ARTIFICIALLY GROWING

A NUMERAL SYSTEM=*

James R Hurford

Linguistics Department, University of Edinburgh

1 Introduction

A special kind of language change, not centrally studied in historical linguistics, is language growth.
Growth is change from a smaller system (or perhaps even from nothing) to a larger system. Gram-
matical growth can occur by addition of lexical items or, perhaps more interestingly, of rules.

This paper describes attempts to simulate the growth of natural language numeral systems by
computational techniques. Similar techniques could in principle by used to model the growth of other
subsystems of grammar, and a long-term aim of this strand of research is to model the evolution
of many of the organizational features of language. There are two salient factors in favour of using

numeral systems as a test bed for this approach, and one salient factor against.

e In favour:

1. Numeral systems are relatively simple,

2. Numeral systems are relatively self-contained.

*Thanks to Simon Kirby and Matthew Aylett for helpful and stimulating discussion of this topic. None of it is

their fault.



e Against:

1. Numeral systems are in various ways atypical of other language subsystems.

These properties of numeral systems are known well enough to need no further elaboration here.

2 Artificial Life (‘A-Life’) Research

The research paradigm inspiring this work is that of Artificial Life (‘A-Life’). Two very readable
popular introductions to this field are Levy (1992) and Lewin (1993), and there are now major
collections stemming from workshops and conferences (Langton et al, (1991, 1994), Brooks and
Maes (1994)).

Although terminologically reminiscent of the discipline of Artificial Intelligence (AI), A-Life
differs from it in several fundamental philosophical and methodological principles. Whereas AT at-
tempts to model developed or mature intelligence, the products of millennia of evolution, A-Life
attempts to model the evolutionary processes leading to such products. Al systems are typically
architecturally complex, embodying the programmer’s analysis of the particular manifestation of
intelligence under study (such as chess, parsing, visual processing, face recognition). A-Life systems
are often, by comparison, architecturally simple, populated in a homogeneous structure by model
individuals with (initially) very simple internal structures. In an Al system, the programmer main-
tains control of as many events in the computational process as possible, little or nothing being left
to chance; in an A-Life system, the programmer defines boundary conditions for the evolutionary
processes being modelled, and ‘sits back’ to watch the interplay of random currents. Al typically
models the behaviour of a single agent, whereas A-Life typically models multi-agent systems, in
which many individuals interact in evolving populations. A-Life, being concerned with complex

adaptive systems in general, is broader in its scope than AI, which is restricted to systems to which



one can plausibly attribute intelligence.

Some classic examples of (relatively easily understood) seminal, though not necessarily typical,
work in the spirit of A-Life are Conway’s ‘Game of Life’ (Garfinkel, 1983; Seife, 1994) and Ray’s
‘Tierra’ program (Ray, 1991a,b). Both these systems illustrate how the application of very simple
principles over many ‘generations’ can give rise to entities of remarkable complexity. Many of the
evolved entities, moreover, show behaviour that can be interpreted as life-like.

Conway’s Game of Life is played out by shapes defined by shading squares on graph paper.
These change their outline every cycle by simple rules dictating whether squares adjacent to shaded
squares get shaded or not, and whether shaded squares stay shaded. Some simple configurations
oscillate between two shapes; some shapes effectively glide across the graph paper by changing like
a snail’s foot. Still more complicated configurations spawn such ‘gliders’, giving rise to waves of
offspring shapes, and some configurations are capable of self-replication. All of this is a surprise, or
was to its fascinated discoverers (see Levy (1992) and for accounts).

Ray’s Tierra system grows whole life-like eco-systems in the guts of a computer. Original min-
imally complex structures are defined in terms of configurations of addresses in core memory. In-
dividual instantiations of such structures are ‘nourished’ by the consumption of computing time,
for which they have to compete by carrying out certain actions. If they don’t get enough nourish-
ment, they ‘die’, that is they are removed from the arena of the computation. These ‘organisms’
are also capable of self-replication, with the possibility of random mutations affecting the definition,
in terms of core memory configurations, of the offspring. Allowed to run for many thousands of
generations, Ray’s Tierra systems evolve populations of diverse ‘species’, which resemble ecological
types in nature, such as parasites and predators. Every so often, there can be a wave of mass ex-
tinction, parallel to that evidenced by the real fossil record. The Tierra organisms are reminiscent

of computer viruses, the most familiar form of artificial life.



The interest in such work, and in the many more specialized and perhaps less ‘toy’ projects that
have succeeded them, is in general in the emergence of complexity and order, in often in particular
in the modelling of the evolution of complex natural systems by basic Darwinian principles from
simple beginnings. The thought inspiring the present work is that (the grammars of) languages
are complex naturally occurring systems, and one wonders to what extent techniques from A-Life
research can be used to model their growth.

The differences between Al and A-Life sketched above are no doubt starkly simplified, but they
give a true flavour of the methodological differences between the two approaches. One might further
guess that whereas Al is more ‘application-driven’ (good AI vision systems can be incorporated into
useful robots; good parsers can be incorporated into useful machine-assisted translation programs),
A-Life is more ‘curiosity-driven’. To an extent this is true, but it is now being discovered that some
practical problems are so complex that broadly evolutionary, self-organizing, styles of system, in
which programs are left to evolve their own solutions, are beginning to be viable in applied fields.

One particular technique in the wider A-Life armoury is Genetic Algorithms (GAs). See Koza
(1992), Davis (1991), Goldberg (1989) and Holland (1975) for introductions to Genetic Algorithms.
GAs mimic the biology of sexual reproduction. In sexual reproduction, the genes of both parents
are randomly mixed; if there is much difference between the parents’ genes, the genotype of the
offspring will differ from that of both parents and will probably be a new genetic mixture unique in
its population. The offspring will also differ from others in the population in the probability of its
surviving and reproducing.

Evolving a working computer program by GA involves defining;:

e Ordered sets of basic genetic building blocks, which can be small scraps of computer code

(roughly analogous, say, to amino acids);

e A reproduction process, by which these elements are mixed into new sets; such assemblages of

4



computer code could by chance form little subroutines of working programs which do something

(analogous to synthesizing proteins).

e Possible random mutations to the system’s ‘genes’;

e A fitness function determining the level of success achieved by any particular set of the basic
building blocks at some task fixed by the programmer (analogous to an organism built of

proteins surviving in a given environment).

Clearly, in the expression ‘Genetic Algorithm’, the term genetic is used metaphorically. The
similarity between GAs and biological genetics is formal. GA’s work because they exploit the
same basic mechanisms of selection as biological evolution; the mechanisms themselves, abstracted
away from the material on which they operate (say DNA), and the environments in which they are
embedded (say the physical world), can be applied to try to model the evolution of any kind of
complex adaptive system. It should be clear that GAs may not only model biological evolution, but
many different manifestations of evolution, including, for example, the cultural evolution of social
conventions. The key elements are selection, innovation by random mixing of the basic ‘genetic’
units (whatever they may be, e.g. genes or memes), other random innovation (e.g. by biological
mutation or small individual acts of cultural invention), faithful transmission of the ‘genetic’ units
between generations, and ‘superfecundity’ (i.e. having a wide range of choices from which to select).

The experiments described later in this paper apply GAs to grammars, sets of lexical entries and
phrase structure rules, which progressively evolve to express a greater range of meanings (numbers

in this case) with maximal coverage, minimal redundancy, and maximal economy of expression.



3 Why? What’s the Point?

If a computational system can be host to the evolution of naturalistic grammars, resembling the
grammars of known languages, without the rules being directly invented and simply written in by the
programmer, then presumably the system must in some sense be emulating the forces which gave
rise to the real grammars of languages. The cautionary phrase ‘in some sense’ is to be emphasized.
Objects built of metal may always lack some of the properties of objects built of protein, but neither
should possible similarities and parallelisms be ignored.

If naturalistic grammars can be evolved in a computer system, the parameters of the system in
which this is done may be argued to shed light on the real-world conditions in which real grammars
evolved. The grammars of individual languages are not themselves biological objects. The conditions
that give rise to grammars are in part biological and in part social. Grammars are shaped both by
the innate biological capacities of humans and by the pressures of the social environment. Some of
the parameters of a computer system in which life-like grammars arise could be plausibly interpreted
as mirroring bio-psychological capacities of individuals; and other parameters can plausibly seen as
parallel to social forces operative in the ‘Arena of Use’!.

If, however, repeated attempts fail to construct an artificial system in which grammars simply
evolve, then there would be mounting evidence that natural grammars do not arise merely by the
interaction of selection, random innovation and faithful transmission across generations. What
might an alternative source of grammars be? Presumably something like a creationist account is
the alternative to evolution, some kind of deliberate, one-off, large scale invention, masterminded
perhaps by some genius. Such an account would see the grammar of a language as something

analogous to Esperanto or perhaps Euclid’s geometry 2, a whole integrated system springing fully

'see Hurford (1990, 1994) and Kirby (1994, 1996)
?Pretending, for the sake of the analogy, that Ludwig Zamenhof did not model Esperanto closely on existing



formed from the brow of its inventor, and preserved but scarcely improved by succeeding generations
over millennia.

The issue addressed could be expressed as: Did humans (somewhat deliberately) make language?
or did language just grow in humans (and human societies)? The more one tries to flesh out any
non-evolutionary explanation of how languages got to be the way they are, the less plausible any
creationist or macro-inventionist account seems. Yet on the other hand, the evolutionary style of
explanation, which holds that (the grammars of) languages evolved gradually into their present
shapes, itself stands sorely in need of fleshing out. It remains to be demonstrated in detail that
there could be plausible sets of conditions from which classical evolutionary mechanisms produce
grammars of the familiar sort.

Defining and adjusting the parameters of a GA in which naturalistic grammars evolve provides a
strictly disciplined framework within which the detailed conditions giving rise to linguistic evolution
can be explored. Putting the matter at its least pretentious, all a GA does is emulate a fitness-driven
random search of some space. The search space is defined by the properties of the basic genetic
units, and the more or less complex configurations into which they may be combined. The strategy
guiding the search is defined by the fitness function which selects the more promising configurations
for ‘survival’ and ‘reproduction’ with each generation.

A specific example, simulating the growth of numeral systems, will be provided in the next
sections, after which some due reservations about the complete appropriateness of GAs to the

linguistic case will also be set out.

natural languages, and that Euclid did not stand at the end of a long tradition, itself the product of evolution



4 Natural Numeral Systems

In this paper, we necessarily set rather humble goals, and concentrate on the cardinal numeral sub-
grammars of languages. What, then, are the numeral systems of languages like? It suits our purpose
to distinguish between two broad types, which I will call ‘primitive’ and ‘developed’®. Naturally,
there are some intermediate cases between primitive and developed, but the broad dichotomy is

useful. I will characterize the two types of system in the next two subsections.

4.1 Primitive Systems

Not all languages have a numeral system?. Some languages have quite simple systems, capable of
counting only to about 20 or even lower. In primitive systems, the words have not always fully lost
their non-numerical meanings. So the word for 5 might also mean ‘(left) hand’; the expression for
‘+ 1’ might also mean ‘and another’; the expression for 10 might also mean ‘man’ or ‘whole’ or
‘finished’ or ‘right hand’. In what follows, I will only mention the numerical meanings.

In these systems, either all the numeral expressions are monomorphemic (or at least do not
contain more than one morpheme with a numerical interpretation), or a relatively low number,
such as 2, 3, 4, or 5, is used as a basis of addition (or very much more rarely of subtraction or
multiplication). Sometimes, after a base number appears in the counting sequence, it is used for
all higher numbers. But this is not always so, and there can be what appears to be fairly random
interspersing of morphologically complex numerals with monomorphemic numerals.

Examples of the first few numerals in some such simple systems are given below (in some cases,

the examples given apparently comprise the whole system). In these examples, a single Arabic digit

?No insult is implied to the speakers of languages with primitive numeral systems. It will be apparent that the
descriptive terms adopted are apt.

*For example, many Australian languages have no numeral system. See Dixon (1980:107-8).



indicates that the number in question has an arithmetically simple, often monomorphemic, numeral;
and where several Arabic digits are given, this indicates an arithmetically complex numeral, typically
reflecting addition. Only a single example of each type is given here, but most of the types are
not uncommon; more examples of them could be given, and from more than one part of the world.
These primitive types are widely documented and discussed in a number of works surveying numeral
systems (such as Conant (1923), Hymes (1955), Kluge (1937-42), Lean (1985-6), Menninger (1969),

Pott (1847), Salzmann (1950), Seidenberg 1960).

4.1.1 Various uses of 2 as a base

Aomie® 1 2 241 242 5 541

Yareba® 1 2 3 242 5 541

Korafe” 1 2 241 4 5 5+1

Hunjara® 1 2 241 24141

Fuyuge (‘Mafulu’)? 1 2 2+1 242 2+2+1 2+2+2 24+2+2+1 2424242

242424241

® Austing and Upia (1975:523-24), quoted in Lean, vol.5:40
®Weimer and Weimer (1974), quoted in Lean, vol.5:52
"Lean, vol.5:38

8Lean, vol.5:28

Williamson (1912:228-9), quoted in Lean, vol.7:42. Some expressions in this counting system have alternatives.



4.1.2 3 as a base

Mawae!0 1 2 3 3+1 5x1

4.1.3 4 as a base

Tunisian Arabic egg-counting!! 1 2 3 4
4+1 4+2 443 4x2

4%x2 +1 4%x2 +3 3Ix4 ... 4x4 ...bx4

4.1.4 3- and 4-based

Motu!? 1 2 3 4 5 2%3 7 2%x4 2x4 +1

Roro!? 1 2 3 4 5 2%3 2%3 +1 2x4 2%x4 +1

Keapara, Hula dialect!? 1 2 3 4 5 2x3 2x4-1 2x4  10-1

Hymes (1955:27) calls this type ‘pairing’; this pairing type, and several of the other types illus-

trated above and below, are found in Athabaskan languages, according to Hymes’ survey.

19Smith (1984:253), quoted in Lean, vol.5:16

"nformant, Mukhtaar ben Fraj: These forms were used by the informant’s grandmother, and are (or were) used
in markets. Friederici (1913, quoted in Lean, vol.4:92) mentions a similar 4-based counting system for yams, taro
and coconuts in Bariai (Austronesian).

12T ean, vol.7:67

13T ean, vol.7:20-22

“Tean, vol.7:74-76
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4.1.5 3-, 4- and 5-based

Ekoi (Cameroun)’® 1 2 3 4 5 3+3 443 4+4 544

4.1.6 5- and 6-based

Onjob'® 1 2 3 4 5 5+1 5+1+1 54142  5+1+3 5+1+4

4.1.7 2-, 5- and 6-based

Miskito!” 1 2 3 242 5 541 541 +1 54+1 +2 54+1 +3 5x2

Hhx2 +1 Hhx2 +2 Hhx2 +3 Hhx2 4+ 242

4.1.8 Quinary systems

A purely 5-based system is referred to as ‘quinary’. Such systems are very common, being found in
almost all quarters of the world, and taking the shape:

1 2 3 4 5 5+1 5+2 5+3 5+4 10

15 Cauty (1986:138)
!“Macdonnell (1917:171), quoted in Lean, vol.5:70

1"Conzemius (1929:81-82); these data were verified in fieldwork in 1971 by Ruth Fowlks (personal communication)
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4.2 Developed Systems

The most familiar type of numeral system in better known languages is decimal, and sometimes also

partly vigesimal. This canonical type has the following characteristics:

Single words for 1-10,

Use of addition to 10 for 11-19,

Use of multiplication by 10 (or 20), (and addition) for 20-99,

Single words for higher bases, typically 100, 1000, and sometimes also 20.

Examples of such systems are very familiar.

Further characteristics, common to both primitive and developed types of system, are:

e Complete coverage to some limit — no gaps (although the sporadic use of subtraction suggests

there can be temporary stages of a language in which there may be gaps);

e No ambiguity or homonymy (examples of ambiguous numerals are extremely scarce, if they

occur at all);

o Little, if any, redundancy or synonymy (from a vast set of arithmetically possible combinations
for any given number, typically there is only a single well-formed numeral used in the canonical
counting sequence. The occasional exception to this generalization occurs, as in paraphrases

like English one thousand one hundred versus eleven hundred);

e Recursion — expressions for higher numbers typically contain expressions for lower numbers

nested within them;
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e Packing Strategy — the recursive possibilities are severely constrained by a principle to the
general effect that one builds on the highest valued expression available (See Hurford 1975,

1987, for details and discussion).

5 Growing Numeral Systems Artificially

We now bring the artificial techniques of Genetic Algorithms to bear on this diverse range of naturally
occurring systems. The basic idea of GAs is applied here to grammars; the genetic units making
up each ‘organism’ are rules, which may be specifications of lexical items or rules of syntactic
combination; each grammar is a set of such rules. The proposal is to selectively ‘breed’ grammars
of numeral systems from an initial randomly generated set of grammars. The interest is in seeing
whether the range of systems described above simply emerges after systematic selection of grammars
over many generations.

The elementary components of the system, by which rules are defined, are:
e A vocabulary of arbitrary monosyllables (e.g. ba, be, bi, ca, ce, ci, da, de, di, ...;

o A set of semantic primitives. These are the concepts of certain small numbers — 1 - 10, which
it is assumed are accessible to the mind independently of the existence of a counting system. It
seems right to stipulate that some of these numbers are more accessible to the mind than others.
In particular, probably 1, 2 and 3 are ranked highest in order of accessibility, followed perhaps
by 5 (a whole hand) and 10 (both hands). 6, 7, 8, and 9 are, intuitively, relatively inaccessible.
Various possible weightings for the availability of the semantic primitives were experimented
with. Numbers higher than 10 were judged to be inaccessible as semantic primitives, without

benefit of some linguistic counting system, and were never included among the primitives.

e Basic cognitive operations, such as addition, multiplication and subtraction. These can be
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grasped from such concrete operations as placing more objects in a pile, making groups of piles,
and taking objects out of a pile. Again, these basic operations are not equally accessible to the
mind. It was judged that addition is most accessible, and multiplication and subtraction much
less accessible. Various quantitative interpretations of these different degrees of accessibility

were experimented with.

e Arbitrary syntactic categories, here labelled s0, sl, s2, .... In order for any grammatical
system to arise, the notion of word-class must be available. There is no presupposition of
any particular natural connection between any such arbitrary word class and any particular
semantic primitive or cognitive operation. These arbitrary syntactic labels are used for the
construction of lexical and syntactic rules. In the simulations, the actual number of available
syntactic categories was experimentally varied, ranging between 2 and 5; clearly there have to

be more than one syntactic category for the concept to be useful.

An arbitrary rule in the system is generated by taking the following steps, in order:

1. Randomly select a ‘mother’ syntactic category (from the set { s0, s1,s2, ...} ).

2. Decide, by the random toss of a computational coin (which may be biased), whether to generate

a lexical item or a syntactic rule.

3. If alexical item is to be generated, select a random semantic primitive, and a random monosyl-
lable. Together, the ‘mother’ category, the semantic primitive and the monosyllable constitute
the randomly assembled lexical entry. For example,

s1 — fa (3)
would be a lexical entry for the word fa, givings its meaning as the number 3, and assigning

it to the syntactic category s1.
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4. If a syntactic rule is to be generated, select two random syntactic categories (which can be the
same), and a random cognitive operation. An example of such a randomly generated syntactic
rule is:

s2 — sl s2 (addition)
This rule states that a constituent of category s2 can be constructed from a pair of elements, of

categories s1 and s2, respectively, and that the whole is to be interpreted by the arithmetical
addition of the values of the parts. In this work, all syntactic rules were binary branching. No
extralinguistic significance being associated with the syntactic categories, which are merely a
kind of ‘glue’ for building syntactic rules, the choice of syntactuic categories was never weighted
in any way. The choice of cognitive operation was weighted in some, but not all, simulations,

reflecting the possible greater accessibility of addition than, say, subtraction.

A grammar is a set of lexical items and phrase structure rules, of the sort just illustrated above.
For numeral systems at least, this simple view of what constitutes a grammar is arguably adequate.
A random grammar is a random-sized set of randomly generated lexical items and rules.

The core routine of the simulations carried out consisted of the following steps:

1. Generate a large set of random grammars, as defined and illustrated above.

2. Select the ‘fittest’ grammars as ‘parents’ of the next generation;

3. ‘Breed’ a new generation of grammars, perhaps with some ‘mutation’;

4. Return to step 2 and keep recycling.

Implementing this system in detail calls for a number of decisions to be made. It is a virtue of
the computational approach that it forces one to specify explicitly many parameters of grammars
which are seldom, if ever, contemplated by descriptive linguists, although they are nonetheless real,
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and in no way artifacts arising simply out of the approach. In some cases, one can make a plausible
intuitive guess at an appropriate value for some parameter, and hold it constant; in other cases, one
can use the computational system to experimentally manipulate the values of parameters, within
an intuitively plausible range. The relative success with which such experimental settings lead to
naturalistic grammars can be taken as evidence pointing to corresponding values in the real-world
conditions in which natural grammars evolved. In yet other cases, unfortunately, the settings of
parameters are determined by computational convenience, although in no case did it seem that such
settings were very counterintuitive. The more salient parameters involved in the current simulations
are mentioned below. The first paremeters mentioned are linguistic, having to do with the nature
of grammars; the ones mentioned later are ‘population-genetic’, having to do with the particular

mechanics of GAs.

SOME TWEAKABLE PARAMETERS

e Size of initial grammars. An upper limit of 50 rules (lexical and syntactic totalled) was
put on the initial population of random grammars. The initial grammars varied randomly in

size between 1 rule and 50.

e Lexicon to syntactic rule ratio. Different ratios of lexical items to syntactic rules were
experimented with. In some simulations, the probabilities of random rules being lexical or
syntactic were equal. (See step 2 in the rule generation procedure above.) In other simulations,

the expected ratio of lexical rules to syntactic rules was as high as 20:1.

e Weighting of semantic primitives. In some simulations, all the numbers from 1 to 10 were
equally weighted. This implies equal probabilities for lexical items with meanings from 1 to
10. A range of other weightings was tried, in which the numbers 1, 2, 3, 5 and 10 were given

greater probability of having their own lexical items.
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e Weighting of semantic operations. Each syntactic rule generated is associated with a
particular arithmetic operation, such as addition, multiplication, or subtraction. Sometimes
these operations were assigned to rules with equal probability. In other cases, addition was

favoured over subtraction and multiplication.

e Fitness function. This is a crucial aspect of the simulation. Here, one has to try to make
plausible assumptions about what factors might make one numeral grammar preferable, to a

group of human users, over another.

— Greater coverage is, other things being equal, presumably desirable; a counting system

that reaches to 100 is more useful than one that reaches only to 20.

— The absence of gaps in the counting sequence is presumably also desirable, as natural
numeral systems do not have gaps. But the existence of subtraction in a few natural
systems shows that a fitness function that makes a single unbroken sequence a mandatory
property for ‘survival’ is too strict. Presumably in the evolution of natural systems with

subtraction the higher numeral (e.g. 10) pre-existed the lower one (e.g. 10-1, 10-2).

— Lack of redundancy is also typical of natural numeral systems, and some penalty for
providing several expressions for the same number should be built into the fitness function.
Again, however, this cannot be an absolute prohibition, as one occasionally finds a natural

numeral system with more than one way of expressing a particular number.

— The complexity of numeral expressions is relevant. Other things being equal, a system

with shorter, or less grammatically complex, expressions must be preferable.

e Number of initial grammars. This is largely a matter of computation convenience. For a GA
to work well, there needs to be a reasonably large number of initial grammars, providing an

original ‘gene pool’ with enough variants in it for there to be a chance of it containing most
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of the required types of rules and lexical items. Obviously, though, these rules are not at
the beginning assembled into coherent sets (grammars) that generate naturalistic sequences of

numeral expressions. In these simulations, the number of initial grammars varied from 25 to

100.

Percentage selected. The number of grammars taken each generation as parents of the next
generation needs also to be set. In these simulations, the number of grammars selected as

breeding stock varied between 5 and 10.

Mutation rate. This is the rate at which, during the mimicked evolutionary process, random
rules were added to grammars or deleted from them. Too high a mutation rate prevents the
evolutionary process from settling down to stable solutions, as the gene pool is excessively
stirred. Too slow a mutation rate can lead to convergence on solutions which would not,
with a higher mutation rate, be stable. Given that the term ‘Genetic Algorithm’ is no more
than a metaphor for the computational process outlined here, there is no need, of course, to
worry about any biological verisimilitude in setting the mutation rate. These are not biological

mutations, but just random innovations in the search space.

Evaluation methods. Given some fitness function, a method needs to be determined for

applying it to grammars. Several alternatives are conceivable:

— From the grammar. In this syntax-driven approach, one evaluates a set of products
of the grammar, produced either exhaustively or randomly. Having used the grammar
to generate a set of expressions, one checks to see how this set is valued in terms of the
fitness function, i.e. what coverage it achieves, with how many gaps, with how much

redundancy, and so on.

— From the meanings In this meaning-driven approach, one takes a set of ‘target mean-
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ings’, and tests whether the grammar generates expressions for them, and if so, with what

redundancy, complexity of expression, and so forth.

6 Results

A number of simulations were run, under different conditions. These are described in order of

growing complexity.

6.1 Coverage versus lack of redundancy: a simple lesson

In this simulation, the grammars consisted only of lexical entries. There were no phrase structure
rules. This simple experiment teaches us a lesson about the fitness function which applies to all
more complex simulations. Which should be paramount in the fitness function, coverage or lack of
redundancy? Putting it in terms of real human numeral systems, does the optimal system (i.e. that

type found most commonly in human languages)
e favour coverage even at the expense of massive redundancy?
e favour lack of redundancy, even at the expense of gaps in the system (lack of coverage)?
e favour some kind of balance between coverage and lack of redundancy?

Repeated simulations were run in which the fitness function always preferred a grammar gener-
ating expressions for the most numbers, regardless of how many such expressions it generated for
each number. Only when the coverage of two grammars was equal was relative lack of redundancy
invoked to discriminate between them, in favour of the grammar generating fewer expressions.

With this fitness function, there was never any convergence on a naturalistic numeral lexicon,

with just one word for each of the numbers from 1 to 10.
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Another set of simulations was run in which the fitness function was the reverse of that just
described. In this case, lack of redundancy, rather than coverage, was paramount. The fitness
function always preferred a grammar which had as few extra expressions as possible for each number,
even if some other grammar actually provided expressions for more numbers. Only when two
grammars had equally few expressions was the coverage of meanings invoked, so that the grammar
with the greater coverage was, then, preferred.

In this case also, after many runs, there was no convergence on a naturalistic numeral lexicon
with just one word for each number up to 10.

On brief reflection, it becomes obvious why these simulations do not work to produce language-
like results. Large grammars, containing more lexical items, are more likely to cover more meanings;
just as a longer sequence of throws of a die is more likely to have at least one throw landing on each
possible value than a shorter sequence of throws. If the selection process always favours coverage,
large grammars will be selected which have enough lexical items to cover all the possible values.
Almost inevitably, such grammars will be massively redundant.

Conversely, if lack of redundancy is selected for, the preferred grammars will be those which
manage to express meanings with only one expression each. Small grammars, containing fewer
lexical items, are more likely to avoid generating several expressions for the same number; just as a
shorter sequence of throws of a die is more likely to avoid repetitions than a longer sequence. But
the price of selecting smaller grammars is that they almost inevitably lack some coverage of the set
of possible meanings.

Now a third set of simulations was run, in which the fitness of a grammar was calculated from
a combination of coverage and lack of redundancy. Simply, and no doubt crudely, the fitness of a
grammar in this case was inversely proportional to the sum of the gaps in the number sequence and

the number of redundant expressions. To give an example, imagine a grammar which happened to
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provide words for numbers as follows:

do mi la ti
re fa do
s0

Here there are 6 numbers unexpressed by any word (i.e. 6 gaps), and 4 superfluous words. The
combined gap-redundancy score is thus 64+4=10. Grammars with lower gap-redundancy scores were
favoured in the simulation.

In these runs, there was always convergence to a naturalistic lexicon with just one word for each
number from 1 to 10. Sometimes this convergence waas achieved very quickly, once in as few as 5
generations. In other runs, convergence took as long as 200 generations.

The combined gap-redundancy fitness function took no account of homonymy, and occasionally
a simulation converged on a numeral lexicon in which a single monosyllable happened to express
more than one number. This homonymy is, as far as I know, never found in real numeral systems.
Further simulations should also build homonymy-avoidance into the fitness function. As the method
for doing this is straightforward, this line of investigation was not followed. (In the grammars that
emerged in later simulations, the occasional instances of homonymy were tolerated; nothing rides
on this, as far as I can see.)

In the more complex simulations described below, the fitness function was always some combi-

nation of coverage and lack of redundancy, sometimes with other factors as well.

6.2 Effects of other variables

In further experiments with versions generating only simple lexicons, the situation after initial
convergence on optimal fitness was studied, to see whether this fitness is maintained for long stable
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periods. Both mutation rate and population size were ‘tweaked’. Clearly, too fast a mutation rate
(e.g. every cycle) stirs up the pool of grammars too much, and optimal fitness is only reached
sporadically, with many lapses. But also important is population size. With 20 initial grammars
and b grammars selected each cycle, there was frequent lapsing from optimal fitness over time, with
few periods of stable optimal fitness. With 100 initial grammars and 10 grammars selected each
cycle, the situation improved considerably, with long stable periods of optimal fitness, but still the
occasional lapse, which was almost always immediately recovered from. With this population size,
a mutation rate of 1 mutation per 15 grammars bred was, impressionistically, slightly more stable
than a rate of 1 per 5.

The lesson one quickly learns, if one did not know it before, is that there is an intractably
large number of possible variables, both linguistic and non-linguistic, which affect the evolution of
grammars in this framework. By no means all of the possible variations are mentioned here, for
readability’s sake. Anyone attempting to replicate these experiments will be (or become) aware of
the vast number of theoretical possibilities. It is conceivable that the evolution of real grammars
is in fact subject to a small number of real variables. The computational approach described here
might in principle lead to the discovery of some very parsimonious ‘magical combination’ of settings
of a few variables, which give rise to naturalistic grammars. Alternatively, lack of progress in finding
such a combination might suggest the conclusion that the evolution of real-life grammars is subject

to a great many chance vagaries, both psychological and social.

6.3 ‘Peano-type’ results

In the next series of experiments, the random grammars could contain both lexical items and simple
phrase structure rules, as described above.

In the weightings for these runs, the random generation of a syntactic rule was made as probable
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as the random generation of a lexical item. Many of these simulations converged on numeral systems

of a mathematically very elegant type, but a type which is quite unnatural, in the sense of being

unrepresentative of natural languages. The systems arrived at were highly economical of both lexical

and syntactic resources. They also achieved complete coverage of the number sequence up to any

limit, sometimes with no cost in redundancy. One such extreme outcome was:

sl — mi (1)

s1 — sl s1 (addition)

This grammar generates a single structure for the number 1, as in

si

mi

and a single structure for the number 2, namely

si

si si
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mi mi

but at 3, (structural) redundancy sets in, with two possible structures for 3, namely

s1 s1
/ \ / N\
/ \ / \
s1 s1 s1 st
/ N\ I I / N\
s1 s1 I I s1 s1
I I I I I I
mi mi omi mi mi  omi

The redundancy increases dramatically as one proceeds to higher numbers. In the simulation that
gave this result, only binary branching phrase structure rules had been allowed. Without the option
of unary, or non-branching, phrase structure rules (or of binary rules which can include a simple
lexical item, rather than a syntactic category, on the right hand side), there exists no grammar
which can avoid this burgeoning redundancy.

With the possibility of unary, or non-branching, phrase structure rules, a non-redundant gram-
mar exactly parallel to Peano’s axiomatic system for defining the number sequence can arise, as

follows:
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sl — mi (1)

s2 — sl

s2 — s2 sl (addition)

This grammar generates a single structure for each number, as shown below for the numbers 1,

2 and 3:
s1 52 s2
I / 0\ /\
mi / \ / \
s2 s1 s2 s1
I I / N\ I
s1 | s2 s1 |
I I I I I
mi mi s1 I I
I I I
mi mi mi

For the short term memories of humans, such a system is highly dysfunctional, and even self-
defeating. The value of a counting system is in defining compact expressions which compress infor-
mation. The psychological burden of counting the instances of the monosyllable mz in an expression
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for a higher number in this system renders it unusable. Such systems do not occur in spoken human
languages. (But note the beginnings of such a system in written Roman numerals, I, II, III; such
iconic representations of numbers can also be found in the ideographic cunieform writing of the
Sumerians and in Egyptian hieroglyphs.)

Such Peano-style grammars could result from various different combinations of circumstances.

Factors which favour the evolution of such unnatural Peano-type solutions include:

e Fitness defined primarily as economy of storage of grammar, i.e. the fittest grammar has the

fewest rules and lexical items;

e Relatively favorable weighting for combinatory syntactic rules, as opposed to lexical items;

6.4 Evolution of ‘primitive’ systems

One combination of variables was found to give rise to many systems closely resembling the natural
‘primitive’ systems described earlier. Recall these were typically found in relatively small, and
relatively isolated communities.

In these runs, a grammar’s fitness was defined as the highest number it could ’count to’ with no
gaps, and not too much redundancy. Here, the algorithm to determine fitness is, basically: count
from 1 upwards, and stop at the first gap, or where there are more than 2 (an arbitrarily chosen
limit on redundancy) expressions for some number. The expected ratio of syntactic rules to lexical
items was set at 1:8, and the number of abstract syntactic categories permitted was 2.

Starting with a population of 100 random grammars, the fittest 10 grammars were selected as
parents grammars for the next generation. These parents bred (all with each other) a generation
consisting of a further 100 offspring grammars. From this new generation, the fittest 10 were again
selected as parents, and so on. The simulations ran for 1000 generations each, at which stage the
fittest (usually the only) remaining grammar was inspected to see what numeral expressions, up to
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20, it generated.

Of the 164 runs, over half (86) yielded lexicon-only solutions, summarized as follows:

Words for numbers Instances of this solution
123456 5
1234567 52
12345678 21
12345679 (gap at 8) 4
123456789 3
1234567810 (gap at 9) 1

Such simple lexicons may perhaps be regarded as the basis on which somewhat more elaborate
systems, with some syntactic rules, are founded.

In the remaining 78 runs, all solutions in some way resembled the natural primitive systems
illustrated earlier. Solutions included base-2, base-3, base-4, base-5, base-6, and various mixed-
base systems. Some examples are given below (note the occasional gaps and redundancies in these

systems):
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BASE-2

(The first five expressions here are the same as those of Yareba, cited

above.)
1= 1
2= 2
3= 3
4= [22]
5= 5

6= [2[22]]
6= [[22] 2]

8= [[22] [ 2 2]1]

MIXED 2- 5- and 6-BASE
(The first four expressions here are the same (in mirror image) as those

of Hunjara, cited above.)

1= 1
2= 2
3= [12]

4= [1[12]]

5= 5
6= 6
7= [52]
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8= [1[52]]

8= [5[12]]

8= [62]

9= [1[s62]]

9= [6[12]]

12 = [5 [ 5 2]]
13= [5 [ 6 2]]
13= [6 [ 5 2]]
14= [6[62]]

MIXED 2- 7- and 9-BASE
(The first six expressions here are the same as those of Fuyuge (‘Mafulu’),

cited above.)

1= 1
2= 2
3= [21]
4= [22]

5= [2[21]]

6= [21[22]]

7T= 7
8= [71]
9= 9
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10= [2[7 1]]

10= [7T[21]]

10= [9 1]

11 = [7[22]]

12= [2 [ 9 1]]

12= [9[ 2 1]]

13= [9[ 2 2]]

14= [27]

14 = [72]

i15= [7[71]]

16= [2[27]]

16= [2[72]]

17= [7 [ 9 1]]

17= [9 [ 7 1]]

18 = [29]

18 = [ 9 2]

19= [9[ 9 1]]

20= [ 2 [ 2 9]]

20= [ 2 [ 9 2]]

MIXED BASE-3 and -10



3= 3

4= [13]
5= [23]
6= [33]

7= [[13] 3]

8= [[23] 3]

9= [[33] 3]

10 = 10

11 = [ 1 10]

12 = [ 2 10]

13 = [ 3 10]

13 = [ 10 3]

14 = [ [ 1 3] 10]

14 = [ [ 1 10] 3]

15 = [ [ 2 3] 10]

16 = [ [ 2 10] 3]

16 = [ [ 3 3] 10]

16 = [ [ 3 10] 3]

16 = [ [ 10 3] 3]

20 = [ 10 10]

MIXED 3- 4- and 5-BASE



(The first nine expressions here are the same as those (or their mirror

images) of Ekoi, cited above, labelled by Hymes the ‘pairing’ type.)

1= 1
2= 2
3= 3
4= 4
5= 5
6= [33]
7= [34]
7= [43]
8= [3¢5]
8= [44]
8= [53]
9= [45]
9= [54]
10 = [ 5 8]
BASE-4

(The first seven expressions here are the same as the Tunisian

egg-counting system, cited above.)
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4= 4

5= [14]
6= [24]
7= [34]
8= [44]

9= [[14] 4]

10= [ [ 2 4] 4]
11 = [ [ 3 4] 4]
12 = [ [ 4 4] 4]

MIXED BASE-4 and -8
(This solution (or its mirror image, in which, for example,
11 = [ [ 3 4] 4]) occurred 8 times. The first seven expressions are the

same as the Tunisian egg-counting system, cited above.)

1= 1
2= 2
3= 3
4= 4
5= [41]
6= [42]
7= [43]
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9= [4[41]]
10= [4[ 4 2]]
11 = [4 [ 4 3]]
12 = [ 4 8]

16 = [4 [ 4 8]]

BASE-5 (quinary/decimal)
(The first ten expressions here are the same as those of typical

quinary systems, mentioned above.)

1= 1
2= 2

3= 3

4= 4

5= 5

6= [51]

7= [5 2]

8 = [5 3]

9= [54]

10 = 10

11 = [5 [ 5 1]]
12= [5 [ 5 2]]
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13= [5 [ 5 3]]
14 = [5 [ 5 4]]
15 = [ 5 10]
20= [5 [ 5 10]]
BASE-6

1= 1

2= 2

3= 3

4= 4

5= 5

6= 6

7= [61]

8= [62]

9= [6 3]

10 = [ 6 4]

11 = [ 6 5]

13= [6 [ 6 1]]

14= [6 [ 6 2]]

15= [6 [ 6 3]]

16 = [6 [ 6 4]]

17 = [6 [ 6 5]]
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The similarities between these artificially generated systems and the ‘primitive’ systems described

earlier, are striking.

6.5 Systems get stuck in local optima

It is noteworthy that, of all the artificial grammars generated in the runs described above, not a
single pure decimal system emerged. We will explore why this is so.

Recall that what is simulated here is a quasi-social process whereby grammars are formed from
a pool of variant lexical items and syntactic rules which are somehow ambient in the community.
Over time, the pool of available lexical items and rules becomes restricted so that only one grammar
may be constructed from them, and this grammar is the ‘fittest’ that the community has happened
upon. After that point of convergence, only random ‘mutations’ to the pool of lexical items and
rules may disturb the situation. And such mutant lexical items or rules will only persist in the pool
if they happen to fit in with existing rules and lexical items to form a grammar which is fitter than
the one previously converged upon.

As readers familiar with any complex adaptive system will know, there can exist many ‘local
optima’, that is solutions to a problem (such as finding an effective counting system) which are
fitter than their close neighbours in the possibility space, but not the fittest solutions overall, in any
global sense. It is clear that the artificial systems illustrated above are local (near-)optima, in this
sense. In other words, any small mutation to one of the grammars arrived at tended very strongly
to produce a grammar that was less fit

If a particular grammar converged upon by the algorithm is at a local optimum, then any random
mutation applied to it, in the form of a randomly added or deleted syntactic rule or lexical item,

will result in a grammar less fit (by whatever definition of fitness was used to arrive at the tested
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grammar) than the tested grammar. If such random mutations do not always, but nevertheless tend
strongly to, result in less fit grammars, then the tested grammar is near a local optimum.

The 13 first grammars converged upon by the algorithm decribed above were tested for local
optimality in this way. To each of these grammars, 100 random mutations were applied (not serially,
but always starting with the tested grammar). Thus for each tested grammar, 100 one-step mutants

were produced. The results for the 13 tested grammars are aggregated below.

1 mutation produced a less fit grammar in 444 cases.
1 mutation produced an equally fit grammar in 776 cases.
1 mutation produced a fitter grammar in 80 cases.

Thus the probability of a random mutation producing an improvement to one of the converged-
upon grammars is low, 0.062 (80/1300). These grammars are at or near local optima.

To test whether the algorithm would recognize a globally optimal solution if it saw one, another
series of runs was carried out in which the initial population of 100 random grammars was ‘seeded’
with a small number (10) of copies of a grammar which (I thought) was globally optimal. There
were no nasty surprises here, and the algorithm always quickly converged, after just one or two
cycles, on the globally optimal solution. The algorithm did however administer one sobering little
lesson, in that it discovered a better grammar than the one with which I had seeded it. My ‘optimal’
grammar was not quite optimal, as it allowed both 1-deleted and non-1-deleted variants of 10 (i.e.

10 = 10 and 10 = 1x10), which occurred in all the -teen expressions, giving redundancy.

6.6 Evolution of ‘developed’ systems

The algorithm explored here never succeeded, in a limited number of trials, in converging on a
complete and pure decimal numeral system such as is the basis of the counting systems of most of
the world’s major languages. On several occasions it got close.
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One its better efforts was as follows:

LEXICON:
Value Syntactic Word
Category

1 s0 re
2 s0 ga
3 s0 ko
4 s0 se
5 s0 ji
6 s0 ge
7 s0 ci
8 s0 ti
9 s0 le
10 s2 di

SYNTACTIC RULES

s0 --> 82 s0 (Addition)

sl --> 82 s2 (Addition)



COMPLEX EXPRESSIONS GENERATED

11 = 10+1
12 = 10+2
13 = 10+3
14 = 10+4
15 = 10+5
16 = 10+6
17 = 10+7
18 = 10+8
19 = 10+9
20 = 10+10

As can be seen, this system is like a developed decimal system up to 20, but goes no further.

Another near miss (though at first blush it may not look like it) is as follows:

1 (GAP)
2=2
3=3
4=4
5=5
6=6
7 (GAP)
8=128
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10 = 10
11 (GAP)

12 = 1042

13 = 1043

14 (GAP)

15 (GAP)

16 = 1046

17 (GAP)

18 = 1048

19 = 1049

20 = 2x10

21 (GAP)

22 = 2x10 + 2
23 = 2x10 + 3
24 (GAP)

25 (GAP)

26 = 2x10 + 6
27 (GAP)

28 = 2x10 + 8
29 = 2x10 + 9
31 (GAP)

32 = 3x10 + 2
33 = 3x10 + 3
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34 (GAP)

35 (GAP)
36 = 3x10 + 6
37 (GAP)
38 = 3x10 + 8
39 = 3x10 + 9
40 = 2 x 2x10

41-59 (GAPS)

60 = 2 x 3x10 3 x 2x10 6x10 (REDUNDANCY)

61 (GAP)
62 = 6x10 + 2
63 = 6x10 + 3
64 (GAP)
65 (GAP)
66 = 6x10 + 6
67 (GAP)
68 = 6x10 + 8
69 = 6x10 + 9

70-79 (GAPS)

80 = 8x10
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81 (GAP)

82 = 8x10 + 2
83 = 8x10 + 3
84 (GAP)
85 (GAP)
86 = 8x10 + 6
87 (GAP)
88 = 8x10 + 8
89 = 8x10 + 9

90 = 9%x10 3 x 3x10 (REDUNDANCY)

91 (GAP)
92 = 9x10 + 2
93 = 9x10 + 3
94 (GAP)
95 (GAP)
96 = 9x10 + 6
97 (GAP)
98 = 9x10 + 8
99 = 9x10 + 9

The main problem with this system is the lexical gaps for values 1 and 7, and the gaps caused
by the fact that the words for 4 and 5 are not of the appropriate syntactic category to fit into the

higher-valued syntactic constructions. If those gaps were filled with appropriately categorized lexical
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items, the system would be close to a modern decimal system. But note the hint of a vigesimal

system in the various ways of expressing 60.

7 Conclusion

In the artificial approach described here, a numeral system resembling the dominant type found in
the world’s languages can emerge only very rarely, though it is not actually impossible. On the
other hand, ‘suboptimal systems’, resembling the systems found in a number of isolated language
communities throughout the world, emerge frequently. If a developed system is artificially imposed
on a community with such a suboptimal system, the developed system is quickly adopted. If the
approach outlined here has any verisimilitude, we may conclude that the natural primitive systems
have an internal stability but are highly vulnerable to invasion (through language contact) by the
developed decimal system which prevails throughout much of the world. This fits very well with the
facts of language contact; in fact, ‘exotic’ numeral systems as have been shown above are typically
abandoned in favour of a ‘modern’ decimal system. The simulations here show that this replacement
may be due to some kind of real linguistic superiority (in coverage, lack of redundancy, and suitability
to specifically human memory constraints) of the decimal system, and not just a consequence of the

superior economic or military power of the invading culture.
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