations (Unit 1 activation vs. Unit 2 activation) for each of the four
scenes in the world. Each trajectory on a graph represents one citizen’s term
for that scene, parameterized by time. The trajectories all begin near the
middle of each graph (verbal output activations near [.5, .5]) because, at the
beginning of the simulation run, individuals are responding to the scenes
with unorganized connection weights.13 As time proceeds, the trajectories of
each graph head for one of the four corners (i.e. consensus regarding each
scene increases). Furthermore, each graph’s trajectories must reach a corner
unoccupied by the trajectories of the other three graphs (i.e. term similarity
decreases). Notice how two of the emerging lexicon's terms (Figures 9(a), 9(b))
compete with each other for a place in the (1, 0) corner before the term
representing scene (0, 1, 0, 0) of Figure 9(b) finally wins this competition.

The two graphs of Figure 10 show how Avgl and Avg2, plotted for the
same simulation run as that shown in Figure 9, capture the two properties of
the evolving system. Descriptions begin with a lot of consensus but lack

125¢e Appendix for a more formal definition of these measures.

13There has been no learning yet, and all individuals begin with random weight assignments to
their connections, therefore, all units respond at mid-range levels of activation.
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discrimination because, again, the networks are responding roughly the same
(and un-informatively) at the beginning of the simulation. Between 1000 and
2000 interactions, as good representations for discriminating between scenes
emerge (Avgl, the mean variability in each individual's descriptions for
different scenes, goes up), the degree of consensus goes down (Avg2, the
mean variability in descriptions representing the same scene, across
individuals, goes up). As the rate of learning to discriminate between scenes
slows down (Avgl approaches the asymptote), the representations which
serve as individuals verbal targets change more slowly — they become easier
targets to follow, and consensus begins to emerge (Avg2 begins to descend
again.)
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Figure 10(a). Emerging description discriminability. (Avg1 plotted as a
function of simulation time steps, shows that the mean term variability across

scenes increases as the system evolves. The data shown is from the same
simulation run as that shown in Figure 9.)
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Figure 10(b). Emerging description consensus. (Avg2 plotted as a
function of simulation time steps, shows that the mean term variability across
individuals decreases as the system evolves. The data shown is from the same
simulation run as that shown in Figure 9.)
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The effect of varying community size

We are now in a position to ask how the dynamical system depends on
population size n, given that we have fixed all of the other system parameters
as discussed above. Figure 11 shows the results of 3 different experiments,
each entailing a sample of 15 simulations. The simulations of each
experiment were run with community member sizes n of 5, 10, and 15,
respectively. The means and one standard deviation error bars for the 15
observations of each experiment (sampled at regular intervals within each
simulation) are shown for the two measures of lexicon structure, Avgl and
Avg?2. In all three experiments, individuals have participated (on the average)
in the same number of interactions (namely, 2000) by the end of the time
frame shown in Figure 11. The general pattern is the same as that seen in the
single simulation run of Figure 10. Of particular interest, is the nature of the
“decay” in the lexicon formation process shown by changes in the two
measures of lexicon structure, Avgl and Avg2, as community size gets larger.
This decay is due to the greater difficulty of organizing large communities
than small ones. Each experiment displayed in Figure 11 shows that Avgl and
Avg? of the “average community” (represented by the plotted mean values of
the 15 simulations in each graph) vary smoothly and asymptotically as a
function of number of interactions. Therefore, the final steady-state of each
experiment can be reasonably approximated by the final mean value of each
graph in Figure 11. Taking the three points so collected for each measure
(Avgl and Avg?2), it appears that the decay in the ability of a community to
form a “good” lexicon increases exponentially by a factor of 1/n. As
community size n increases, the rate at which lexicons become less “good”
slows down. This relationship, although limited to only three data points, is
clearly represented in Figure 12. Of course, the meaning of what “good” is
(and how good is “good enough”) can only be determined by the functional
properties entailed in agents using the lexicon, something these simulations
do not address. (But see Hutchins & Hazlehurst 1991, for how such a lexicon
can be embedded in a larger context of community use.)
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Figure 11(a). A sample of 15 simulations of community size 5 (n =
5). (Each individual in each simulation run participates, on average, in 2000
interactions.)
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Figure 11(b). A sample of 15 simulations of community size 10 (n =
10). (Each individual in each simulation run participates, on average, in 2000
interactions.)
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Figure 11(c). A sample of 15 simulations of community size 15 (n =
15). (Each individual in each simulation run participates, on average, in 2000
interactions.)
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Figure 12. A representation of the effects of varying community size

(n) on lexicon structure. (Each point shows the final mean values from the
three experiments of Figure 11. These points represent estimates of the final
steady-state of each of those dynamical systems.)

DISCUSSION

The Need For A Critical Period Of Language Learning

We have experimented with adding new individuals with random
weight-structures to communities that have already developed a lexicon.
Depending on the size of the community, the addition of the new individual
may have quite different effects. The behavior of a new individual added to a
large community with a highly shared lexicon will be entrained by the
behaviors of the other members of the community and the newcomer will
learn the shared lexicon. A new individual added to a small community may
completely destroy the previously achieved solution. After such an event the
community may or may not be able to recreate a well-formed lexicon with the
new individual.

In running these simulations we found ourselves wishing that there
was some principled way to reduce the learning rate once individuals had
learned the language. In particular, one would like to reduce the learning rate
at the point in the life cycle where individuals are likely to encounter many
interactions with "disorganized" individuals. This would amount to
implementing a critical period for language learning so that individuals learn
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less from the linguistic behavior of others once they have reached sexual
maturity.l4 Perhaps evolution has engineered something like this into our
species. We did not implement a critical period, however, because to do so
seemed arbitrary and a violation of one of the core premises: The processes
that account for normal operation of the system should also account for its
development through time. In more complex situations, like that of
biological evolution where adaptive searches are conducted in parallel at
many levels of specification, it may be reasonable to expect violations of this
premise.

The Formation Of Dialects

Occasionally, communities fail to create a well-formed lexicon. This
happens because sometimes the random initial starting points of the
networks in a community are incompatible with each other, and "unlucky"
choices of the interaction protocol lead to divergence in the verbal
representations of these individuals, which can not be overcome. In this case,
the kind of language that one individual is predisposed to learn is not the sort
that the other is predisposed to learn, and given their starting points and
learning experiences, they never find a solution that can be shared.

The fact that some pairs of initial weight configurations are more
compatible than others suggested that it might be advantageous to let the
individuals discover and seek out those with whom they are compatible (as
demonstrated in the similarity of their behaviors, i.e. their verbal
representations). A sequence of experiments was run in which the choice of a
listener for each speaker was biased in favor of those who had a history of
speaking (i.e. using descriptions in former interactions between the two)
which was similar to the speaker's own history of utterances. The result of
implementing this interaction protocol was the formation of dialects, or
clusters of individuals within which there is consensus on the descriptions
and their referents. Since individuals interact more with "like minded"
others, they are more susceptible to learning from the classification behaviors
of those who act like they themselves do. We take this to be a very primitive
implementation of what Sperber (1985) called ecological patterns of
psychological phenomena.

140f course, an alternative solution might be simply for individuals not to focus their learning
lense too narrowly on any other single individual (or homogeneous group of individuals). The
problem with this solution is that it works for organized (adult) individuals but doesn't work
for disorganized (novice) individuals. See The acquisition of a coherent lexicon section.

30



The Acquisition Of A Coherent Lexicon

Consistent with the observations reported above about dialect formation
and the education of new individuals, is an interesting interpretation of the
model’s performance regarding the ontogenetic problem of learning form-
meaning pairs that are already established in the world. In particular, it seems
that the complement to the need for a critical period of language learning
(which ensures that the experience of older individuals is not lost by
attending to the unorganized ramblings of novices) is the need for a set of
consistent models during language acquisition (which ensures that novices
are exposed to a system that is coherent, and therefore learnable).

Creating a lexicon from total lack of organization (demonstrated in
Simulations One and Two), actually seems to be easier than creating a
functional lexicon from a system that is organized in the wrong way. That is,
novices introduced into the system who must accommodate a wide range of
organized variance (as with dialects) have a hard time learning any part of the
form-meaning system. On the other hand, new individuals exposed to well-
formed lexicons (or one well-formed dialect) gain significant leverage on the
problem of learning the form-meaning system via the mediation of
consistent and well-formed terms. In fact, experiments were run which
showed that the strictly visual problem of classifying scenes in the simulation
world is simplified by the use of consistent and well-formed terms —
individuals abilities to learn the visual classification problem are enhanced by
the existence of a coherent lexicon.

This fact of the simulation seems to be due to the nature of the principal-
component decomposition being conducted by the autoassociator in its
learning (Chauvin 1988). By grounding this process in the constraints
imposed at the hidden layer by coherently organized targets, the
decomposition process is significantly accelerated. There is a sense, then, in
which the structure of the lexicon is an important vehicle for the learning of
the visual classification problem.

In the real world, we can cite two kinds of evidence which are consistent
with this aspect of our model’s behavior. The first has to do with the nature
of language-acquisition environments. Children generally do learn language,
over an extended period of time, in a relatively homogeneous population of
language users. This is a fact which follows from the general nature of our
species social organization. Second, there appears to be a good deal of
empirical evidence for the fact that children must (or at least that they act as
though they must) accommodate each and every form-meaning pair that they
encounter (Clark 1983, 1987, Slobin 1985). That is, the language acquisition
process apparently requires the learner to assume that words contrast in
meaning, and children use this as a resource in classifying the objects or
events which words denote (Clark, 1987).
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Term Contrast And Consensus In Natural Language

Clark (1987) investigated the natural language version of our notion of a
lexicon being a shared set of distinctions. Clark provides empirical evidence
consistent with the claim that natural language lexicons exhibit two
pervasive features:

1. Every two forms contrast in meaning (the principle of contrast, p. 2).

2. For certain meanings, there is a conventional form that speakers expect to
be used in the language community (the principle of conventionality, p.
2).

The general claims made are that the systems which generate human
lexicons are efficient (all words contrast in meaning) and conservative
(established words have priority, and innovative words fill lexical gaps as
opposed to replacing established words with the identical meanings) Evidence
for these principles are cited from a wide range of natural language
phenomena, including the observations that:

1. Lexical domains emphasize semantic contrasts.15

2. Syntactic constructions create semantic contrast. “[D]ifferences in form
mark differences in meaning at both the lexical and the syntactic levels”

(p. 6).

3. Well-established irregular forms in a language are maintained in the face
of many resources (paradigms or patterns) for simplifying the language
through regularization.

4. Innovative (new) words emerge as a consequence of a failure in an
existing lexicon’s capacity for conveying the appropriate meaning (i.e. due
to an inability of the existing words to establish the appropriate contrasts).

These principles of human language have parallel entailments for the
acquisition of language.

1. Children rely on contrasting terms to tune their understanding of
semantic fields to adult levels of specificity and generality.

2. Children assume (or at least act as though assuming) that new terms
contrast with those that they already know.

15Clark claims that true synonyms do not exist in natural languages.
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3. Children reject (both across and within languages) terms which they
understand to be synonyms with terms that they already know.

4. Children productively generate novel terms to fill expressive needs, but
these terms converge toward conventional usage as their language
development proceeds.

We find Clark’s analysis to be in general agreement with the phenomena
modeled and suggested by our simulations, although her observations clearly
exceed the range of phenomena covered by our simple simulations.

Grounding Meaning In Communicatory Practices Of The Community

We find Clark’s analysis lacking in two respects: the first is made explicit
by our model, the second is suggested by the general theoretical framework
we have adopted although not specifically captured in the simulations we
have presented here.

First, Clark's formulation tends to equate language use with form-
meaning pairing, which lapses into a notion of meaning that is structurally
derived rather than grounded in communicatory practice. This appears to
stem from an analysis which takes language form as a proximal explanation
for function.16 In particular, without an explicit means of grounding terms in
the world of experience, meaning becomes too tightly attached to form,
forcing Clark into use of the conduit theory of meaning (Reddy 1979, Lakoff
1987).

The conduit theory of meaning takes meaning to be something
transferred between language users, as if meaning is attached to language
forms, rather than something which expresses a relationship between
perceiver/actor, context, and experience as a consequence of situated
processing of language forms. For example, terms in the lexicon need only
contrast to the extent that the communicatory functions required of the

16This fact seems to get Clark into trouble in her critique of Slobin's notion of unifunctionality—
which denies the existence of multiple forms carrying the same meaning (something Clark
agrees with), and denies the existence of multiple meanings being carried by the same form
(something Clark disagrees with; 1987, p. 25). Clark claims, for instance, that the English
inflection -s is a form used productively to map onto the concepts of plurality and possession.
Clark’s argument here is based solely on evidence from the structural regularities of parts of
English morphology, effectively ignoring the possible communicative and learning functions
which act to create contrasts even here. These are the properties of natural language which
Clark relies upon to build her own case elsewhere in the paper. Furthermore, Clark (1987, p.
26) utilizes a logical analysis of semantic feature inheritance as an argument for rejecting
Slobin’s denial of true homonymy in natural language. This seems to be inconsistent with her
use of language’s communicative functions found elsewhere in her paper.
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lexicon by the agents involved are served. Clearly, these functions will vary
across language situations, participants, and traditions — because contexts,
individual experiences, and the histories of use vary with each of these. This
latter view of meaning becomes clear when one distinguishes between, and
considers the interactions among, conventional forms of behavior (artifactual
structure), individual experience (internal structure), and the physical world
(natural structure). In our own simulations, this functional grounding of
meaning is evident in the ways the lexicon (artificial structure) responds to
tweaking different simulation parameters (natural structure). It is also
evidenced in the variability of individual network weight configurations
(internal structures) which can accommodate the same lexicon (artifactual
structure) given stable environments (natural structure).

Second, Clark’s analysis undervalues the explanatory power of one of
her own principles — conventionality. The principle seems to be given the
role of describing the structure of language, but no causal role in creating that
state of affairs. For example, in explaining the fact that children’s private and
idiosyncratic novel words give way to conventional expressions, Clark cites
children’s efforts to contrast terms as the mechanism responsible for
convergence toward use of the standard forms. “It is children’s discovery that
two forms do not contrast in meaning that leads to take-over by the
established term, ” she says (ibid:18, emphasis in original). It seems to us that
Clark is ignoring a large space of communicatory functions responsible for
explaining why children adopt conventional expressions. Again, structural
analysis provides only proximal explanations for the mechanisms involved.
Our own modeling framework keeps in focus the higher order effects of
language sharing — consensus is a functionally important property in it’s own
right — and seems to play a more active role in answering the question of why
children conform to an established norm than Clark posits.

In brief, a community of language users (and generations of language
users) constitutes a system which enables cognitive performance that can not
be performed by individuals alone (Hutchins & Hazlehurst 1991). Children's’
convergence toward the use of established expressions would seem to be
importantly related, not only to the individual-level problem of making
meaningful distinctions in the here-and-now, but also to the community-
level problem of constructing which distinctions are meaningful.
Conventionality points to a complex cultural process — generating many
language-shaping communicative properties — which only becomes clearer by
taking a community of interacting language users as the unit of analysis.

THE MODEL AS THEORY INSTANTIATION

Our model explicitly represents the interactions of the three kinds of
structure discussed in the beginning of the paper: natural, internal and
artifactual. The patterns representing physical phenomena of the world
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(scenes) are the natural structure. The patterns of activation on the verbal
input/output units are the artifactual structure. The connection strengths in
the networks are the internal structure that provide coordination between the
two kinds of external structure, and are themselves a product of artificial
structure mediating experience with the world. We see this as the smallest
first step toward a system in which artifactual structures invoke the
experience of that which is not present in the environment.1”

Let us return to the central theoretical assumptions. As we have seen, no
individual can influence the internal processing of another except by putting
mediating artifactual structure in the environment of the other. However, by
putting particular kinds of structure in each other's environments, they all
achieve a useful internal organization.18 It is possible for each individual to
achieve an internal classification scheme in isolation — this is what
autoassociators are known to do by themselves. But such a classification
would be useless in interaction with others. That is, idiosyncratic distinctions
may be useful, but not as useful as shared ones. We have noted that learning
to categorize the world is easier when mediated by coherently organized
verbal representations. By forcing individuals to learn from the classification
behavior of others we ensure that each individual can only become internally
organized by interacting with the external products of the internal
organization of others. The effects of this kind of system also enable
individuals to tap the resources of an entire group (and ancestors of the
group), enabling cognitive performance not achievable by individuals alone.
This is the foundation upon which human intelligence is built (Hazlehurst
1994, Hutchins & Hazlehurst 1991, Hutchins in press).

Although this simulation is too simple to address the issue of symbolic
representation directly, it suggests a way in which shared symbols that could
subsequently come to serve internal functions could arise as a consequence of
social interaction. Such symbols are outside the individual first as pieces of

17Work on the slightly longer step of developing propositional representations and letting
symbols break free of the phenomena to which they refer is now in progress (cf. Hutchins &
Hazlehurst 1991).

18Here we must acknowledge a hedge on our own claims. The model, as it stands, collapses
semantic and phonological representations. There is no distinction between what an agent
conceives of the scene and what it says about the scene. Likewise, what an agent says is
unproblematically heard by the other agent participating in the interaction. This is, strictly
speaking, a violation of the no-telepathy assumption, and the separation of internal and
artifactual structure. Having acknowledged this discrepancy we can state that the model, as it
stands, gains no explanatory power from this conflation and is therefore not a violation in
principle. We have experimented with architectures which produce phonological
representations from semantic representations, and vice-versa. Implementation of these
constructions do not render invalid the general claims of the model presented here.
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organized material structure — in the behavior of others — before they have
explicit internal representations. Undoubtedly, such shared public forms can
be given internal representations, as can any structural regularity in the
environment whether natural or artifactual. This perspective, in which
symbols are in the world first, and only represented internally as a
consequence of interaction with their physical form and social consequences,
is what we mean by the shallow symbols hypothesis. In this view, symbols
and symbolic processing may be relatively shallow cognitive phenomena,
residing near the surface of the functional organizations which are the result
of interacting with material structures in a cultural process.

The computations performed by the networks are well characterized in
terms of the propagation of representational state. The universe of inputs is
propagated through the networks and re-represented at the output. These
representations, or rather the functional capacities to produce them, then
become distributed across the members of the community. This general
notion of computation comes from Simon (1981, p. 153) who says, "Solving a
problem simply means representing it so as to make the solution
transparent.” Simon may not have intended quite so broad a reading of his
definition but it seems to capture well the behavior of this system. The
structure of the natural world is fixed in this model, but the internal
structures and the artifactual structures co-determine each other and co-
evolve in the development of the lexicon. In the broadest sense, the solution
arrived at was determined by the structure of the natural world as manifested
in the phenomena encountered, in the random initial configurations of the
internal states of the individuals, and in the instantiation of who actually
learns from whom in the community. The process of developing a lexicon in
this model is a process of propagating transformed representations of
naturally occurring structure throughout a system that contains artificial
structure as well.

Finally, even when two networks are in complete agreement with each
other about the use of the lexicon, each has a unique internal structure.
Individuals in our model are able to use the lexicon without needing to share
the internal structures which enable that use. Through learning from each
other in interaction, individuals become functional equivalents, not
structural replicates of each other. There is no need to posit the existence of
grandmother neurons which are responsible for the like behaviors of
autonomous individuals. On the other hand, behaviors are shaped by the
constraints of autonomous individuals interacting in (problematically)
shared environments.

Within this theoretical framework, we claim that meaning can be
retrieved from the unattractive positions of being equated with: (a) the results
of a (usually innate) private language of mental symbols which stand for an
uncontested, fixed, and nonsocial objective reality (Fodor 1976; cf. Lakoff
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1987), or (b) an unproblematically shared, static (i.e. a nondevelopmental,
nonhistorical, and often nonsocial) semantic knowledge base (ethnoscience
and much of cognitive anthropology; cf. Hutchins 1980), or (c) a strictly public
(i.e. superindividual, nonmental) symbol system (Geertz 1973; cf. Shore 1991).
Meaning in our model is an evolving property of the interaction of internal,
artificial, and natural structures. At any point in the evolution of such a
system we take meanings to be characterizations of the functional properties
of individuals’ viz.-a-viz. the environment (including each other). Meaning,
for each individual, describes a range of possibilities for action. In a more
complicated world, these possibilities would be constrained by representation
of the consequences of those actions, something we understand to be true of
human meaning systems. In the limited world we have created, the range of
possibilities for action is restricted to producing something like monolexemic
utterances in the contexts of shared binary scenes. In the real world the
possibilities are much greater, some of which we hope to address in future
work.
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APPENDIX

In a community afi agents who live in a world witth scenes the communit®
language at timeé (the recording of all agents descriptions ofrthezenes) can
be written in matrix fornt as

5] ) Sk - 5

Sit) Sub) Suk) . Suf)

wherg S, . (t) is thej ‘" agents description of the'" scene at timé . Then the

sequence of matrices{Lo,LV....,Lm} represents the evolution of the comm®@ity

language from timé =0 tot =¢. At any time, the languagd, can be
analyzed for at least two properties

(1) Avgl, the average difference between all pairs of descriptions of scer
for each individualand

(2) AvgZ, the average difference between pairs of individuals
descriptions of the same scenfor all individuals and all scenes

Avdl gives a measure of individug@abilities to use terms to distinguish between
scenes, while Av@? gives a measure of the commur@gbility to agree on the ter
used to identify scenes

More formallyassume S, ;¢ ) and S, ¢ ) are real valued vectors of length
Y, then define a distance metric

Y

ri
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wherer “; is thek'" real value in vectas, . ¢ ).
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Then,
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