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1.1 Introduction

Evolutionary modelling is moving into the challenging field of the evo-
lution of syntactic systems. In this chapter!, five recent models will
be compared. The following abbreviations will be used in referring to
them.

Batali (1998) JB1
Batali (this volume) JB2
Hurford (in press) JH

Kirby (in press) SK1

Kirby (this volume) SK2

Other related work will be mentioned where relevant? 3. The goals of
the comparison will be to highlight shared and different assumptions
and consequent shared and different outcomes.

The models of the evolution of syntax that have been constructed so
far fall short of the kind of syntactic complexity found in real languages.

This general kind of work was significantly stimulated by a workshop in compu-
tational evolutionary syntax sponsored by the Collegium Budapest Institute for
Advanced Study in 1997. The particular work of this paper was substantially
helped by a UK ESRC research grant, No. R000 237551. I thank Simon Kirby,
John Batali, Ted Briscoe and Mike Oliphant for helpful comments, but I take sole
responsibility for what is said here.

The discussion of JB2 here is based largely based on a slightly earlier version than
that published in this volume. Nothing significant turns on this.

Steels (1998) outlines a model very similar in spirit to those compared here, but
gives no details of any language-like system that is its outcome. For this reason,
and for lack of space, it is discussed in less detail here.
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2 1. Expression/Induction models of language evolution

In this work, idealization and simplification are immediately obvious.
So far, the emergent language systems are, by the standards of extant
languages, very simple. The models surveyed here all claim to present
examples of the evolution from situations with no language to established
syntactic systems. The evolved systems are admittedly simple, but this
can be seen as a strength, rather than a weakness of these models, which
abstract away from peripheral and incidental features of language, to
focus on core properties such as compositionality, recursion and word
order. As human syntactic ability has for long been held (by linguists) to
be at the core of the innate language faculty, any claim to have simulated
the evolution of some syntax needs to be evaluated with care. Questions
that arise include:

e In what sense, and to what degree, do the evolved systems actually
exhibit true syntax? This requires a theory-neutral definition of the
term ‘syntax’.

e If some syntax is present in the evolved systems, to what extent is
this syntax truly emergent, that is, neither simply programmed in nor
an obvious consequence of the definitions of the central mechanisms
(production and learning) or of the predefined semantic structures?

e In what ways do the evolved systems resemble natural languages?

After this introductory section, successive subsections will address
these, and related, questions.

1.1.1 Characteristics of Expression/Induction models

‘Expression/Induction’, henceforth E/I, is a natural mnemonic for a class
of computational models of language. In such E/I models, a language is
treated as a dynamic system in which information is constantly recycled,
over time, between two sorts of phase in the language’s life. In such a
model, a language persists historically through successive instantiations
in two quite different media: (1) mental grammars of individuals, and (2)
public behaviour in the form of utterances (possibly affected by noise)
paired with manifestations of their meanings (also possibly incomplete).
In the history of a language, grammars in the heads of individuals do not
give rise directly to grammars in the heads of other individuals; rather,
grammars are the basis for an individual’s performance, and it is this
overt behaviour from which other individuals induce their own mentally
represented grammars.
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There is nothing new in this view of language constantly spiralling
between induced mental representations of its system (Chomskyan I-
Language), and expressions of the system in behaviour (Chomskyan E-
Language); it is essentially the picture presented by Andersen (1973),
and assumed in many generative historical linguistic studies (e.g. Light-
foot, 1999). The term ‘E/T’ is deliberately reminiscent of the E-language/I-
language distinction. However, the class of models I shall discuss under
the rubric of ‘E/I models’ have certain further common features, listed
in outline below.

Computational implementation: These models are fully implemented
in computer simulations. They thus benefit from the clarity and rigour
which computer implementation forces, while incurring the high degree
of idealization and simplification typical of computer simulations. Ob-
viously, the authors of these models, while admitting to the idealization
and simplification, feel that the compensations of clarity and rigour yield
some worthwhile conclusions.

Populations of agents: In these simulations, there are populations
of individuals, each of whom is endowed with two essential capacities,
given in the next two paragraphs below. During the course of a simu-
lation, these agents are variously and alternately designated as speak-
ers/teachers and hearers/learners. In a typical setup, every simulated
individual has a chance of talking or listening to every other at some
stage. In most models, the population changes regularly, with some in-
dividuals being removed (‘dying’) and new ones being introduced (‘being
born’).

Expression/invention capacity: This is the capacity to produce an
utterance, on being prompted with a given meaning. The utterance
produced may be defined by a grammar already possessed by the indi-
vidual, or be entirely generated by a process of ‘invention’ by random
selection from the set of possible utterances, or else be formed partly by
existing rules and partly by random invention. Where the individual’s
grammar defines several possible utterances corresponding to a mean-
ing, the individual’s production capacity may be biased toward one of
these utterances, contributing to a ‘bottleneck’ effect (see below).
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Grammar induction capacity: This is the capacity to acquire, from
a finite set of examples, an internal representation of a (possibly infinite)
language system. A language system is a mapping between meanings
and forms, equally amenable for use in both production and perception.
The set of possible internalized grammars is constrained by the individ-
ual’s acquisition algorithm. Furthermore, the individual’s acquisition
algorithm may bias it statistically toward one type of grammar in pref-
erence to a grammar of another type. Where the individual’s acquisition
device is a neural net, one may still speak of an internalized grammar,
envisaged as the mapping between meanings and utterances reflected in
the input/output behaviour of the trained net.

Starting from no language: These models focus on the question of
how incipient languages could possibly emerge from situations in which
language is absent. At the start of a simulation, the members of the ini-
tial population have no internalized representations of a particular lan-
guage. The simulations nevertheless usually end with populations whose
members all have substantial (near-)identical mental representations of
some language, and all produce utterances conforming to a standard
applying to the whole community. These models are thus not primarily
models of historical language change in relatively mature and complex
languages, although the methodology of these simulations, extended and
refined, would be very suitable for models in historical linguistics. (Ex-
amples of such applications to historical language change, from quite
contrasting theoretical backgrounds, are Hare and Elman (1995) and
Niyogi and Berwick (1997)).

No biological evolution: In these models, there are no differences
between individuals at the point when they are introduced into the pop-
ulation. They all have identical capacities for responding to their en-
vironment, either in the production of utterances or in the acquisition
of an internal language system triggered by exposure to the utterances
of others. Thus these are models of the cultural evolution of learned
signalling systems, a quite special case of historical language change, as
noted above. These models are not models of the rise of innate signalling
systems.

No effect of communication: These models are clearly inspired by
situations in which humans communicate meanings to each other. It
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is in fact possible in these models to measure the degree to which the
emergent systems allow successful communication between agents (JB2,
in particular, emphasizes this). And the states on which the models
converge would typically allow efficient communication. But raw com-
municative success is not a driving force in these models. That is, there
is no instance in which a simulated speaker attempts to communicate a
meaning, using a particular form, and then, noting how successful the
attempt is, modifies its basis for future behaviour accordingly. The ba-
sic driving force is the learning of behaviour patterns by observation of
the behaviour of others. The fact that the behaviour concerned can be
interpreted as communicative, and that communication may happen to
be beneficial to a group, is not what makes these models work. These
are models of the process by which patterns of behaviour (which, quite
incidentally, happen to be communicative) emerge among agents who
acquire mental representations determining their own future behaviour
as a result of observing the behaviour of others. The undoubtedly inter-
esting and significant fact that such patterns of behaviour may convey
selective advantage on individuals or populations that possess them is
no part of these models.

Lack of noise Unrealistically, all the models surveyed here are noise-
free. That is, every utterance produced by a speaker is assumed to
be perfectly observed by a learner. Similarly, learners are assumed to
have perfect access to the meanings expressed by their ‘teachers’. Thus
these models do not deal with an obvious and potent source of lan-
guage change. Nevertheless, leaving noise out of the equation, at least
temporarily, serves a useful purpose, in that it allows us to see the evo-
lutionary effects of other factors, such as bottlenecks (see below), all the
more clearly. Perfect access to primary linguistic data is a basic assump-
tion of classic work in language learnability theory and related theory
of language change (e.g. Clark & Roberts (1993); Gibson & Wexler
(1994); Niyogi & Berwick (1997)) . It is not a problematic assumption,
because it is clear that it could be relaxed to partial access all of the
time, or perfect access some of the time (or both), so long as such access
is sufficient.

Pre-defined meanings: The extant models all take as given some set
of pre-defined meaning representations. Such representations can be
seen as thoughts, ideas or concepts, which the pre-linguistic agents can
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entertain, but not express. In the course of a given simulation, the set of
available meanings does not change, although their expressibility in ut-
terances changes, typically from 0% to 100% . The pre-defined meanings
are always structured and somewhat complex. The contribution of such
semantic structure to the emergent language systems will be discussed
in detail later.

Pre-defined ‘phonetic’ alphabets: The extant models all assume
some unchanging finite vocabulary of atomic symbols from which utter-
ances are constructed, by concatenation. The size of this vocabulary
relative to the meaning space is an important factor.

Emergence: All such models aim to show how certain features of lan-
guage emerge from the conditions set up. A major goal is to demonstrate
the emergence of features which are not obviously built in to the sim-
ulations. This presupposes that the essential dynamic of an E/I model
itself produces certain kinds of language structure as a highly likely out-
come. The interaction of assumptions produces non-obvious outcomes
explored by simulation. Actual models differ in the extent to which var-
ious structural properties of the resulting language system can be said
to be built in to the definitions of the crucial processes in the simulation
cycle.

‘Bottlenecks’: An individual’s acquired grammar may be recursive,
and define an infinite set of meaning-form pairs, or, if not recursive, it
may nevertheless define a very large set of meaning-form pairs. The
set of example utterances which form the basis for the acquisition of an
internal representation of language in an individual is necessarily finite
(as is life). A bottleneck exists in an E/I model when the meaning-form
pairs defined by an individual’s grammar are not presented in full as
data to learners. A subset of examples from the infinite (or very large)
range of the internalized grammars of one set of speakers is fed through
a finite bottleneck to constitute the acquisition data of a set of learners.
The simulation may, by design, prompt individual speakers with only a
(random) subset of the available meanings, so that the data given to an
acquirer lacks examples of the expression of some meanings. I will label
this a ‘semantic bottleneck’. With a semantic bottleneck, learners
only observe expressions for a fraction of all possible meanings. Even
where all individuals are systematically prompted to express all available
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meanings (possible only where the set of meanings is finite), the individ-
ual speakers’ production mechanisms may be designed to produce only a
subset of the possible utterances for those meanings as defined by their
grammars. We will label this a ‘production bottleneck’. Note that it
would in fact be unrealistic not to implement a production bottleneck.
Communication in real societies involves singular speech events, in which
a speaker finds a single way of expressing a particular meaning. There is
no natural communicative situation in which a speaker rehearses all her
forms for a given meaning. It is the kind of metalinguistic exercise that
might be part of fireside word games, or perhaps be used in a second
language classroom, but nowhere else.

1.1.2 Simple examples: Evolution of vocabulary

To outline the basic shape of an E/I model, and to demonstrate the
potential effects of bottlenecks in simple cases, we will start with the
case of the evolution of a simple vocabulary. A number of earlier studies
(Oliphant, 1997; Steels, 1996a, 1996b, 1996¢c, 1997; Vogt, 1998) model
the emergence of simple vocabularies. Some of these vocabulary models
technically satisfy the criteria listed above for E/I bottleneck models,
and in doing so, illustrate some basic effects of the dynamics of these
models. It is characteristic of models of vocabulary evolution that they
assume a finite set of unrelated, atomic meanings. The lack of structured
relationships between and inside vocabulary items ensures that each
meaning-form pair must be acquired individually, and the whole lexicon
is memorized as an unstructured list, over which no generalizations are
possible. (The following informal examples are composed for this paper
and representative of the literature, though not drawn wholly from any
single publication.)

Learned vocabulary transmission without bottlenecks

Take a population of, say P individuals, each with access to a finite set
of concepts, say C' in number, and none, as yet, with any known means
of expressing these concepts. Let each individual now try to express
every concept to every other individual, uttering a syllable drawn from
a large set. At first, no individual has any acquired means of expressing
any concept (no mental lexicon), and so each resorts to invention by
random selection from the large set of syllables. Let us say that the
set of syllables is so large that, over the whole population, there are
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likely to be few chance repetitions of the same syllable for the same
meaning. The typical experience of an individual hearer/learner will be
to hear p (p < P) different syllables for each of the C concepts, and
he will thus acquire a large lexicon consisting of p x C' meaning-form
pairs. Across the whole population, there will be a great variety of such
lexicons, overlapping with each other to some small degree. Now ‘kill
off’ a fraction of the population; this reduces the linguistic diversity
somewhat, but not much. Introduce a corresponding number of new
individuals as learners, to whom all the surviving individuals will express
all the available concepts, and, moreover, using all the syllables they
have acquired for each of those meanings. Thus, the newly introduced
learners are in fact exposed to the whole language, which they will
acquire in toto, and in due course pass on in toto to the next generation.
After the random inventions of the initial generation, there will be no
further change, either in the internalized lexicons of successive members
of this hypothetical community, or in its public language, for the rest of
its history.

This is a situation with no bottleneck. A community which transmits
its language without bottlenecks preserves an aboriginal set of meaning-
form pairs down through the ages with comparable fidelity (but not by
the same mechanism) as a community with an innate signalling sys-
tem. After the invention of the original meaning-form pairs, there is no
evolution in such a system.

Vocabulary transmission with only a production bottleneck

Let us now modify the scenario, and introduce a production bottleneck,
but not, at this stage, a semantic bottleneck. A production bottleneck
exists when a speaker has learned several forms for a given meaning, and
selects among them when prompted with that meaning, with the result
that some acquired forms are never uttered for this meaning by this
speaker. We assume that all agents in a simulation apply the same se-
lection method in implementing a production bottleneck. Some possible
production bottleneck selection methods are:

e for a given meaning, use the form that was most frequently used for
that meaning in your learning experience,

e for a given meaning, use the form that was first acquired for that
meaning,

e use the shortest form in your vocabulary for the given meaning,
e use the form that is cheapest, according to some well defined metric,
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e pick a random form from your vocabulary for the given meaning.

The last (random) method here has a special status as it assumes a
uniform distribution; it is the weakest assumption about sampling, and
all the others will set up some kind of positive feedback between learn-
ing and production, so that an explanation of emergent properties is no
longer totally in terms of the learning algorithm. A selection method
can also be probabilistic, not necessarily, but still possibly, eliminating
the use of some dispreferred form. With a non-random production bot-
tleneck implemented, each speaker is consistent over time in his method
of chooice of expressions for particular meanings.

It is apparent that, whatever selection method is used, the effect will
be, over the course of many simulation cycles, to narrow down the set of
forms used for a given meaning, until eventually there is only one form
for a given meaning used across the whole community. Even if the selec-
tion of forms by agents is genuinely random, there will still occasionally
be chance instances of some learner not acquiring some particular form-
meaning pair, because this particular form happened not to have been
used by any of the speakers from whom he learned; and such a form
will be rarer in the E-Language of the next generation. If the popula-
tion is a genuine single population, rather than several subpopulations
completely isolated from contact with each other, then over time the
number of forms for a given meaning will approach, and finally reach, 1.
Even with a large population, if the production behaviour of an agent at
one time may in principle historically affect, through the constant cycle
of expression/induction/expression/induction, the learning of any agent
at a much later time, then the population is guaranteed to converge,
sooner or later, onto a common vocabulary, with just one form for each
meaning. That is, the E/I model, with a production bottleneck, but no
semantic bottleneck, leads inevitably to the elimination of synonyms in
a language system. There is no corresponding tendency or mechanism
for the elimination of homonyms. This is because, with no semantic
bottleneck, the system is driven by meanings; it is a requirement of
this condition that all the meanings be expressed to each learner each
generation.

Vocabulary transmission with only a semantic bottleneck

Although the absence of a production bottleneck is unnatural, we will
briefly consider the converse situation, in which an E/I model contains a
semantic bottleneck, but no production bottleneck. In such a situation,
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the meanings that are expressed by speakers each generation are a sub-
set of the available meanings. In a given generation, some meanings will
be picked for expression which were not picked in the previous genera-
tion, or vice-versa. Some meanings may be passed over for a period long
enough to lead to expressions for them being lost from the grammars
of all speakers (although all speakers are still capable of conceiving of
the meanings). In this event, the first speaker called upon to express a
particular meaning for which he has acquired no paired form will ran-
domly invent a new form, which will then enter the language and be
transmitted to subsequent generations. If several speakers in the same
generation invent new forms for a given meaning, they will almost cer-
tainly invent different forms, and a case of synonymy is created. If the
semantic bottleneck is especially fierce, with frequent omission of mean-
ings, such re-invention will be constant, leading to an unstable language
system with multiple synonymy evident at all stages.

It can be seen that, at the level of vocabulary, the two kinds of bot-
tleneck are in tension with each other with regard to the phenomenon
of synonymy. A semantic bottleneck tends to increase synonymy, by
frequently triggering (re-)invention of forms; a production bottleneck
tends to reduce synonymy, by guided selection of forms. We shall later
see some echoes of these effects in the evolution of syntax, but with a
crucial difference, in that the availability of general syntactic rules can
preempt an appeal to random (re-)invention of forms.

Frequency effects

A model may have a near no-semantic-bottleneck condition, even with-
out an explicit stipulation in the code that every meaning be expressed
to every learner. This can happen if the selection of meanings to be
expressed is random, but the number of available meanings is small in
relation to the number of ‘speech-events’ typically experienced by each
learner. In such a case, the probability of a meaning being omitted at
some stage in the cycle is small, but real, and one can expect some occa-
sional instability to result, with some form-meaning pairs disappearing
from the system and being replaced by newly invented ones.

If we manipulate the frequency with which meanings are chosen to be
expressed, so that some meanings are expressed so seldom that whole
generations can pass without these meanings being expressed, there will
be greater instability in the form-meaning pairings for these less used
meanings, with frequent re-invention of new forms. On the other hand,
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meanings that are expressed with high frequency (i.e. at least once to
each learner every generation) will preserve their ancestral forms with-
out change. Thus, in general, conservative form-meaning pairings are
correlated with high frequency of use.

The principles underlying the evolution of vocabularies in situations
with cyclic production and learning are now fairly clear. The phenom-
ena encountered in this section on the emergence of simple vocabularies
foreshadow, mutatis mutandis, phenomena found in the emergence of
syntactic systems in E/I models. The introduction of syntactic capa-
bility brings new, and more interesting, features to language systems
transmitted by E/I dynamics.

1.2 Modelling the emergence of syntax
1.2.1 Does true syntax emerge in E/I models?

A syntactic system is here defined to be any system in which strings
of concatenated symbols are paired with somewhat complex meanings,
by any systematic means other than exhaustive listing of the one-to-one
meaning-form pairs. The mere fact that the forms are strings and that
the meanings are complex is not sufficient to define a system as ‘syn-
tactic’. With a truly syntactic system, what is important is that the
structure of the expressions is part of what conveys meaning. Clearly,
finite sets of meaning-form pairings involving symbol strings and com-
plex meanings could evolve, and persist in a community, in exactly the
same way as was outlined above for vocabularies with atomic meanings
and forms. It will be seen, however, that, even with agents who are
able (and sometimes even prefer), to rote-memorize individual corre-
spondences between strings and complex meanings, there are pressures
inherent in E/I bottleneck models which lead to the emergence of syn-
tactic systems in the sense defined.

With symbolic (as opposed to connectionist) models (i.e. SK1, JH,
SK2, JB2) there is a relatively direct method of diagnosing whether a
system emerging from an E/I simulation is truly syntactic. This di-
rect method is by inspection of the internalized grammars of the simu-
lated agents, given an understanding of how these grammars are used
to produce forms for target meanings. As a general working principle,
if the number of separate statements in a grammar is less than the to-
tal number of meaning-form correspondences defined by the grammar,
then some degree of syntactic generalization is present in the system.



12 1. Ezxpression/Induction models of language evolution

This principle relies on an intuitive grasp of what should be counted as
a separate statement in a grammar. In SK1, SK2 and JH, separately
stored rules are clearly identifiable; in JB2, each stored exemplar is a
separate statement of the grammar. The following table shows that, by
this criterion, all the models surveyed have evolved syntactic means of
expressing their meanings.

Language size Grammar size
Model Actual Principled | Lexical | Phrasal | Total
SK1 100 100 10 1 11
SK2a 100 100 10 1 11
SK2b 65,000 infinite 15 2 17
JHa 4,137 infinite 16 3 19
JB2 | 23 trillion infinite 35 305 340

Comparing language size to grammar size in emergent E/I systems.
Key: SK2a = 1st experiment in SK2; SK2b = 2nd experiment in SK2; JHa
= 1st experiment in JH; Language size (Actual) = Number of meaning-form
correspondences defined within practical size limit imposed on simulation;
Language size (Principled) = Number of meaning-form correspondences de-
fined in principle; Grammar size (Lexical) = Number of most atomic meaning-
form statements in grammar; Grammar size (Phrasal) = Number of rules or
exemplars in grammar; Grammar size (Total) = Total number of statements
in grammar. Figures for JB2 are approximate and from an early version of
his paper.

In the case of the relatively orthodox phrase structure grammars of
SK1 and SK2, if an agent has acquired any rule which, by including one
or more variables, generalizes over more than one meaning-form pair,
then that agent has at least some syntax. Agents may possess syntax
to varying degrees, as shown by the intermediate phases of many of the
simulation runs surveyed here, in which agents have some ‘partially syn-
tactic rules’. A partially syntactic rule contains one or more variables
which generalize over parts of a sentence, but also contains constant ele-
ments of both meaning and form, which are thus correlated only by the
fact of their co-occurring in this rule, as in a lexical entry. An example
of such a partially syntactic rule, from SK2, is reproduced below:

S/loves(john,z) — johnloves N/x
N /mary — mary
N /jane — jane
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In the first of these three rules, the variables N and x generalize over
the forms and meanings, respectively, seen in the other two (lexical)
rules. At least two such other rules are necessary in the grammar for the
generalization in the first rule to have any generalizing effect. Given such
a combination, one may legitimately claim that the system containing
them is at least incipiently syntactic in nature®.

Note that the presence, in an agent’s internal grammar, of some
apparently rote-learnt correspondences between complex meanings and
strings of symbols, with no generalizing variables, does not imply that
some of those correspondences are not also the subject of generalization
by rules also present in the grammar. The internal grammars of agents
may be redundant, specifying the same facts about the emergent lan-
guage system in more than one way. This is true, for example, of the
system emerging from the third experiment described in JH, in which
the capacity of learners to internalize generalizations was deliberately
somewhat (but not totally) impaired.

1.2.2 Phases in the emergence of syntax

SK1 and JB2 both present graphs of typical runs which reveal three
distinct phases in the emergence, from nothing, of syntactic systems.
The first phase could be termed a ‘holistic’ phase. It is described by the
modellers as follows:

The grammars at this stage are basically vocabulary lists, with each com-
plex meaning being expressed as an arbitrary unanalysed string of symbols.
... there is no consistent way in which the meanings are related to the strings.

SK1

Each utterance is analysed as a token, and such tokens are worthless for ex-
pressing anything but the exact meaning they contain.

JB2

The second phase could be termed ‘uncoordinated transitional’. It is
described as follows:

4 The reservation implicit here arises from the fact that, in the example given, only
two sentences are generated by three statements; adding further lexical items to
fill the N slot does not help, as there will still always be one more statement in
the grammar than there are sentences generated.
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The number of meanings covered increases dramatically, as does the size of the
grammar. ...the grammars at this stage are far more complex and byzantine
than the earlier ones.

SK1

...the agents begin to acquire and use complex phrase exemplars. This is
followed by rapid accumulation of exemplars ...

JB2

The third phase could be termed ‘stable economical’. It is described
as follows:

The transition [to stage 3] is marked by a sudden increase in the number of
meanings that can be produced to the maximum value and a drop in the size
of grammars

SK1

The average number of token exemplars, which by round 8000 almost all
contain a single formula as their meaning, decreases from its peak of 220 to
35 by round 25000.°

JB2

The similarities between the typical runs of SK1 and JB2, despite
the markedly different structures and assumptions of the models, are
suggestive. Further work needs to be done to see whether these three
phases are in any sense necessary to the emergence of syntax. SK2 does
not report such distinct phases, which may be a consequence of using
the minimal 2-agent (1 ‘teacher’, 1 learner) population, thus eliminating
the factor of coordination of grammars within a population. The runs
in JH converge on syntactic systems so rapidly that it is not possible to
discern any middle or transitional phase. The final version of JB2 (in
this volume) actually distinguishes four phases, with the third ‘stable
economical’ phase above split into two. See Batali (this volume) for
discussion.

1.2.3 Agents’ representations of syntax

It is useful to mention that for a system to be called ‘syntactic’ it is
neither necessary nor sufficient that the internalized grammars of agents

5 This is quoted from an early version of Batali’s paper. The figures for the final
model described in this volume are somewhat different, but nothing significant
turns on this.
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contain symbols that are interpreted as autonomous of both meaning and
form. One of the central claims of generative grammar is that syntax is
autonomous, that is, the terms used to characterize the syntactic system
of a language are neither purely semantic nor purely phonetic, but are
to some degree independent of both meaning and form. The thesis of
the autonomy of syntax is an empirical claim, subject to falsification by
analysis of actual languages. Thus, it cannot be a matter of definition
that syntax is autonomous of form and meaning. We should define
‘syntax’ independently of the notion of autonomy. Having done so, we
can then judge whether the systems evolved in E/I models do exhibit
syntax. And, if they do, we can then ask whether, and in what sense,
these evolved syntactic systems are autonomous of form and meaning.

It is of course possible, though not desirable, to write very complex
phrase structure grammars, with a wealth of different syntactic cate-
gories, for very simple finite data, for which an intuitively better account
would be provided by a list. If a simulation in an E/I model, through
some quirk of its expression and induction algorithms, happened to cul-
minate in a situation where agents had internalized complex grammars
with such unjustified ‘syntactic’ structuring, we should not conclude that
true syntax had emerged in this model, despite the grammars containing
what look like syntactic category symbols.

The models of SK1 and SK2 contrast with those of JH and JB1
and JB2 in the degree to which learners postulate autonomous syntac-
tic structure. The agents in SK1 and SK2 models induce context free
phrase structure grammars with symbols representing autonomous syn-
tactic categories. Apart from one specially designated symbol, S, for
‘sentence’, these syntactic category symbols are simply integers, gener-
ated as needed by the induction algorithm (and translated in the ex-
amples of SK2 as italic capital letters, A, B, C, ...). The agents thus
have the facility to represent generalizations over classes of atomic forms
(‘words’) and over classes of strings of atomic forms (‘phrases’), on the
basis of their distribution in sentences, and of the systematic mapping
of such classes to semantic terms. But the mere existence in an agent’s
grammar of an apparently autonomous syntactic symbol, such as S,
does not imply that the agent has acquired a syntactic system. The
early grammars induced by the agents in SK1 and SK2 are essentially
lexicons, in which the symbol S is present, but does no work. But the
grammars which emerge later are clearly syntactic, by our criterion.

In the JH model, agents acquire grammars in which the rules have no
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syntactic category symbols. There are dictionary statements, relating
atomic meanings to atomic forms, that is translating predicates and
individual constants into words, for example:

SING — vag
FIONA — goz

Such lexical statements contain no variables. In addition, there are
rules defining the order in which the components of a proposition are
expressed, for example:

{PRED, ARG1, ARG2} — F-ARG2 F-PRED F-ARG1

Here, ‘F-’ is an operator meaning ‘form of’ (as defined by other rules,
including lexical, rules); all the other terms are variables; the left hand
side of the rule depicts an unordered set of the identifiable parts of a
proposition; and the right hand side of the rule states the linear order
in which the defined forms occur. Such grammars contain no syntactic
category symbols. But, by the definition of syntax followed here, the
emergent systems are clearly syntactic, achieving a high degree of gen-
eralization over meaning-form correspondences. A tree diagram of the
derivation in this grammar of a string expressing a complex meaning
would look like this:

SAY(ETHEL, HATE (FIONA, BERTIE))

.

F-HATE(FIONA,BERTIE) F-SAY F-ETHEL

F-BERTIE F-HATE F-FIONA

bac zof goz gub pim

Such a tree structure contains no nodes labelled with specifically syn-
tactic categories.

In JB2, as the table above shows, the emergent systems also achieve
a high degree of generalization over meaning-form correspondences, and
thus satisfy our criterion for having evolved some syntax. In this model
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the representations induced by agents are not rules of any familiar kind,
but ‘exemplars’. An exemplar, in JB2, is a more or less simple bit of
tree structure whose terminal nodes are the syllable strings of the emer-
gent language, and all of whose preterminal nodes are parts of semantic
representations. An example is given below:

((lizard 1) (liked 12) (sang 2) )

1:1
|ﬁ| 2]

((lizard 1) (liked 12) ) ((sang1) )

zapodo eqgeg

In the absence of autonomous syntactic categories, such tree struc-
tures resemble the previous one, derived in the JH model. The two
structure types also, of course, resemble each other, and the tree struc-
tures derived in SK1 and SK2 in their progressive decomposition of a
complex semantic representation, as one descends the tree, but this com-
positionality is to be expected of any truly syntactic system.

More important are the differences between SK1, SK2, JH, on the one
hand, and JB2. In SK1, SK2 and JH, tree structures are not represented
in an agent’s grammar, although they can be constructed by an analyst
from the agent’s rules, whereas the JB2 exemplars are actually what
the agents’ grammars consist of; in JB2, agents do not store rules.

The power of a grammar to define a large set of meaning-form corre-
spondences in a few statements resides either in the grammar itself or
outside the grammar, in the processing conventions or algorithms used
to ‘read’ the grammar when producing forms for target meanings. This
difference echoes the debate, in the early days of generative grammar,
on the rival merits of rules and analogies.

Linguists have had their share in perpetuating the myth that linguistic be-
haviour is ‘habitual’ and that a fixed stock of ‘patterns’ is acquired through
practice and used as a basis for ‘analogy’. These views could be maintained
only as long as grammatical description was sufficiently vague and imprecise.

Chomsky (1971/1965:154)

Analogy, multiplied over and over, is the process by which a grammatical rule
is formed.

Bolinger, 1968:114

The agents in JB2’s evolved systems, have acquired a fixed stock of
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patterns (exemplars) and use them as a basis for analogy in producing
new forms. They do not progress to the stage described by Bolinger in
actually forming general grammatical rules. The term ‘exemplar’ itself
implies that the agents’ stored representations are illustrative rather
than generative. Variables are the explicit instruments of generalization.
The exemplars of JB2 actually contain variables, the numbers 1 and 2,
which are the arguments of predicates. However, the use which is made
of these variables is not to characterize classes of expressions, but rather
to define possible transformations of individual exemplars. The main
generative power of the emergent systems in JB2 does not reside in the
variables in the agents’ grammars. The JB2 model fits very closely with
the ‘instance-based’ style of learning algorithm characterized by Langley
as follows:

... tnstance-based or case-based learning represents knowledge in terms of spe-
cific cases or experiences and relies on flexible matching methods to retrieve
these cases and apply them to new situations. One common approach simply
finds the stored case nearest (according to some distance metric) to the current
situation, then uses it for classification or prediction. The typical case-based
learning method simply stores training instances in memory; generalization
occurs at retrieval time, with the power residing in the indexing scheme, the
similarity metric used to identify relevant cases, and the method for adapting
cases to new situations.

Langley (1996:21)

JB2’s evolved agents end up with an average of about 340 exem-
plars, of which about 35 are lexical, or ‘tokens’ stating the most atomic
meaning-form correspondences. This means that the remaining roughly
300 exemplars are complex or phrasal, and it is clear that many such
stored phrasal exemplars are quite similar to each other. There is likely
to be, for example, a whole set of separate exemplars along the lines of
the three shown on the next page. In the classical parlance of genera-
tive grammar, a grammar which contained a set of such similar forms
is ‘missing a generalization’. The obvious generalization could be cap-
tured by using variables over predicates. It is not necessarily a criticism
of the JB2 model that its agents fail to capture a generalization. What
is interesting, and more important, is that the population of agents has
converged on a set of representations over which a generalization is
possible. It is a notable general property of E/I models that they con-
verge on systems over which generalization is possible, even where the
agents themselves do not represent such generalizations internally. The
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third experiment of JH also involves agents who represent their emergent
language in a redundant, non-general way, but whose behaviour never-
theless has converged on a system over which strong generalizations are
possible.

((tickled 12) (snake 1))

[1:1]

N~

1:
2:

((tickled 12) ) ((snakel))

jo jufe

((bit 12) (cow 1))

[1:1]

N| -

1:

2:

(it12)) ((cow1))
gaf mo

((dapped 1 2) (chicken 1) )

N

1:
5 [1:1]

((dapped 12) ) ((chicken 1))
lop puk

The intellectual background of the JB2 model is a view of language
which is less Chomskyan than those of SK1, SK2 and JH, in its empha-
sis on exemplars, rather than generative rules. Here is not the place to
discuss the empirical psycholinguistic issue of the degree to which hu-
mans store exemplars rather than rules. Certainly, the issue is not as
cut-and-dried as many generativists perhaps believe.

... there have always been pockets within linguistics, sociolinguistics, and ap-
plied linguistics which have suggested that ready-made chunks of unanalysed
language are as important as productive rules (Bolinger 1976; Coulmas 1979,
1981; VanLancker 1975; Widdowson 1984, 1990; Yorio 1980). Peters (1983)
and more recently Nattinger and DeCarrico (1992) suggest that the role of
ready-made chunks of language in L1 and L2 development may be underesti-
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mated.
Weinert, 1995:180

The issue is that of the ‘formulaicity’ of language organization in the
brain, and is closely related to the issue of holistic utterances in lan-
guage evolution, discussed by Wray (1998, forthcoming). The issue of
rules versus whole stored chunks also arises in computational parsing
theory (e.g. Bod, 1998). The fact that computational models with such
contrasting assumptions about generativity have succeeded in getting
some degree of simple syntactic organization to evolve in a dynamic
system shows (a) that both approaches (rules and stored chunks) are
compatible with some of the most basic facts of language organization,
and (b) that computational evolutionary models have a long way to go
in complexity before they can begin to shed light on such issues.

In the model of JB1, the agents are implemented as trainable recur-
rent neural nets, in which configurations in the output layer are taken to
be vectors representing meanings, and the input layer is used for coding
successive ‘phonetic’ characters of utterances. One might, perhaps, ar-
gue that the rest of the apparatus, the configurations in the hidden and
context layers and the weights of all the connections, can then be inter-
preted as neither semantic nor phonetic, and hence must be ‘syntactic’
in nature. This would be a spurious, even silly, argument.

Syntax in the sense defined involves compositionality, the principle
that the meaning of a string of symbols is a function of the meanings
of the constituent symbols. The evolved systems on which the models
discussed here converge all exhibit compositionality. This is achieved in
more or less stipulative ways. To introduce the ways in which this com-
positional relationship between strings and complex meanings emerges,
we need first to look at the ways in which these models represent complex
meanings.

1.2./ Representation and mapping of meanings

Computers can only manipulate symbols; the human users of computer
programs interpret their inputs and outputs semantically, assigning the
symbols significance outside the symbolic system. The models of lan-
guage evolution discussed here adopt sets of symbolic representations
which are designated “semantic” or “meanings”. These representations
are typically structured according to very simple wellformednness rules
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borrowed (uncritically) from such sources as classical predicate logic and
various versions of generative grammar. Thus the semantic representa-
tions incorporated into the evolutionary models already have a syntax,
in the sense of having different classes of terms and strict rules governing
the combination and distribution of these terms.

The emergent language systems in these works all have sets of strings
which can be analyzed into meaningful substrings, where the meanings
of the substrings combine to yield an appropriate meaning for the whole
string. To what extent do the emergent syntaxes of the stringsets on
which these models converge echo the pre-specified syntaxes of the given
sets of meanings? In this respect, again, the SK1, SK2 and JH models
contrast as a group with the JB2 model; JB1 is similar to SK1, SK2,
JH, but has some interesting characteristics deriving from its neural net
implementation.

In SK1, SK2 and JH, in general, where the pre-specified meaning rep-
resentations contain N classes of term (e.g. ‘predicates’ and ‘referents’),
the stringsets of the emergent languages will also contain N distribu-
tional classes of term (which one can choose to interpret as, for exam-
ple, ‘verbs’ and ‘nouns’); and the emergent mapping between seman-
tic classes and surface syntactic classes is typically one-to-one. These
models assume standard predicate-argument relations in their semantic
representations.

SK1 has semantic representations such as [ag-john, pt-mary, pr-
love], for which a handy mnemonic is the English John loves Mary.
Each such representation is a triple of attribute-value pairs, in which ex-
actly one attribute (or slot) is always pr, suggesting ‘Predicate’, another
is always ag, suggesting ‘Agent’, and the third is always pt, suggesting
‘Patient’. The Predicate slot is always filled by a term drawn from one
set (the set of ‘actions’), and the Agent and Patient slots are always
filled by terms from a second, distinct set (the set of ‘objects’). Again,
this model contains a semantic component into which pre-specified reg-
ular and structured representations are built. The emergent grammar
groups the arbitrary syllables of the ‘phonetic’ level of the language into
two syntactic classes, one for the syllables expressing the ‘actions’ and
the other for the syllables expressing the ‘objects’. SK2 and JH sim-
ilarly converge on grammars in which the distributional classes of the
‘phonetic’ elements directly mirror distributional classes of terms in the
semantic representations. Furthermore, in SK2 and JH, in which recur-
sive embedding of propositions as arguments of predicates is allowed,



22 1. Expression/Induction models of language evolution

the structures of the emergent languages all directly reflect this embed-
ding in what can be interpreted as grammatical clause-subordination.
Thus, these models converge on ways of topographically mapping se-
mantic form in strings of ‘phonetic’ symbols, taking advantage of the
availability of the generalizing facilities inherent in their specified gram-
matical formalisms. In a quite clear sense, the emergent languages in
JH and SK2 simply mirror pre-specified hierarchical semantic structure.

The emergent languages in SK2 and JB2, while relating to semantic
structure in quite different ways, have a feature in common, namely that
they, unlike SK1 and JH, contain meaningless substrings. In SK2, for ex-
ample, alanguage emerges from one run in which the string st lwrkazqpfd
means Pete knows that John loves Mary. Glossing this string in the way
familiar to linguists, one can see that only some parts of this string have
any semantic interpretation.

stlw r k a z gp f d
love Mary John know Pete

Here, the substrings st1w, gp, and d are not lexical items in the language,
i.e. they are not interpreted as any semantic term. These substrings are
simply specified as constants in the relevant grammatical rules; they
are obligatory grammatical parts of phrasal or sentential structures in
the emergent language, without any obvious function. To the extent
that they contain such non-lexical items, the emergent syntaxes in SK2
diverge from the prespecified syntax of the semantic representations.

In JB2, there are also empty strings. An example from an emergent
language in this model can be glossed as follows.

da iwa ke noz sa pay ke
flee  snake bite rat wave

The whole string da iwa ke noz sa pay ke could be translated into
English as something like A fleeing snake bit a waving rat. The sub-
string ke has no interpretation as any of the predicates in the semantic
representation, and is thus contentless. ke is never used by itself. Its
use in an exemplar is what makes a phrase containing it be interpreted
correctly. Batali suggests that this ke might serve some function in the
language as a marker of a phrasal boundary. If such suggestions can
be sustained, it would be an important step toward accounting for the
rise in natural languages of function words, such as determiners and
complementizers (as opposed to content words like nouns, verbs and
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adjectives).

Another example of an empty word in JB2 is seen in a case where the
emergent language has alternative word orders for the same meaning,
reminding one of an active/passive alternation. A parallel quasi-English
example would be Cat dog chase versus Dog foo cat chase, both meaning
that the cat chased the dog, and where foo might be interpreted as a
passive marker. One wonders whether, in a long run of JB2’s model,
such alternative ways of expressing the same meaning would survive, as
there seems to be no reason why one form should not eventually oust
the other, just as lexical synonyms tend to be eliminated.

In JB2, the structure of the emergent languages does not mirror the
pre-specified semantic representations as obviously as in SK1, JH and
SK2. JB2’s semantic representations are ‘flat’ unordered sets of elemen-
tary propositions, such as

(waved ) (rat z) (fled y) (snake y) (bit © y)

The z and y are treated as variables, not constants. The structures
assigned to strings expressing such meanings have two properties absent
from the semantic representations, linear ordering and (binary) hierar-
chical structure. The imposition of linear ordering was also a feature of
SK1, JH and SK2, but the emergence of semantically unmotivated bi-
nary hierarchical structure over strings is specific to JB2 and the fourth
experiment in JH; T will focus on JB2. This binary structure arises from
JB2’s learning and production algorithms, which build in the principle
that complex exemplars have binary structure, and can be plugged into
each other to form new structures.

The deep binary hierarchical structures which emerge in JB2 tend
to have a linguistically interesting property which Batali calls ‘parti-
tioning’. There is a tendency for all words denoting 1-place predicates
with a common argument to form a continuous substring, thus begin-
ning to resemble slightly complex noun phrases in natural languages.
These phrases are often separated by a word denoting a 2-place predi-
cate, with the result that a string of up to 8 words can sometimes easily
be assigned an SVO or OVS phrasal structure. Whereas in JH, SK1
and SK2, the arguments of predicates, which semantically are individ-
ual constants, come to be expressed as one-word proper names, in JB2’s
semantics there are no individual constants, and so no proper names
emerge. But the emergence of structures in which 1-place predicate
words are grouped together suggests the beginnings of a class of phrasal
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structures resembling natural noun phrases. At present, JB2’s emergent
groupings of words lack some essential features of natural noun phrases.
In particular, they do not have a distinctive head word which denotes
an object, rather than a state or action, i.e. they have no clear head
noun.

The actual implementation of semantic representations is not neces-
sarily directly symbolic. In particular, the neural net representation of
JB1 contrasts with the overtly symbolic representations of SK1, SK2,
JH and JB2. This potentially makes for an interesting difference in the
kinds of emergent language one gets from these models, as I will explain.

In JBI1, the agents are implemented as neural nets whose output lay-
ers encode semantic representations as bit patterns. The output layer
of each net is a set of nodes, partitioned into two subsets. Batali inter-
prets one subset as corresponding to one-place predicates, and the other
subset as corresponding to arguments (‘referents’). For illustrative pur-
poses, Batali assigns labels such as happy, sad, ... to the ‘predicates’
and pronoun-like labels such as me, you, ... to the ‘arguments’. Thus a
particular setting of the output layer might be interpreted as the pred-
icate logic formula HAPPY(YOU). Batali is careful to point out that
this is merely a suggestive interpretation.

In a given setting of the output layer of one of JB1’s neural net agents,
exactly three of the six designated ‘predicate’ nodes are set to 1, with
the rest set to 0. The four nodes encoding ‘referent’ information are
each a binary digit encoding the presence or absence of some feature,
such as plural or inclusion of speaker. Within each designated sub-
set of nodes, certain combinations do not occur, but there are are no
restrictions on the distribution of 1s and 0s between these subsets. The
system thus contains a level into which controlled representations have
been built. It is this severely constrained regularity in one component
of the model to which the emergent patterning of the other layer of the
neural net agents adapts. Essentially, JB1’s evolving population of neu-
ral nets finds a set of strings (from a pre-specified vocabulary, also coded
as a bit pattern in the opposite layer of a net) which maps naturally onto
the semantic representations.

The production algorithm of JB1 emits one character at a time, at
each step building a string that gets progressively closer to the whole
intended meaning. As this meaning is distributed across a vector of 10
bits, it is possible that the first couple of characters emitted will get
sufficiently close to the ‘predicate’ part of the whole meaning, so that
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the choice of the next character is more effectively directed at beginning
to approach the ‘argument’ part of the meaning. In this case, one will
get discontinuous substrings denoting predicates. And in fact, some such
‘discontinuous words’ do appear in the emergent language of JB1.

Without going into details, I also suggest that the production algo-
rithm of JB1, combined with its distributed representations of meaning,
is likely (a) to correlate shorter strings with more distinctive meanings,
and (b) to produce a kind of sound-symbolism, in which parts of strings
are correlated with classes of similar meanings.

The symbolic models, SK1, SK2, JH and JB2 have an advantage in
semantic representation over the JB1 neural net model. Representing
a meaning as a triple of three symbolic slots, of which two can be
filled by terms from the same set enables one to represent the same
entity (e.g. John) as playing either the Agent or the Patient role in a
meaning. This is not possible in a neural net encoding such as JB1’s.
A model such as JB1’s cannot ‘recognize’ that a configuration of 1s and
0s in one partition of its output layer is to be accorded the same ‘value’
as an identical configuration in another partition of the layer. If one
attempted to extend the coverage of JB1 from intransitive to transitive
verbs, the model could at best converge on a system in which there was
one set of words allocated to Agents and another set of words allocated to
Patients, with no recognition of the fact that the same entities could fulfil
either role. That is, the inbuilt patterning which leads the actual JB1
model to evolve a set of Predicate words and a distinct set of Referent
words would also lead a model extended to 2-place predicates to evolve
a set of Agent-Referent words and a distinct set of Patient-Referent
words, with nothing corresponding to any recognition of the intended
co-referentiality of these words.

1.2.5 Invention and production algorithms

One focus of E/I models is the question of how language systems can
arise from nothing. A child born with a fully modern L.A.D. into an
environment in which no language behaviour exists will not develop a
full language. But creolization studies (e.g. Kegl, Senghas & Coppola,
1998; Senghas, 1997) show that children can invent new forms which
go beyond any data they observe, and a complex language system can
emerge in a community in a relatively short time. A degree of inventive-
ness must be part of the picture of the rise of language. ‘Invention’ here
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should not be construed in the same way as the modern invention, by
extraordinary individuals, of complex devices which many other people
cannot understand. The invention involved in E/I models is something
which it is assumed all individuals are capable of, but which is typi-
cally only invoked when an individual ‘needs’ to express some meaning
for which it has not acquired a form. Invention is treated by all E/I
models as an essentially random process, constrained by the in-built as-
sumptions. The way in which invention is modelled, in particular the
degree to which the invention is guided by built-in principles of language
structure, has an important effect on the speed of convergence on a gen-
eralizable, coordinated language system, and, of course, on the eventual
shape of the emergent system itself.

In all the models surveyed here, the act of invention is closely linked
with the act of producing an utterance. In the neural net model JB1, in
fact, the processes of invention and normal utterance production cannot
be separated. JB1’s agents are recurrent neural nets, whose inputs are
strings of characters and whose outputs encode meanings. Such feedfor-
ward networks are unidirectional — they cannot be reversed to model
language production with meanings as input and strings of characters
as output. Batali resorts to an ingenious way of modelling the produc-
tion of utterances, by testing each character in the given alphabet® to
see which character would move the speakers’s own neural net, given
its current weightings, closest to the desired meaning. As the input of
any arbitrary character will always have some effect on the net, there is,
in the JB1 model, no concept of a speaker simply not having a way of
expressing a particular meaning. Thus, a separate mechanism of inven-
tion, as distinct from the normal production of utterances on the basis
of acquired internal representations, is not postulated in JB1. The ele-
ment of randomness in invention in JB1 is present in the initial random
settings of the connection weights of the agents. Although no clear dis-
tinction can be made in JB1 between invention and normal production,
it is reasonable to interpret the utterances of agents early in a simu-
lation, before they have been trained to any extent by observing the
character-input /meaning-output pairings of other agents, as being more
like the outcomes of invention, and the utterances produced later in a
simulation, after a good deal of learning has happened, as being less
inventive and more like the normal production of an agent guided by an

6 This is only practicable because the given alaphabet is so small — just 4 characters.
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acquired system.

In all the symbolic models (SK1, SK2, JH, JB2) a clear distinction is
implemented between invention and normal production. The important
dimension here, which has a significant effect on the emergent systems,
is the relationship between invention of forms for atomic meanings and
that for complex meanings. An issue arises concerning the extent to
which compositionality is built into the system via the invention algo-
rithm (inter alia), as opposed to emerging, unprogrammed, from the
dynamics inherent in an E/I model. In this respect, there are several
clear differences between the SK models and JH. An assumption of com-
positionality of meaning is clearly built into JH, whereas it is built into
the SK models to a much lesser degree, and arguably not at all. T will
briefly contrast SK2 and JH in this respect.

Agents, regardless of whether they have any ‘linguistic’ knowledge,
are prompted to express meanings. A factor which affects at least the
speed, and possibly the converged-upon outcomes of simulations, is the
nature of the semantic units which can serve as prompting meanings.
In SK1 and SK2, only whole propositions are used as prompting mean-
ings. In SK1, there are no complex propositions, and so all prompting
meanings are simple propositions of the LOVE(JOHN,MARY) variety.
In SK2, the prompting meanings are sometimes simple, and sometimes
complex propositions, as in SAY(MARY,LOVE(JOHN,FIONA)).In JH,
by contrast, the prompting meanings may also be any proper part of a
proposition, such as a single predicate or a single individual constant. (It
is thus assumed that there may be acts of pure reference, with no pred-
ication, and also acts of predication with unexpressed arguments.) This
has the effect that learners may be exposed to, and learn from, atomic
meaning-form pairs. In the SK models, on the other hand, learners
are not exposed to atomic meaning-form pairs. This makes for a dif-
ference in the ways in which the emergent language is gradually built
up during a simulation. In JH, the lexical items tend to emerge early,
and the forms for more complex meanings are later constructed syntheti-
cally from them. In the SK simulations, initially unanalyzeable invented
strings for complex meanings are only later analyzed by language induc-
ers into substrings to which simpler meanings are assigned.

(The JH and SK models can be taken to imply quite different evo-
lutionary routes from a single-word stage of language, like a Bickerto-
nian protolanguage, to multi-word systems. The route implied by JH is
synthetic, with the early, primitive forms bearing simple meanings and
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becoming the atoms of the later more complex system. The route im-
plied by SK is analytic, with the early, primitive forms bearing complex
meanings, and being subsequently broken down into smaller parts which
become the atoms of the later more complex system.)

In the symbolic models, given a full grammar, an agent follows the
grammar to produce a form for the prompting meaning. Given no gram-
mar at all, the agent invents a form. Given a partial grammar, an agent
produces a string for the prompting meaning that is partly generated
by the grammar and partly invented. In JH, the agents invent new
forms for hitherto inexpressable meanings and induce rules from ob-
served behaviour in ways which quite directly follow the given semantic
structure. For example, if an agent in JH knows words for the argument
term FIONA and the predicate term SING, but, as yet, no grammat-
ical rule for combining these words, then if prompted to express the
proposition SING(FIONA), the agent is ‘intelligent’ enough to know
that the required expression should contain the words for FIONA and
SING; what it will not know, and therefore have to invent, is the or-
der in which these words are to be arranged. JH’s agents, then, are
credited with knowing that expressions for complex meanings should be
composed of parts which express the simpler components of those mean-
ings; in a sense, compositionality is built into the model. The emergent
languages, not surprisingly, have words for each semantic term, and im-
pose a linear ordering on these terms within propositions. In SK2, as in
SK1, the invention and induction algorithms are less ‘intelligent’ than
in JH and do not obviously build in a principle of compositionality. In
fact, Kirby claims that compositionality emerges in this model without
being deliberately coded in.

In both JH and SK2, at intermediate stages in a run, utterances are
produced which are partly rule-generated and partly invented. But there
is a difference which may be crucial. In JH, an invented form is always a
form invented to express the form for some well-defined constituent of the
hierarchical semantic representation, and such a form also ends up as a
proper constituent of the complex forms in the evolved language. In SK2,
an invented form also corresponds to a well-defined constituent of the
hierarchical semantic representation (often, especially in the early phase,
the whole proposition to be expressed). But the invented strings in SK2
do not necessarily end up (though they may) as proper constituents of
complex forms in the evolved language.

In SK2, the invented parts of an utterance are unstructured sequences
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of characters, which may later be ‘made sense of’ by the induction al-
gorithm of other agents. Furthermore, in JH, the invention process can
be called recursively, so that invented strings can contain invented sub-
strings; and the relation of an invented substring to a larger invented
string mirrors exactly the hierarchical structure of the semantic repre-
sentation. Clearly, JH attributes to its agents more ‘awareness’ of the
structure of semantic representations than the SK models do. This may
or may not reflect a plausible assumption about human-like creatures.
What is notable is that the SK models converge on stringsets which
are systematically mapped onto pre-existing semantic structures with-
out such explicit direction from the invention algorithm.

The branching structures of the emergent languages in SK1 and SK2
can differ significantly from those in JH. The branching structure of the
emergent language in JH is constrained to be exactly the same as that
of the pre-defined semantic representations, because the invention algo-
rithm follows the semantic tree structures. All that the JH model does,
in effect, is invent lexical forms for the semantic atoms and impose an
invented linear order on them, within the pre-defined hierarchical struc-
ture. Consequently, in JH, if the semantic structure is binary branching,
its emergent linguistic form will also be binary branching; if the semantic
structure is three-way branching, its emergent linguistic form will also
be three-way branching, and so on”.

In SK1 and SK2, on the other hand, since the invention algorithm is
not guided to invent chunks exactly corresponding to proper constituents
of the hierarchical semantic structure, the emergent phrase structures
are often many-ways branching (sometimes because of the inclusion of
‘meaningless’ elements, as discussed above). It is possible, in the SK
models, for example, to get emergent VP structures bracketing together
the forms for a predicate and just one of its arguments. The branching
structures defined by the emergent grammars in the SK models can be
quite heterogeneous.

In JB2, the production algorithm imposes a binary branching struc-
ture on the building blocks (the exemplars) of the emergent language.
All emergent complex structures over strings are, by definition, binary
branching. It is this binary branching structure, rather than any struc-
ture in the semantic representations (which are flat), which guides JB2’s

7 All the generalizations about JH in this paragraph are subject to the reservation
“except for the fourth experiment”.
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invention procedure. In JB2, when a new string is invented, it is either
a form for a whole meaning or for a proper subpart of an existing binary
branching structure. The invention algorithm in JB2, then, like that in
JH, also builds in to the model an assumption of compositionality.

1.2.6 Induction algorithms

Grammar-induction was implemented in strikingly different ways in these
models. But all models had some features in common. The common
ground exists in their treatment of new examples early in simulations at
stages when agents have relatively little stored linguistic knowledge. At
early stages in all models, the mode of learning was what Langley would
classify as ‘incremental’.

A ...distinction holds for learning algorithms, which can either process many
training instances at once, in a nonincremental manner, or handle them one
at a time, in an incremental fashion.

Langley (1996:19)

Given a newly presented meaning-form pair, as yet unanalyzeable by any
of the agent’s rules or exemplars, all symbolic models simply store this
meaning-form pair. This happens even if the meaning is quite complex,
with the result that agents early in a simulation tend to have vocabu-
laries of holistic expressions idiosyncratically linked to a random range
of meanings.

For later stages in a simulation, by which time agents typically have
internalized large sets of rules or exemplars, one can differentiate the
models along a scale according to how much internal rearrangement of
an agent’s previously stored information takes place. On this scale, JH
and JB2 are at one end, and the SK models are at the other. Learners
in JH and JB2 respond to a presented meaning-form pair by attempt-
ing a parsing or analysis of it in terms of their existing grammars. In
JH and JB2 the minimum addition necessary to enable a grammar to
analyze the given meaning-form pair is made to the grammar. In JH
and JB2, the reorganization of an agent’s grammar specifically in re-
sponse to a given observation can result in the addition of a new piece
of grammatical information, but never in the deletion of an existing rule
or in any change to the substance of an existing rule; existing rules may,
however, be ‘demoted’ in various ways, so that they become less likely to
be used in later learning and production. The SK models, on the other
hand, after each presentation of a meaning-form pair, firstly take in this
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meaning form-pair ‘raw’, without analysis, but then undertake an exer-
cise of rationalization of the whole existing grammar (including the
new example), with a view to seeking coincidental similarities between
rules, and collapsing them where generalizations over them are possible.
This collapsing of rules involves introducing variables where there were
previously constants. SK’s inducer is like an obsesssively tidy librarian,
who at every opportunity (e.g. after each book is returned) tries to re-
arrange the items in his whole storeplace in the most economical and
general way. The JH and JB2 models, by contrast, take a less global
approach to the maintenance of agents’ grammars.

This dimension, on which SK differs from JH and JB2, is not exactly
the dimension of incremental versus nonincremental learning as char-
acterized by Langley(1996). All the models are strictly incremental, in
that they process one datum at a time. In SK, strictly speaking, no
revisiting of previous data actually happens, but there is substantial re-
visiting and reprocessing of the internal representations directly caused
by the earlier data.

On another dimension, the induction mechanisms of the JH and SK
models fall together, with JB2 differing. This is in the degree of gen-
eralization which an inducer does. As mentioned earlier, in the section
on syntactic representation, JB2 essentially does not make generaliza-
tions, by inducing rules containing variables, but rather stores whole
exemplars, which may have much in common, but are not explicitly
generalized over. In JB2, the work done by a generalizing inducer is in
a sense done by the production algorithm in finding the least costly way
of combining stored exemplars. SK and JH induce general rules, while
JB2 does not.

Although both SK and JH induce general rules, their methods are
radically different. In SK, the generalization is done by a search involving
comparison of all pairs of rules. In JH, the inducer can infer a new lexical
rule or general constituent-ordering rule simply by exposure to a single
example. JH thus implements one-exposure learning, an extreme form
of generalization. In principle, this is no different from accumulating a
larger set of examples with some property in common, and then making
the appropriate generalization when the number of examples reaches
some critical number; in JH this critical number is simply 1. A constraint
on this one-exposure learning in JH was that only one new rule could
be acquired from any given example.
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The topics of invention and induction are linked by the question of
whether agents learn from their own inventions. In SK1 and SK2, an
agent learns from its own inventions/productions. In JH and JB2, this
is not the case. Learning from ones own inventions speeds up the social
coordination of the acquired system, as this makes a particular agent’s
productions more self-consistent. In JH and JB2, where agents do not
learn from their own productions, successive invented forms for the same
meaning are not constrained to be the same; the inventor/speaker does
not listen to itself. The feature of ‘self-teaching’ is, at least in some
models, dispensable without any effect on whether the model eventually
converges. Whether self-teaching is actually dispensable in all models in
not clear.

Finally, the assumed relationship between production/invention and
reception/induction appears to differ in the models surveyed, along a
dimension that might be glossed as ‘explicit guidance by a prior: uni-
fying principles’. In JH and JB2, on the one hand, the algorithms for
production and learning are explicitly constructed around assumed com-
mon principles defining the possible mappings between meanings and
strings. The production and the reception algorithms are both informed
by a knowledge of the same pre-defined possibility space of meaning-
form mappings, and are both essentially, mutatis mutandis, searches of
this space. In JH and JB2, there is a clear sense in which the response
of a learner to a particular example (by acquiring a some rule(s) or
exemplar(s)) can retrace, in reverse, and given enough shared linguis-
tic knowledge between speaker and hearer, a similar route to that by
which the example was produced. In the SK models, on the other hand,
the production/invention and induction algorithms are defined indepen-
dently of each other, and emphasis is not laid on their being built around
a search of the same space of meaning-form mappings.

But this difference between models is more apparent than real. In all
E/I models, the workings of production/invention and reception/induction
mesh with each other. In SK, both production and induction algorithms
are based on the assumption that the linguistic knowledge of a speaker
is represented as a semantically augmented context free phrase structure
grammar, which in fact, along with the semantic and ‘phonetic’ repre-
sentations, does define the space of possible meaning-form mappings.
It would be possible, although it is not done in the models surveyed
here, to define production/invention and reception/induction in terms
of different assumptions about the space of possible mappings between
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form and meaning. That is, sometimes a speaker might invent a form
according to a type of generalization that is actually unlearnable by a
hearer/learner; and conversely there might be some learnable general-
izations of which examples cannot be systematically produced by any
speaker. In such a case, one might expect an emergent language to fall
in the intersection of the two spaces.

1.2.7 Bottlenecks

Of the models surveyed here, JB1 alone implemented a very weak seman-
tic bottleneck (90% of meanings), and this factor probably influenced the
outcome. This follows from the conflation, in JB1, of production and
invention, which in turn follows from the neural net implementation.
A neural net, trained or untrained, will always respond to some input
by giving some output. There is no distinction, in the neural net im-
plementation, between meanings which an agent knows how to express,
and those which it doesn’t know how to express. Given any meaning,
the JB1 algorithm will find the best (often, rather, the least bad) form
to express it. A trained net will tend often to converge on a number of
distinct attractor states that is no greater than the number of meaning-
form pairs presented to it in training. Thus if any meaning-form pair is
omitted from training, the net will sometimes respond to the form by
conflating its meaning with that of some other which it ‘knows’. Apply-
ing a semantic bottleneck, that is withholding some meanings from the
training schedules, can result in under-differentiation of the meaning-
space. How strong a neural net model such as JB1 can ‘tolerate’, while
still leading to an emergent system distinguishing all possible meanings
is an open question.

All the other models, with symbolic (rather than neural net) archi-
tectures and dynamics, did implement a semantic bottleneck, and this,
paradoxically, was vital to their outcomes. In a model with a seman-
tic bottleneck, an agent is always likely to be prompted to express some
particular complex meaning which did not form part of its learning expe-
rience. In this situation, one of two things may happen. The agent may
have generalized from the meaning-form pairs which comprised its learn-
ing experience some rule which does cover the prompting meaning, and
it will then apply this general rule to produce the required form. Any
such general rule will use one or more variables ranging over subparts
of the complex meaning and their possible forms, and an appropriate
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form is produced. The other possibility is that the agent will not have
acquired an appropriate general rule, and will thus resort to inventing
a novel form for this particular complex meaning. Thus the omission of
particular meanings from the learning experience of one agent causes in
its subsequent production behaviour either the invention of idiosyncratic
forms for these meanings or the application of general rules to produce
forms similar in shape to forms with related meanings. A general rule
acquired by one agent covering N different form-meaning pairs will be
N times more likely to be represented in the learning experience of some
other agent learning from it than a one-off idiosyncratic form-meaning
pair. Thus, models will converge on behaviour conforming to general
rules. This mechanism is at the heart of symbolic E/I models.

If a symbolic E/I model did not implement a semantic bottleneck
(which is only possible with a finite semantic space), then no agent
would ever be forced to generalize beyond its learning experience, and
the aboriginal first-invented forms for each meaning would simply be
re-used and relearned by each generation.

As mentioned earlier, all the models, very naturally, implemented a
production bottleneck, so that, when prompted with a particular mean-
ing, an agent acting as speaker would only ever use a subset of its possible
forms for that meaning. Both JH and JB2 implement mechanisms which
promote the use of commonly experienced meaning-form pairings, thus
creating a positive feedback loop. JB2’s mechanism is quite complex,
involving searching through exemplars related to a given meaning-form
pair in the agent’s existing grammar, and adjusting their cost. JH’s
mechanism is brutally simple; acquired rules are stored in order of ac-
quisition, and earlier stored rules are always favoured in use over later
acquired rules. As earlier acquired rules tend to be those more com-
monly used by other agents in the examples presented to the learner.
Rules at the bottom of an agent’s list may in fact never be used, and
thus do not give rise to examples from which other agents can learn.
SK1 kept a numerical count of the examples used to induce particular
rules, and given a choice in the production task between two rules, used
the rule with the highest empirical justification. The obvious effect of
these devices is to reduce synonymy.

A further kind of bottleneck is also, but less often, as it happens,
directly implemented in the models surveyed here. In language acqui-
sition, one should distinguish between input and intake. That is, not
all the meaning-utterance pairs presented to a child as data may actu-
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ally be taken in and used in language acquisition. The child’s ‘trigger
experience’ can be a subset of the primary linguistic data to which she
is exposed. This could be modelled by placing a selective filter (alias
bottleneck) on the language acquisition device. This could be labelled
an ‘intake bottleneck’. (See Kirby (1999) for extensive discussion of
the effects of intake bottlenecks on diachronic language drift.) The SK
models had a kind of intake bottleneck. The SK induction algorithms
simply ignored any meaning-form pair for which the agent’s rules already
assigned some meaning to the presented form, regardless of whether the
presented meaning was the one its existing grammar assigned to the
presented meaning. In effect, this prevents homonymy from arising in
the emergent system.

Models without any kind of bottleneck produce no interesting kind
of linguistic evolution. It is also clear that, in the actual transmission of
human languages across generations, there are huge bottleneck effects.
This is simply to reiterate the axiom that the grammar of a language is
massively underdetermined by the observed data.

The size of the bottleneck is an important variable. The size of a
bottleneck determines how much data a learner is exposed to during its
learning period. If the bottleneck is too small, the learner is simply not
given enough data from which to generalize, and no interesting syntactic
system can emerge. If the size of the bottleneck is too large, the learner
is given ample opportunity to internalize a set of non-general statements
giving somewhat adequate coverage of the whole language as defined by
the internalized grammars of the previous generation, whose behaviour
it has observed; in such a case, internalized general rules are slow to
emerge. Where a language is in principle infinite, through recursion, no
finite amount of data can exhaustively exemplify the whole language,
and there is thus pressure on general syntactic rules to emerge in any
case, but E/I simulations in which the bottleneck is set rather large
are known to take longer to converge on syntactic systems than the
experimenter has time for, running for perhaps millions of simulated
generations without convergence. (The idea of the ‘size’ of a semantic
bottleneck is in fact only applicable to ‘multi-generational’ models —
see next subsection.)
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1.2.8 Population dynamics

In the models surveyed here, the agents in the simulated populations
interact in rather different ways. We can distinguish two broad types,
which I will label multi-generational and uni-generational. Within
these types there are also some differences between models.

JH, SK1 and SK2 are multi-generational models. In such models,
agents are periodically removed from the population, and their gram-
mars die with them. Only the effect that their behaviour has on a cohort
of learners lives on. When an agent dies, it is replaced with a ‘newborn’
agent without any internalized grammar, but only the innate capacity to
induce a grammar from observed behaviour. In the multi-generational
models discussed here, the number of agents in the population at any
given time is kept constant.

(Conceivably, simulations could permit the population size to expand
and contract historically, with correspondingly varying proportions of
learners and adult performers. In a period of population expansion
after a period of contraction, the proportion of young people in the
population increases. In more sophisticated models than these, such
details might give rise to some phenomena, of theoretical interest, with
periods of linguistic simplification correlating with periods with a high
proportion of learners in the population. See Johansson (1997) for some
detailed work along these lines of thought.)

SK1 reports a simulation with a population of 10, in which the single
most recently introduced individual is designated as the learner. In SK1,
there is the added complication of some simulated spatial organization
of the population. The individuals each occupy a location in a notional
two-dimensional space, so that it is possible to identify an individual’s
neighbours. The learner only observes, and learns from, the behaviour
of two of its immediate neighbours in the population. None of the other
models discussed here implemented spatial organization, and while it
may have had some accelatory effect on the outcomes in SK1, spatial
organization does not seem to be vital to the emergence of syntax in
such models. (See Di Paolo (1999, 1998, 1997); Oliphant(1997, 1996) for
other related work on the effects of spatial organization in the evolution
of language.) In fact, the typical size of a population in these simulations
is so small as to make spatial differentiation unrealistic. The JH model
used a fixed population size of 5, including one designated learner, with
no spatial organization.

The minimum population size which will allow for an essential feature



1.2 Modelling the emergence of syntaz 37

of E/I models, namely the acquisition of a grammar by an agent on the
basis of observation of at least one other agent, is 2. SK2 works with
this minimum population size: at any one time, there is just one speaker
whose behaviour is being observed, and just one learner. After a certain
time, the ‘adult’ disappears, the former learner becomes a speaker, and
a new learner is introduced. There is no overlap of generations in this
version of the model.

A population size of just 2, with no overlap of generations, as in SK2,
may seem an overly drastic simplification. But in fact it usefully elimi-
nates one factor from the evolutionary scene. In all the reported work,
except SK2, at least part of what is going on in a simulation is the so-
cial coordination of co-eval individuals. Given an adult population of
more than 1, there will be, especially at the beginning of a run, when
invention of forms is still in full swing, a variety of different forms for the
same meaning. Part of what happens in these simulations is simply stan-
dardization of usage between individuals. But this is not the real focus
of these studies. The more interesting phenomenon is the evolutionary
transition into syntax, which is not a matter of coordination among indi-
viduals, but a matter of how successive single individuals organize their
mental representations of their language. A simulation with only one
individual learner and one individual transmitter per generation simply
avoids the work of having to get the population coordinated, as well as
developing syntax.

Simulations in the multi-generational models needed to run for vary-
ing numbers of generations before interesting results emerged. A run
reported in SK1 ran for 500 turnovers of the whole population of 10, i.e.
for 5000 births. A simulation reported in SK2 took almost 8000 births
before converging on an elegant syntax; Kirby (personal communication)
tells me that other runs of the SK2 model converged much faster, some-
times in as little as 30 births. The simulations in JH typically achieved
results very quickly, usually less than 100 births; this speedy conver-
gence is due to the unrealistically great generalizing power attributed to
learners and inventors in JH. In fact, the issue of ‘time’ to convergence
is difficult, if not impossible, to interpret in any empirically enlightening
way, given the high degree of idealization and simplification of human
communities and minds found in all these models.

The JB1 and JB2 models are uni-generational. In such simulations,
the population comprises the same set of individuals for the whole of a
run. Changes take place within these agents, as they learn from the be-
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haviour of their companions, internalizing grammars. These are models
of stable populations in which all individuals learn by listening to the
others. As the agents acquire more and more knowledge of the com-
munity language (as the language itself simultaneously begins to form),
they change. Just as a real person can be, in some sense, a different
person from the one he was a few decades earlier in life (for example by
having experienced more, or forgotten some of what he knew before),
so these simulated agents ‘become different people’. But they are not
different people in the radical sense of having been ‘biologically’ con-
ceived and introduced with zero knowledge into the population, as in
multi-generational models.

The question arises whether uni-generational models such as JB1 and
JB2 incorporate a bottleneck in the same sense as multi-generational
models. With uni-generational models, one may perhaps say that the
metaphor of a bottleneck is less appropriate, as representations of the
language are not passed from one generation to the next via a small set
of examples. But nevertheless, a kind of bottleneck effect is present, as
we have defined it, because learners’ internal representations are induced
from limited numbers of examples of the behaviour of other agents. Two
further factors are characteristic of the JB1 and JB2 models; these are
decay of unused internal representations and a cost metric on
internal representations. These factors may contribute to the result
of convergence on syntactic systems, compensating for the lack of the
specific kind of bottleneck found in multi-generational models.

JB1 implements agents as neural nets. The agents ‘talk to each other’
and thereby train each other in the emerging community language. As
this training goes on and on, the weights in the nets are constantly being
readjusted in response to the most recent training data, and any residual
effect of data presented earlier, to the extent that it is incompatible with
later data, is superseded.

The JB2 model is implemented symbolically (not in neural nets),
and there is an explicit pruning procedure by which any internalized
statements that have not been used for a certain number of episodes
are deleted from an agent’s memory. Clearly, one could set up a uni-
generational simulation with this kind of grammar decay in such a
way that it was effectively a notational variant of a multi-generational
model. One could, for example, partition the population into two halves,
and decree that every even hundred episodes (i.e. at 200, 400, 600 ,
...episodes), one half of the population forgets everything it has learnt,



1.8 Methodology: What IS a language? 39

and starts to learn anew by listening to individuals from the other half
of the population; this other half of the population would similarly lose
all its knowledge of the language every odd hundred episodes (at 100,
300, 500, ...episodes). Forgetting everything is like being born again.
Partial forgetting, as in JB1 and JB2, is partially like being born again,
and to this extent, there is some effect similar to the intergenerational
bottleneck effect seen in SK1, SK2 and JH.

Pruning of rules is not exactly equivalent to killing off agents. When
JB2’s exemplars are pruned, it is because they are not part of the agent’s
active repertoire. But when an agent dies, all of its exemplars (or rules)
are eliminated. If similar rules or exemplars are possessed by surviving
members of the population, the disruption to the continuous evolution
and transmission of the community’s language might be negligible.

Here a provocative question arises. Would a unigenerational model
with a bare minimum of one agent learning from itself, with forgetting
of infrequently used rules, converge, like the models surveyed here, on
a system with some incipient syntax? The experiment remains to be
tried. Obviously, it would not model an actual human historico-cultural
process so closely as the models surveyed here. But if it did produce
an emergent system of similar interest, this would reveal a new lower
bound on the conditions under which an E/I model could produce lan-
guage emergence. Even such a bare model would still have the essential
ingredients of an E/I model, namely the constant cycling of information
through agent-internal representations and external behaviour.

Postscript: John Batali (personal communication) tells me that he has
conducted single-agent simulations just as described here, mostly with
rapidly converging results. And Timm Euler, in a dissertation at Ed-
inburgh University, has implemented a single-agent, ‘talking-to-onself’
version of SK2, with decay of little-used rules. Euler’s model also pro-
duces evolutionary convergence on syntactic systems, with some inter-
esting differences from SK2.

1.3 Methodology: What IS a language?

The workings of the models surveyed here raise a fundamental question
about any model of the dynamic historical interaction between individ-
uals’ mental lexicons/grammars and their production behaviour. The
overt speaking behaviour of any agent at many stages in a simulation
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will not give a faithful picture of the totality of its acquired meaning-
form pairings. The expressions actually used will be a subset of those
internally represented. The spirit of this research paradigm is that a
language is neither just I-Language nor just E-Language, but their dy-
namic interaction. The conclusion truest to this spirit is that the lan-
guage over any given time period (say a generation) is a pair, consisting
of both the (perhaps heterogeneous) internalized lexicons/grammars of
the individuals in the population and the totality of their behaviour.
Defining a language in this way is hardly elegant, but (a) it recognizes
the essential interdependence of the two phases of language, I-Language
and E-Language, and (b) it avoids an arbitrary privileging of one phase
over another.

Symbolic computational modellers enjoy a luxury unavailable to em-
pirical grammarians, in that they can directly inspect the grammars
of their simulated agents®. For generative grammarians, the princi-
pal method of accessing speakers’ grammars is by asking for their in-
tuitions of the well-formedness of presented examples. In questioning
native speakers’ grammatical intuitions, typically no distinction is made
between what can be called ‘active wellformedness’ and ‘passive well-
formedness’. The metatheory of generative grammar holds that a gram-
mar is neutral with respect to production and reception. In fact, how-
ever, human speakers will often to respond to presented examples with
statements such as “Well, I can understand what it means, and I suppose
you would call it grammatical, but I wouldn’t put it that way myself’,
or “It’s not actually ungrammatical, but I'd say it differently myself”.
Such responses indicate that a speaker’s productive language behaviour
reflects only a subset of the meaning-form correspondences that her in-
ternalized grammar can recognize. In the simulations surveyed here, it
is very common for an agent’s grammar to specify some meaning-form
correspondences which the agent would never actually use in produc-
tion. A definition of the language system of such agents would in some
sense be wrong if based solely on their production behaviour; and a
definition based only on the form-meaning correspondences character-
ized by their internal grammars would miss an important difference in
the actual realizability of these correspondences in the agents’ produc-
tion behaviour. The existence of a production bottleneck in the usual
life-cycle of a language obliges us to take a view of a whole dynamic

8 Modellers working with agents implemented as neural nets are denied this luxury.
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language system in terms of both E-language (the productions) and I-
language (the internalized grammars).

1.4 Conclusions

Factors which facilitate the emergence of recursive, compositional syn-
tactic systems in E/I models are:

e Pre-defined hierarchical semantic representations. These are present
in SK1, SK2 and JH, but not in JB2, which has flat semantic struc-
tures.

e An invention (and/or production) algorithm disposed, to a greater
or lesser extent, to construct new expressions in conformity with the
principle of compositionality. In this respect, the invention algorithm
of JH most strongly builds in compositionality, followed closely by the
invention/production algorithm of JB2. The invention algorithms in
SK1 and SK2 are least biased toward invented forms that automati-
cally conform to the compositionality principle.

e A learning algorithm disposed, to a greater or lesser extent, to in-
ternalize rules generalizing over form-meaning mappings in a com-
positional way. In this respect, the learning procedures of JB2 are
least biased to internalize such rules; JB2’s JB2agents do not inter-
nalize rules at all. JH’s learning procedure, except when it is partially
disabled, as in the third experiment of JH, is strongly biased to in-
ternalize compositional rules wherever possible. The rule-collapsing
procedures of the SK learners are also disposed to arrive at general
rules incorporating compositionality wherever possible.

e A strong semantic bottleneck effect, by which the information in the
evolving system is recycled very frequently through the alternating
phases of representation as internal rules (I-Language) and exempli-
fication in utterances (E-Language), and learning takes place on the
basis of examples covering a very small subset of the available se-
mantic space. This effect is strongest in the multi-generation models,
SK1, SK2 and JH, and least strong in JB2, a uni-generational model.

e A production bottleneck effect, by which certain rules are preferred
over others in the production process. All the models discussed incor-
porate such a production bottleneck, based explicitly or implicitly on
the frequency of examples in the learning experience, thus effectively
providing a feedback loop favouring rules of greater generality.
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It is tempting to imagine a ‘minimal hybrid model’, eclectically put
together out of those components of the various models which are the
least disposing to the emergence of a recursive compositional system.
But it seems clear that an extreme minimal hybrid model would not
yield an emergent recursive compositional syntactic language system.
In particular, an opportunity (but not a compulsion) for compositional
rules to arise must be present in either the invention/production algo-
rithm (as in JB2) or in the induction algorithm (as in SK1 and SK2).
Given that either the invention/production component or the induction
component of a model must allow for compositional rules to arise, the
availability of such rules can nevertheless be impaired or restricted, as
in the third experiment of JH.

I end, then, with a bold speculation that a hybrid model stripped
down to the following components would yield an emergent recursive
compositional syntactic system.

o Flat semantic structures as in JB2.

¢ An invention algorithm with no bias toward compositional structures,
as in the SK models.

e A learning algorithm, such as JH’s, SK1’s or SK2’s, which may, but
does not only, induce general rules incorporating a principle of com-
positionality; the disposition of such a learner to form general com-
positional rules could be experimentally disabled to various extents,
to determine a minimum level necessary for a syntactic system to
emerge.

e Uni-generational population dynamics, as in JB2, but with only a
single agent, talking to, and learning from, itself, plus some experi-
mentally varied decay and forgetting of rules, giving a weak semantic
bottleneck effect.

e The feedback effect of a production bottleneck experimentally weak-
ened by allowing various degrees of randomness in the selection of the
rules by which utterances are produced.

Now there’s a set of experiments crying out to be done!
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