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This paper reports a set of computer simulations that
demonstrate a form of adaptation that we believe to be
characteristic of human intelligence.

One of the central problems faced by biological and artificial
systems is the development and maintenance of coordination
between structure inside the system and structure outside the
system.  That is, the production of useful behavior requires
internal structures that respond in appropriate ways to structure
in the environment.  The processes that give rise to this
coordination are generally considered adaptive.

Biological evolution, individual learning, and cultural
evolution can all be viewed as ways to discover and save
solutions to frequently encountered problems—they are
processes that generate coordination between internal and
external structure.

Creatures that can learn are likely to have a greater range of
responses which, as Hinton and Nowlan (1987) have shown, can
lead to learning actually guiding evolution.  Hinton and
Nowlan imagine a population of creatures, in which the
behavior of each individual is specified by some number N of
alleles.  The creatures inhabit a world in which there is a fitness
spike associated with only one particular pattern of those N
alleles.  If all of the alleles are genetically fixed, the chances of
any individual finding the fitness spike is low and no search
strategy beats random search.  Thus, for creatures in which
behavior is entirely genetically determined, the process of

*A version of this paper  appeared in D. Farmer, C. Langton, S. Rasmussen, & C.
Taylor (Eds.), Artificial Life II (1991).  Addison-Wesley.
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discovering and saving good solutions is blind and relatively
slow.1

Now suppose that rather than having all the alleles’
settings hardwired, some can be learned (by guessing in Hinton
and Nowlan's scheme) during the lifetime of the individual.  In
this case, any individual whose hardwired alleles correspond to
a partial description of the fitness spike has a chance of guessing
the rest of the solution.  Creatures that are genetically
predisposed to learn (guess) the solution to a particular problem
in the environment, by virtue of having correct settings on all of
the hardwired alleles, are on average more fit than those who
cannot. These more fit creatures may place more individuals
who are also predisposed to learn the solution in the next
generation.  Hinton and Nowlan show that allowing some of
the alleles to be uncommitted in value, and thus learnable, has
the effect of putting shoulders on the fitness spike such that the
population can "hill climb" to the best genetic solution.  This
scheme is much more efficient and rapid than a random search
for the optimal genome.  Still, from the perspective of the
population, learning is slow because the products of individual
learning have only very indirect effects (mediated by selection
on random variation) on subsequent generations.  (See Hinton
and Nowlan, 1987 and Belew, 1989 for details).

Culture is a process that permits the learning of prior
generations to have more direct effects on the learning of
subsequent generations.  As predicted by Wilson (1985), the
presence of cultural factors may create selective pressure for the
ability to learn itself.  Hutchins performed a simple
demonstration of this effect by adding a cultural bias factor to the
simulation of Hinton and Nowlan.  The bias makes offspring of
individuals who have learned the solution more likely to learn
the solution themselves.  This has the effect of increasing the
relative frequency of alleles that code for learnable responses.
That is, adding a cultural effect increases the steady state
proportion of uncommitted or learnable alleles in the

1The probability of an individual being genetically predisposed to matching

the genome associated with the fitness spike is  1/2n, for two-valued alleles.  In
this case, an evolutionary search for the spike is ineffective since there is no
feedback regarding a “close” fit, and therefore no opportunity for co-adapted
alleles to retain partial solutions.   Furthermore, variation in the genomes of
descendents means that even if the solution were found, it would be extremely
unlikely to be retained in the population.
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population.  A replication of Hutchins’ demonstration and a
more complete analysis of this effect was subsequently
performed by Belew (1989).

If culture permits the consequences of learning by a prior
generation to have direct effects on the learning of a subsequent
generation, then could a population, over many generations, be
capable of discovering things that no individual could learn in a
lifetime?  This should be true in spite of the fact that the direct
products of individual learning (internal structures) last at most
a lifetime.  Let us consider this problem in the framework of the
coordination of internal and external structure presented above.

In that scheme we had two kinds of structure to be
coordinated: external structure - a physical environment, for
example; and internal structure - the organization of a nervous
system, for example.

Imagine a world in which there is a useful regularity in the
environment too complex for any individual to learn to predict
in a single lifetime.  That is, given the rate at which internal
structure can be rearranged, it is either not possible or extremely
unlikely that any individual will achieve coordination between
external and internal structure.  How could a useful form of
interaction with such a regularity ever be learned?  Hinton and
Nowlan have demonstrated one method in which parts of the
solution are learned genetically so that individuals in future
generations are born partly organized and therefore require less
learning in order to master the regularity.  But again, that
process is very slow.  Hutchins' addition of a cultural bias factor
showed that culture can guide the ability to learn which can in
turn guide evolution.  However, any model that reduces all of
culture to a single scalar is clearly missing many of the central
aspects of cultural phenomena.  In particular, culture involves
the creation of representations of the world that move within
and among individuals.  This heavy traffic in representations is
one of the most fundamental characteristics of human mental
life, yet since it is a phenomenon not entirely contained in any
individual, it has largely been ignored by cognitive science.  If
each individual is capable of learning something about the
environmental regularity and then representing what has been
learned in a form that can be used by other individuals to
facilitate their learning, knowledge about the regularity could
accumulate over time, and across generations.
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FIGURE 1.  The relations of environmental, internal, and artifactual
structure.  The arrows represent propagation of constraints upon interactions
involving these different kinds of structure.  Constraints may be propagated by
many means.  We use the term “coordination” to refer to the satisfaction of
constraints, no matter by what mechanism constraint satisfaction is achieved.

This introduces a third kind of structure: structure in the
environment that is put there by creatures.  This is artifactual
structure.  Our inventory now includes natural structure in the
environment, internal structure in the organisms, and
artifactual structure in the environment.  These structures are
related to each other through time as shown in Figure 1.

In a cultural world, the internal structure of an organism is
shaped by (must achieve coordination with) two kinds of
structure in the environment—natural and artifactual structure.

What form might an artifactual representation of the
knowledge of the aforementioned natural regularity have?

First, it must itself be a kind of regularity in the
environment.  Barring mental telepathy, a mind can only
influence another by putting some kind of structure in the
environment of the other mind.  Taking this maxim seriously
highlights the importance of the medium and process of
transmission of cultural knowledge.  Earlier studies of cultural
evolution have not directly addressed this issue (Boyd and
Richerson, 1985; Cavalli-Svorsa and Feldman, 1981), choosing
instead to speak of cultural traits as if they were abstractions
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without physical form.  The danger of that approach is that one
ignores the artifactual world and overlooks its capacity as a
learning system in its own right.

A second requirement for the artifactual representation of
natural regularity is that the artifacts be strictly symbolic.  They
must contain no direct (that is, structurally non-arbitrary)
information about the mappings of states of the world onto each
other.

It is important to approach this subject with the
understanding that culture is not a thing or any collection of
things—it is a process.  In the human sphere, myths, tools,
understandings, beliefs, practices, artifacts, architectures,
classification schemes, etc., alone or in combination, do not in
themselves constitute culture.  Each of these structures, whether
internal or external, is a residue of the cultural process.  The
residues are, of course, indispensable to the process, but taking
them to be culture itself diverts our attention from the nature of
the cultural process.  In the simulations we present, the artifacts
should not be taken to be the culture of the community.  Instead
they and the internal structures that form in interaction with
them are residues of a cultural process.

Consider the scheme diagramed in Figure 1 as a case of
intergenerational cultural process.  Getting the internal
structures into coordination with the natural regularity of the
environment requires three kinds of learning:  1) direct learning
of the natural regularity in the environment, 2) mediated
learning about the natural regularity from the structure of the
artifactual descriptions of it, and 3) learning a language that will
permit a mapping (in both directions) between the structure of
the natural regularity and the structure of artifactual descriptions
of it.  We return to this in the discussion of the simulation.

Before turning to the details of the simulation we would
like to motivate its organization with a "just-so" story about
cultural learning.

LEARNING THE RELATION OF MOON PHASE TO TIDE
STATE

Up until about two hundred years ago, the hills on which
the U.C.S.D. campus is located were inhabited by California
Indians.  We know from the ethnographic and archaeological
record that they hunted deer and rabbits and collected greens in
the canyons inland from the present site of the campus.  We also
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know that when the tides were low, they collected shellfish in
the many tide pools along the coast.  That much is well
established.  Imagine the sort of problem small groups of hunter-
gatherers might have faced.  Shellfish are a rich source of protein
and are easy to get when the tides are low, so when the tides
were favorable, it might have been worth moving the whole
band to the beach.  On the other hand, it would be a waste of
energy to go all the way to the beach if the tides are not favorable.
Furthermore, it is impossible to determine whether the tides are
actually going to be low by just looking for a moment—one
might be looking at a time when the tide is at an intermediate
level.  It would therefore be very nice if there was a reliable way
to predict the potential for obtaining shellfish without having to
go to the cliffs over the beach and watch for many hours in order
to determine the tide state.

The phase of the moon provides such a predictor.  When
the moon is either full or new, the gravitational forces of the
sun and moon are in phase and together generate large tidal
variations.  So both very high and very low tides occur on the
same day.  Figure 2 shows this relationship.  This regularity, we
imagine, would have been advantageous for the members of
this society to learn.  Of course, they already had a language that
contained words for the states of the tide and phases of the
moon.  The problem here is to learn a set of mappings between
states of the natural world—to learn an association between
phases of the moon and states of the tide.
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FIGURE 2.  The regularity between moon phase and tide state results from a
phase relationship between the moon and sun’s gravitational effects upon the
earth.

Since it takes many hours of watching the ocean to
determine the actual state of the tide, and since the sky is not
always clear, the opportunities for matching an observed state of
the moon with an observed state of the tide are few, possibly too
few for any individual alone to learn to predict this regularity.
But we can imagine that, over time, the community of people
could learn something that no individual alone could learn.
Since the language is already well-developed, each member of
the community learns, as part of growing up, a shared set of
mappings between phases of the moon and words for phases of
the moon.  The same is true of a set of mappings between states
of the tide and words for states of the tide.  We assume that the
phenomena of phases of the moon accompanied by labels for
these phases, and of states of the tide accompanied by labels for
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these states, are frequently available.  It is only the conjunction
in experience of the phase of the moon and state of the tide that
is limited.

THE SIMULATION

The behavior of a community of individual "citizens"
through time is simulated.  Citizens are composed of
connectionist networks that have the ability to learn from both
the natural and artifactual structure in the environment.  The
latter constitutes a type of symbolically mediated task learning.
A “generation” is a time step in the simulation during which
each citizen in the population has an opportunity to learn the
task.  Three stochastic factors account for variability in that
learning:  a) the quality of the artifact chosen for study, b) the
quality of direct experience with the environment, and c) the
random set of task network connection weights assigned at
“birth.”  After learning from both the natural and artifactual
structures, each citizen generates one artifact, gives birth to one
“novice” citizen, then dies.  All citizens have the same network
architecture and there is no passing of genetic information
between generations.  Each novice begins life with a random set
of connection weights.  The only contribution made by an
individual to successive generations is a cultural one—a
produced artifact.

Each novice of the next generation chooses an artifact from
those produced by the previous generation.  This choice can be
made randomly, or selection can be introduced by having
members of the younger generation probabalistically choose an
artifact biased by the artifact author’s “success.”  An artifact
produced by an author who has learned much about the task,
(and who therefore could be said to “know” much about the task
solution or environmental regularity) is more likely to be
studied by someone in the next generation.  The consequences of
these two kinds of choice are discussed below.

THE ENVIRONMENT

The representation of the phases of the moon and states of
the tide are given in Figure 3.  Notice that the representation
chosen for this regularity is a continuous version of “exclusive
or” (XOR).  There are 28 different moon phase/tide state pairs
that constitute direct sensory information about the
environment.  Each of the 28 pairs was generated by dividing the
lunar orbit into twenty eight segments and encoding the moon
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phase and tide state for what roughly corresponds to the state of
affairs for each day of the lunar month.

Each element of the vector representing the moon phase is
a real number between 0 and 1.  The first element encodes how
much of the left half of the moon is visible, the second value
how much of the right half is visible, from an idealized earth.
Using this representation, every instance of the two-element,
moon phase vector describes a unique point on the unit square.
Notice that the four vertices of the square represent the four
major moon phases; new, first quarter, full, and third quarter,
encoded by 00, 10, 11, and 01 respectively.

The tide state is encoded by a single real number between 0
and 1 that is generated by a transcendental function of the angle
between moon and sun with respect to earth (see Figure 3).  In
particular, each side of the unit square is associated with either a
decreasing tide variance (between new and first quarter moons,
and between full and third quarter moons) or an increasing tide
variance (between first quarter and full moons, and between
third quarter and new moons).
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FIGURE 3.  Representation of the environment.  Two-value moon phase
shown in bold, and one-value tide quality shown in italics.

THE LANGUAGE

The simulated citizens must discover how to tell when the
tide is “good” (maximum variance) and when the tide is “bad”
(minimum variance) using the moon phase as a predictor.  The
language "spoken" by our citizens is shown in Table 1.

This scheme represents two “lexicons,” characterizing two
different classes of events; the moon phase and the tide state.  Of
course each lexicon is not restricted to the prototypical words
listed in Table 1.  Each placeholder (“bit”) in the symbolic
descriptors takes on a real value, providing for a theoretically
infinite set of such descriptors.  The prototypical words represent
an externally defined language that is known (by us) to
sufficiently characterize the simulated world’s behavior.
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TABLE 1.  Citizen Language.

THE ARTIFACTS

An artifact is composed of four pairs of symbols.  The first
element of each pair is a symbol for a phase of the moon and the
second is a symbol for a state of the tide.  In the artifact creation
phase, each citizen symbolically encodes responses to the moon
phases represented by the vertices of the unit square.  Figure 4
exemplifies a “perfect artifact,” one that describes a perfect
association of moon phases to tide states.

This perfect artifact provides us with a method for
evaluating artifact quality utilizing a simple distance metric.
Artifact quality is defined by the mean squared difference
between the corresponding second elements (tide symbols) of a
given artifact/perfect artifact comparison.  In other words, it is a
measure of the difference between the given artifact’s tide
symbols and those of the perfect artifact, and is thus the extent to
which the artifact is a good symbolic representation of the
environmental regularity between moon phase and tide state.



12

FIGURE 4.  A perfect artifact.

CITIZEN ARCHITECTURE

Each citizen is composed of three feed-forward, back-
propagation networks: two “language” nets and one “task” net
(see Figure 5).  Each language net is a standard auto-associating
network that is trained to reproduce on its output layer
whatever pattern was applied to the input layer.  Once trained,
the language net provides a mapping between a symbolic
description of an event and the event itself.  By concatenating
instances of these two classes of information (symbolic and
physical representations) into one bit string that can be applied to
the input units of a language net, the network (after suitable
training on this association) can reliably generate: a) a “symbolic
representation” from the experience of an event and, b) an
experience of the event from a symbolic representation, via the
network’s ability to do pattern completion.  Using this scheme,
each class of symbols (each lexicon) requires its own language
net.  Thus each citizen has two language nets for translating the
artifacts’ encodings of moon phases and tide states, respectively.
The task network is a six-unit, one-hidden-layer, XOR network.
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FIGURE 5.  Citizen Architecture.  Fully connected language nets translate the
representational structure of artifacts into “vicarious experience” from which
the task network can learn.

THREE KINDS OF LEARNING

There are three kinds of learning that take place in the culture
process simulations.  First, there is learning of the language.  In the
current implementation, this is simply the process of training the
citizens’ language nets to associate symbols with events, as described in
the last section.  For the moment we have left aside the rather
interesting problem of how our citizens might come, by consensus, to
utilize a shared lexicon suitable for describing the events in their
world.  (See Hutchins, 1990 for a simulation study of this
phenomenon.)  Here, we take language learning for granted and
simply endow citizens with language ability through auto-associative
training on the prototypical lexicons.

Second, there is direct learning from the environment.  This kind
of learning is one employed in standard connectionist modeling.
Given some representation of the environment, in our case moon
phase vectors and tide state scalars, we give the task network a limited
amount of simultaneous experience with these two so it may learn to
predict one from the other.  A random day is chosen from the 28 day
lunar cycle and the task network is presented with the moon phase
representation for this day on its input layer.  The predicted tide state
produced on the output unit of this network is then compared with the
actual tide state representation for this day.  Any error is back-
propagated to adjust the connection weights in a fashion that will
better perform this mapping from moon phase to tide state.  This kind
of learning does not involve the language faculties and is
accomplished by a simple presentation of input and target directly to
the task network of the citizen.
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FIGURE 6.  Mediated Learning.  The language provides interpretations of
inputs and targets for task learning.

Finally, there is mediated learning.  This learning is characterized
by the utilization of language nets to transform externally encoded
symbolic descriptions into “vicarious experience” of the events for
which they stand.  The outputs of the two language nets produce the
input and target for the task network itself (see Figure 6).  “Mediation”
takes place at two different levels in this kind of learning.  “Inside the
skin” of citizens, language faculties mediate between symbolic
descriptions and the experience of meaning while “outside the skin”
artifacts, structures deposited by other citizens, mediate between events
in the world and information about those events.

THE LEARNING PROTOCOL

Figure 7 shows characteristic learning potentials for two of
the learning scenarios described in the last section.  Each trace on
the plot represents the probability of learning two-bit XOR to 0.05
mean squared error criterion (error is averaged over the four
cases 00, 01, 11, 10) as a function of learning trials for the labelled
scenario.  The two scenarios are: a) direct learning of the
environmental regularity, and b) mediated learning from a
perfect artifact utilizing trained language nets to translate the
artifact’s symbols.  Each trace gives estimators for the probability
of learning the respective XOR task based on a random sample of
50 starting connection weight configurations.  Note that direct
learning involves 28 different cases (randomly presented) while
mediated learning only involves the four cases on which the net
is tested.  Mediated learning from perfect artifacts is thus an
easier task, as is reflected in the more rapid learning rates shown
in Figure 7.
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FIGURE 7.  Characteristics of two kinds of XOR learning (see main text).
Probabilities are based on observed results from random samples of size 50.

How shall we decide the amounts of mediated and direct
learning to give each citizen?  If all learning was direct, then
culture would be irrelevant.  If all learning was mediated, then
the structure of the world would be irrelevant.  Part of the "just
so" story was intended to motivate the notion that direct
experience of the environmental regularities might be much less
available than mediated experience.  Thus, we would like to
have a total number of trials that permits individuals to learn
the task once good artifacts have developed.  Simultaneously, we
would like the proportion of direct learning to be such that no
individual could learn the regularity from direct experience
alone.  Figure 7 helps us decide what the learning protocol in
each citizen’s lifetime should be.  If we have fewer than 1800
trials of direct learning, the chances of learning the regularity
directly are near zero.  This sets an upper bound on direct
learning.  Clearly, even with perfect artifacts, the total number of
trials will have to be greater than 1000 to produce any reasonable
learning.  This sets a lower bound on total learning trials.

The actual protocol used called for a citizen to first get 750
epochs of training from one selected artifact.  Since each artifact
contains four learning instances, this amounts to 3000 trials of
mediated learning.  Next, the citizen received 260 trials of direct
experience learning.  Notice that the probability of an individual
learning this task to a criterion of 0.05 mean squared error in 260
trials of direct experience is very near zero.  Thus, no individual
can learn the task alone (see Figure 7).  If the culture can generate
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artifacts that describe the regularity well, the combination of a
small amount of direct learning and a large amount of artifact
mediated learning should permit the individual to learn to
predict the regularity.

After learning, the citizen produces an artifact by
“responding” to a test of its knowledge of the four orthogonal
cases; 00, 10, 11, and 01.  This process requires a reverse
translation of symbol-to-experience; in particular, it entails the
production of symbols which stand for that citizen’s
“understanding” of these events (see Figure 8).  The production
of a symbol for tide state is accomplished via the internal
mapping from experience of moon phase to experience of tide
state.  The artifact thus reflects what the task net has learned
about the regularity.  We have deliberately excluded internal
“propositional” representations that directly link symbols for
moon phase to symbols for tide state.  The internal models in
this simulation are models of the behavior of the natural world,
not models of the structure of the artifactual world.  Of course,
humans do learn the latter type of representation—they may
even be the basis for much of human reasoning—but they
introduce unnecessary complexity into this simple world.

FIGURE 8.  Generating an artifact.
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RESULTS

Figures 9 and 10 show the results of two simulations run
with population sizes of twenty citizens each. There are two
traces plotted for each run reporting the generational averages of
1) artifact quality, and 2) the average mean squared error of each
citizen’s task performance on the four prototypes (00, 01, 11, 10).
As is evident from these figures, the two measures of the culture
process track each other quite closely.

FIGURE 9.  Culture process simulation with no artifact selection bias.

FIGURE 10.  Culture process simulation with biased artifact selection.
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The difference between these two simulations is that the
one shown in Figure 10 utilized an artifact selection bias.  As
already mentioned, this amounts to tagging artifacts with a
selection probability that is a function of the author’s task
competence.  The probability function utilized simulates a
uniform distribution of artifacts based upon the observed task
competence of the authors’ deviations from that of the most
competent author (i.e., the one with the lowest MSE on the
prediction task).  Selection bias based on author competence
seems like a reasonable, though simplified, analog of what takes
place in real cultural process.2

Without this biasing it appears that while the system is
capable of some learning, it is vulnerable to unlucky choices of
artifacts to study, resulting in slower and less dramatic learning.
Just as artifacts are a bridge from the internal structures of one
generation to those of another, so the internal structures of
individuals are the bridge between one generation of artifacts
and another.  If too many individuals in subsequent generations
study artifacts created by poor performers, the useful structure
that has been built into good artifacts can be diluted by the noise
in bad ones.  This can cause the community to “forget” some of
what it knows about the regularity.  Nonetheless, Figure 9 shows
that even with random selection there is an accumulation of
knowledge that affords better task performance for individuals
in later generations.

Finally, Figure 11 shows the effects of participating in a
cultural system on the learning abilities of individuals.  In the
early generations individuals learn from artifacts with no useful
structure, and no member of the community is able to predict
the environmental regularity.  In later generations using exactly
the same learning protocol, virtually all of the individuals are
able to predict the regularity.  This happens even though the
individuals in later generations have no greater innate learning
abilities than those of the early generations.  Clearly this
phenomenon results from retention of “successful” knowledge
in the artifactual media.

2 Boyd and Richerson (1985) also utilize this type of biasing in their models of
culture and biology as co-evolutionary processes.



19

0

2 0

4 0

6 0

8 0

100

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
Generation

%
 t

h
at

 le
ar

n
ed

 t
o
 0

.0
5

FIGURE 11.  Observed population percentages of citizens who learned the
task to 0.05 MSE or better during simulation with biased artifact selection (see
Figure 10).

Although the simulation presented here is quite primitive,
we believe it illustrates, in principle, that the cultural process can
be seen, like biological evolution and individual learning, as a
way to produce and maintain coordination between internal and
external structures.  It has been said that culture is the most
important invention in the history of life since sex (Sereno,
1990).  We hope that in this paper we have been able to show
both why the cultural process is so important to human mental
life and why in considering the cultural process we must
consider the role of artificial as well as natural structure in the
environment.
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