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Abstract— This paper describes an attempt to cast sev-
eral essential, quite abstract, properties of natural languages
within the framework of Kauffan’s random Boolean nets.
These properties are: complexity, interconnectedness, sta-
bility, diversity, and underdeterminedness. Specifically, in
the research reported here, a language is modelled as an
attractor of a Boolean net. (Groups of) nodes in the net
might be thought of as linguistic principles or parameters
as posited by Chomskyan theory of the 1980s. According
to this theory, the task of the language learner is to set pa-
rameters to appropriate values on the basis of very limited
experience of the language in use. The setting of one pa-
rameter can have a complex effect on the settings of other
parameters. A random Boolean net is generated and run to
find an attractor. A state from this attractor is degraded,
to represent the degenerate input of language to the lan-
guage learner, and this degraded state is then input to a
net with the same connectivity and activation functions as
the original net, to see whether it converges on the same
attractor as the original. In practice, many nets fail to con-
verge on the original attractor, and degenerate into attrac-
tors representing complete uncertainty. Other nets settle
at intermediate levels of uncertainty. And some nets man-
age to overcome the incompleteness of input and converge
on attractors identical to that from which the original in-
puts were (de)generated. Finally, an attempt was made
to select a population of such successful nets, using a ge-
netic algorithm, where fitness was correlated with an ability
to acquire several different languages faithfully. It has so
far proved impossible to breed such successful nets, lend-
ing some plausibility to the Chomskyan suggestion that the
human language acquisition capacity is not the outcome of
natural selection.
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HIS paper puts together two sets of ideas that have
not until now kept close company. One set of ideas is
the Chomskyan metatheory of Universal Grammar (UG)
and language acquisition, as developed in numerous pub-
lications over the past 40 years [1] [2] [3] . The other set
of ideas is the theory of complexity, and specifically the
theory of random Boolean nets, as developed by [4], [5]
The advantage of putting these two sets of ideas together
is that it relates the Chomskyan picture to a model whose
properties are somewhat well understood, and which, more-
over, is simple enough and well specified enough to lend it-
self to computational implementation. No empirical claims
are made, but the hope is that readers who have previously
understood one, but not the other, of the two sets of ideas
juxtaposed here will be able to see the formerly unfamiliar
framework (whichever one it is) in a new and illuminating
light.
In the first two sections, the two sets of ideas are sketched
separately; the third section gives an interpretation of ran-
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dom Boolean nets in terms of knowledge, acquisition, and
transmission of language.

I. WHAT ASPECTS OF LANGUAGE TO MODEL?

Consider the following six striking (yet uncontroversial)
features of natural languages.
e complexity
¢ interconnectedness
o fidelity of transmission
stability
o diversity
learnability from incomplete data

We will briefly discuss each of these features in turn.

Complexity. Each human language is an extremely
complex system. No complete grammar of any language
has ever been written. One of the largest grammars of
English [6] , which is 1102 pages long, is still incomplete in
detail.

Linguists are still constantly finding subtle and com-
plex patterns of behaviour/judgement, even in English,
the most-studied language, that stubbornly resist encap-
sulation in any theoretical framework. This is the stuff of
syntacticians’ journal articles.

Interconnectedness. The idea that “Une langue est
un systéme ou tout se tient” [“A language is a system in
which everything holds onto everything else”] is such a
hoary truism that its origins are lost in the mists of lin-
guistic historiography!.

The interconnectedness of facts in a language shows it-
self in many ways. From opposite ends of the theoretical
linguistic spectrum, both Greenbergian conditional univer-
sals and Chomskyan parameters exemplify this intercon-
nectness.

o Greenbergian conditional universals:

— If a language has a dual, it also has a plural;

(A dual is a marker, typically a suffix, on a noun indicating
exactly a pair of things, e.g. Arabic rigleen [rigl = leg, -een
= dual] ‘two legs’; an example of a plural marker is the
English s suffix as in legs.)

— If a language is SOV, it has postpositions;

(An SOV language is one with the basic word order subject-
object-verb, as in Turkish or Japanese; a postposition is
a word with a similar meaning to a preposition (such as
English on), but which follows its noun.)

— If a language is VSO or SVO and has prepositions, it
puts the relative clause after the noun. (A VSO language
is one with the basic word order verb-subject-object, as in
Celtic languages or Classical Arabic; an SVO language is

1See Koerner’s 18-page chapter ([7] , discussing various attributions,
including to de Saussure and Meillet, but not managing to track down
a convincingly original source of this bon mot.



one whose basic word order is subject-verb-object, as in
English or Colloquial Arabic.)
o Chomskyan parameters:

— Pro-drop: If a language allows null subjects,

x it allows inverted verb-subject order in declaratives,

* it has no ‘expletives’ such as it and there,

* it has morphologically uniform verbal inflectional
paradigms.

Note the Boolean nature of the more complex examples
here.

Fidelity of transmission. The English of 100 years
ago is still intelligible now. In a community not subject
to social upheaval, the differences between the language of
one generation and the next are minimal.

Stability. An individual’s language behaviour and
linguistic judgements vary only slightly over time (again,
in a community not subject to social upheaval).

Diversity. There are about 6000 different languages
in the world, mutually unintelligible. Putting aside vocab-
ulary differences, probably no two languages have exactly
the same grammatical system. Chomsky suggested that
the number of grammatically distinct possible languages is
finite. “When the parameters of UG are fixed, a core gram-
mar is determined, one among finitely many possibilities,
lexicon apart.” ([2] :137)

Learnability from incomplete data. A newborn
child can learn any language perfectly. The well-known
‘Poverty of Stimulus’ argument states that the knowledge
of language (in the form of solid intuitions of wellformed-
ness) possessed by adults is underdetermined by the exam-
ples to which they were exposed as children. The question
provoked by this has been referred to as ‘Plato’s Problem’,
and expressed as “how can we know so much on the basis
of so little experience?”

The data to which the language-acquiring child is ex-
posed are susceptible to infinitely many generalizations,
most of which our linguistic intuitions immediately dismiss
as far-fetched. Indeed it is precisely the solidity of many of
these intuitions that seems to prevent some students from
seeing the point of the poverty of stimulus argument and
its implication for the innateness of certain general facts
of grammar. A typical example involves the formation of
interrogative sentences in English, in which the first auxil-
iary verb of the main clause is ‘moved’ around to the front
of the subject of the sentence, as in:

The fact that it is raining should deter us.
Should the fact that it is raining deter us?

But not
*Is the fact that it raining should deter us

In the ungrammatical example, the first auxiliary verb in
the string, is, has been moved incorrectly to the front of
the sentence. We know that this is wrong; but how do
we know? It cannot be just from example, because most
of the examples that we hear are equally compatible with

the hypothesis that interrogatives are formed by moving
the first auxiliary verb in the string.

Summaries of the Poverty of Stimulus argument can be
found in many introductory texts on syntactic theory (e.g.
[8]:81-85) ; there are many more advanced discussions of it
in the literature (e.g. [9], [10], [11], [12]). For counterargu-
ment, see [13] :38-45).

II. RANDOM BOOLEAN NETWORKS

A Boolean network can be described in terms of its
nodes, connections, activation functions, and states
We will introduce these briefly in turn.

Nodes: The number of nodes in a net is expressed
conventionally by the variable N. (N = 10, ..., 1000,
...1000000, ...) Nodes are set to bit values — {0,1}. Each
node is assigned a (random) Boolean activation function
(see below).

Connections (unidirectional) between nodes:
Each node takes input from some specified number of other
nodes. The number of connections leading into a node is
conventionally expressed by the variable K. In a net, all
nodes may take the same number of inputs, (K = 2, 3, 4,
...), or, a possibility less often explored, varying numbers
of inputs.

Activation functions: Nodes are activated by
Boolean functions of the values of the nodes inputting to
them. For a node with K inputs, there are 22*) pos-
sible Boolean activation functions. For example with 1
input, possible functions are ‘FALSE’ (00), ‘COPY’ (01),
‘NEGATE’ (10), or ‘TRUE’ (11), as shown in the table
below:

Input || ‘FALSE’ | ‘COPY’ | ‘NEGATE’ | ‘TRUE’
0 0 0 1 1
1 0 1 0 1
States: The state of a network at a given time is the
set of its node-settings. There are 2V possible states of a
net.

Boolean networks are dynamic. They are set in motion
by the following steps.

e INITIALIZE: set all the nodes in a net to arbitrary bi-
nary values.

e RUN: Simultaneously update the values of all nodes ac-
cording to their inputs from other nodes and their activa-
tion functions.

o« REPEAT the previous step until the net is in a state it
has already been in once before. From this point, the net
will cycle repeatedly around a finite set of states.

Boolean networks have attractors. The set of states
around which a net cycles repeatedly is an attractor. A
given net may have many different attractors, depending
on its initial state. An attractor is also called a “limit
cycle”.

Boolean networks have basins of attraction. The set
of states from which a net will always end up in a partic-
ular attractor is that attractor’s basin of attraction. An
attractor is a subset of its basin of attraction (typically a
proper subset).



Here are some simple examples where N = 20 and K
= 2, with connections and activation functions chosen ran-
domly:

STEP
1 [0100010001001011010 1]
2 [0100001011000110010 1]
3 [0000011011111010010 1]
4 [0110010011111010110 1]
5 [0100000011100010110 1]
6 [0100000011100010110 1]

Here, from the initial random state at step 1, the net has
converged on a one-state attractor at step 5: the state at
step 5 and all subsequent steps is:

[0100000011100010110 1]
STEP

1 [1100111010001011000 1]
2 [00100101111110110100]
3 [1100111000011010011 1]
4 [01100101011110111100]
5 [11001110100110100110]
6 [01100101011110111100]

Here, from the initial random state at step 1, the net has
converged on a two-state attractor: the state at step 6 is
the same as at state 4. The net will oscillate between the
following two states forever.

[01100101011110
[11001110100110

General Properties of RBNs.

o Where K = 2, the average length of a limit cycle (attrac-
tor) is of the order of v/N. For example, for N = 100000,
the mean length of attractors is 317.
¢ As K increases,

— attractors get longer,

— attractors get fewer.
o In a chaotic regime, attractors are so long that, practi-
cally, one never sees the same state twice.
e In a chaotic regime, similar initial states give rise to di-
vergent trajectories through state space.
o Typically (but crucially depending on the activation
functions), values of K over 3 induce chaotic regimes.

1 10 0]
1 11 0]

11
00

III. INTERPRETATION OF NETS AS LANGUAGE
KNOWLEDGE AND LANGUAGE ACQUISITION

Having set out some basic, though striking, properties
of natural languages and outlined the workings of random
Boolean nets, I will now suggest a way of interpreting such
nets in terms of the linguistic properties mentioned in the
first section.

« Particular net states are interpreted psychologically, i.e.,

as corresponding in some way to an individual’s knowledge

of his/her language.

o The values of nodes in an attractor state denote (more

or less abstract) features of some particular language, e.g.
— Whether or not it has a case system;

(A language with case system marks its nouns according

to their function in the sentence as subjects, objects or
various other functions; Latin, Russian, German and Greek
are languages with case systems.)

— Whether or not it has dual number;

— Whether or not it is ergative.

(An ergative language marks the subject of an intransitive
sentence with the same marker as the object of a transitive
sentence.)
These language features are binary, a property required by
the Boolean character of the model. Features of language
which are non-binary can, of course, be coded in a binary
fashion.
o Connectivity between nodes is then readily interpreted
as linguistic connectedness (dependencies) between fea-
tures of a language. For example, a node interpreted as
indicating whether or not a language permits null subjects
could take input from (i.e., be activated as a function of) a
node interpreted as indicating whether or not the language
has expletives (such as impersonal it and existential there).
o N (the number of nodes) correlates with the complexity
of a language. For a reasonable model of a language, N >
10,000 . This, in some sense, is the ‘number of facts’ in
the grammar of the language. Given the Boolean network
model, where K > 0, none of these facts are independent.
o The connections and activation functions of a net
(but not its states) denote properties that the language
learner brings to the acquisition task. These, then, model
the innately known dependencies between one part of a
language and another, the expectations (unconscious, of
course) that a human infant has.
o Small attractors denote relative stability. A one-state
attractor denotes a speaker’s certainty about all features of
the language. A two-state attractor denotes uncertainty in
the shape of oscillation, for a subset of features, between al-
ternative behaviours or judgements. A very large attractor
(limit-cycle) denotes great uncertainty in a speaker.
o Large numbers of distinct attractors denote linguistic di-
versity. If the same net, starting from different initial
states, can reach many different attractors, this models the
fact that humans can learn many different languages.

Modifying networks to model acquisition from in-
complete primary linguistic data. The language
learner is not exposed to examples of all the features of
a language, but neverthless acquires them, as mentioned
above in connection with the Poverty of Stimulus. We
model this as follows:

o The learner’s trigger experience of a feature results in
a ‘0" or ‘1’ setting of a node. For example, if a learner
hears a clear example of an expletive (e.g., impersonal it),
the initial setting of the node containing information about
such expletives could be set to a 1 value.

« Without such triggering experience, nodes are set to a ‘7’
value. This model makes an idealizing ‘single gulp’ assump-
tion about the learner’s exposure to the primary linguistic
data. The presentation of the data is a single operation,
putting the net into its initial state. After this triggering
by data from outside the net itself, all further activation of
nodes is via the internal connections and activation func-



tions of the net.

o Thus a learner net is initialized to a mixed state with {0,
1, ‘?’} values. The use of ‘?’ values means that there are
no default values assumed in the initial state of the net. It
would be possible to implement the model with default 0
or 1 values (hence without ‘?” values), but this possibility
has not been explored here.

o In running a net, for all ‘?’ values input to a node, the
new value is computed for both 0 and 1 inputs; if in all
cases the new value would be the same (either 0 or 1), that
value is taken as the new value; otherwise the new value
of the node is set to ‘?’. This makes a very conservative
assumption about learning. A node is only set to a non-
query value (1 or 0) if all the inputs to it agree on that
value.

Applying these ideas, we can give some examples of
learning from incomplete data. In the examples below,
again N = 20 and K = 2, with randomly chosen connec-
tivity and activation functions. The initial random state
contains a number of ‘?’s, indicating that the learner has
experienced no data that would lead to settings of those
nodes. We give first an example of unsuccessful learning,
in which the net reaches an attractor that still has some
nodes set to ‘7.

(UNSUCCESSFUL LEARNING)

STEP

0 [011000010172717?2721770 1]
1 [01107?2077?27?27?2771010000 0]
2 [7110720777171172170710]
3 [71707207?7017117?2170711]
4 [07?77?20707?72720172117?21720071]
5 [07107207?7?7017?217?272?21727?20°77]
6 [0110707?27?22?27?7?21172177?2777]
7 [7110720770771172170777]
8 [01707207?272017211?2172007 7]
9 [071070770171172172007 7]
10 [011072077201711717270°77]
11 [01107207272077117217200°7 7]
12 [01107077201711717200°77]
13 [0110720772017117217200°77]

Here, the acquired one-state attractor (step 12 and subse-
quent steps), with remaining gaps in knowledge, is:

[011072077017117170077]

It is possible, however, for a net starting in a state with
some gaps in its knowledge (‘?’s), to arrive at an attractor
state from which all gaps have been eliminated. Here is an
example (again N = 20 and K = 2, with randomly chosen
connectivity and activation functions):

(SUCCESSFUL LEARNING)

STEP

0 [00117007700007017717]
1 [007110717000010700°7 7]
2 [0011100707000101001 7]
3 [00111001000001017011]
4 [0011100100000101001 1]
5 [0011100100000101001 1]

Here, the acquired one-state attractor is:
[00111001000001010011]

Modelling adult-to-child language transmission.
With these ideas in place, it is possible to explore the fur-
ther application of the RBN model to language, in particu-
lar to the transmission of languages across generations in a
community. This is done in a quite idealized way here, as if
the only input to a child learner is from a single adult. At
the level of abstraction at which we are working here, this
seems unlikely to be a harmful idealization. We go through
the following steps:

o Specify an adult net by (randomly) generating a set of
connections and activation functions.

o Specify the child net as having the same connections and
activation functions as the adult. Thus we now have mod-
els of two individuals, ‘adult’ and ‘child’, with the same
genetically specified expectations as to the set of languages
they can learn, or ‘L.A.D. genotype’? (attractors they can
gravitate to).

o Run the adult net from a random initial state (with all
nodes set to either 1 or 0) until it reaches an attractor. This
models the initial acquisition of a language from perfect
data (an unrealistic assumption, but see below) by one in-
dividual, whose incomplete language performance will be-
come the model for the subsequent acquisition of a lan-
guage by its ‘child’.

o Set the child’s initial net to a subset of one of the states
in the attractor reached by the adult, the unset nodes be-
ing left as ‘?’. This step takes one state in the attractor
reached by the adult as laying the basis for the language
performance of the adult, but provides that the adult’s per-
formance will in fact only exemplify a subset of its grammar
to the child, thus modelling the Poverty of Stimulus. ‘Cul-
tural’ transmission of language to the child is partial. The
examples given to the child constitute what in the Chom-
skyan literature is referred to as the ‘Primary Linguistic
Data’ (PLD). At this point, one can specify what propor-
tion of the adult’s language gets exemplified explicitly to
the child, i.e., how many of the nodes in the child’s initial
state are set to 1 or 0, with the rest left as ‘7’.

o Run the child’s net until it reaches an attractor. This
models the child’s acquisition of its language from incom-
plete data, as illustrated earlier.

o Check whether or not the child’s attractor is the same as
the adult’s. If the child’s acquired language (the attractor
the child net has gravitated to) contains any states with
nodes still set to‘?’, then the child will not have acquired
the adult’s language faithfully, as the adult language had all
states set to either 1 or 0. If the child’s eventual attractor
contains no states with any nodes set to ‘?’, then the child
has partially ‘reconstructed’ the language, using ‘innate’
knowledge.

Variable parameters of the model. For the purpose
of experimenting with this model, certain parameters can
be set to alternative values.

21.A.D. stands for ‘Language Acquisition Device’, an innate ‘mental
organ’ posited by Chomsky to explain the feat of language acquisition.



e N (the number of nodes in a net). Practical computing
constraints mean that experimenting with high values of N
is excessively time-consuming.
e K (the number of connections into each node). Again,
high values of K impose processing limitations, but in fact
values of K over about 5 tend all to give similar (typically
chaotic) results. K can be variable; that is different nodes
could have different numbers of incoming connections.
¢ Method of generating connections and functions — ran-
dom or hand-fixed. We will show how a net-specification,
in terms of its connectivity and activation functions, can
be hand-built to approximate to a realistic language-
acquisition situation. Of further interest is the question of
whether or not, with a population of initially random con-
nectivities and activation functions, a realistic language-
acquisition situation can be made to evolve, in an evolu-
tionary algorithm.
o Method of degrading an adult state to give PLD proba-
bilistic or fixed. A very crude simplifying assumption about
the data presented to a child learner is that certain desig-
nated features of a language are always exemplified reli-
ably in the primary linguistic data. More realistic is the
assumption that certain features tend statistically to be
exemplified more than others, probably with a Zipfian dis-
tribution, in which the most frequently exemplified feature
is twice as likely to be exemplified (in a given utterance) as
the second-most frequently exemplified feature, and so on.

A human-like net? It is possible to hand-tailor a
net in such a way that the ‘adult’ net gravitates to a wide
variety of different attractors, and the ‘child’ net reliably
manages to gravitate to the same attractor as the adult,
after initialization with incomplete data from the adult at-
tractor. I give an example below.
o 15 specified nodes were self-connected, with a copying
function [0 1]. Thus these nodes take input only from them-
selves, and once set, never change their values.
o The remaining 185 nodes were connected randomly (K =
2) to the 15 specified nodes, with random activation func-
tions. That is, each of these 185 nodes takes input from
some arbitrary pair of the 15 specified nodes, and gets acti-
vated according to a random Boolean function of the values
of those nodes.

A schematic diagram might make this clearer.

o e @
1516 17 18 19

Fig. 1. Hand-made net with 15 self-connected nodes
and 185 nodes taking two inputs each from nodes
chosen randomly from the 15 self-connecting nodes.

This net was run 1000 times, from random initial states. In
the child’s PLD (the initial state), values of the 15 specified
nodes were copied from a state in the adult attractor, and
all 185 other nodes set to ‘?’. The results were as follows:

984 distinct adult attractors
984 distinct PLDs

984 distinct acquired attractors
1000 faithful acquisitions

Results with K = 3,4,5,6 were essentially the same. This
models substantial diversity of learnable languages and
fidelity of transmission between generations.

But the method of degrading the input data used above is
implausibly rigid. Another experiment was carried out, us-
ing probabilistic PLD-production. Here, the nodes were
deemed to be rank-ordered by frequency; thus node 1 was
deemed the most frequent, and node 200 the least frequent
in use. Then the probability of a node in the child’s ini-
tial state being set to 1 or 0 (as opposed to being left as a
‘?”) was an inverse function of its frequency ranking. The
probability of a node being set to 1 or 0 is given in Figure 2.

P(node is set to 0 or 1)

[

Fig.2. Probabilistically distributed primary linguistic data.
The probability with which nodes in the learner’s
trigger input are set to 1 is very high for a few nodes,
and declines for the rest.

With this probabilistic input, the following results were
obtained:

200 distinct adult attractors

200 distinct PLDs

200 distinct acquired attractors

182 faithful acquisitions

This achieves slightly better diversity of learnable lan-
guages, and slightly worse fidelity of transmission between
generations.

Can such “good” nets be bred? It has been shown
here that a Boolean net can be constructed by hand which,
given the interpretation proposed, approximates reason-
ably well to a human language acquirer, in respect of the
range of learnable languages, the fidelity of learning, the
stability of the acquired state, and so forth. Chomsky’s
position on the human language capacity is that it is bi-
ologically given, and yet unlikely to have been specifically
selected for by natural selection. I have briefly tested these
ideas by trying to ‘breed’ a particular net specification (in



terms of connectivity and activation functions) with an evo-
lutionary algorithm. In this algorithm, a net is specified
in terms of a list of ‘genetic’ loci, each allocated an al-
lele from an available range. For instance, the alleles at
one locus might code for the nodes from which node 17
receives its input; the alleles at another locus would code
for the activation function of node 17. Each net in a pop-
ulation of nets is specified by a complete genome. The
population size varied from 25 nets to 100, depending on
the experiment. In the experiments, a heterogeneous pop-
ulation of nets with initially random connectivity and acti-
vation functions was evaluated according to a fitness func-
tion that rewarded for ability to acquire several different
languages faithfully. Each generation, the more success-
ful nets according to this fitness function were bred, and
some mutation of the connectivity and activation functions
took place. Selection was by tournament selection among
groups of four.

So far, the results have been negative. It has not been
possible to ‘breed’ a random Boolean net that performs as
well, in terms of diversity of learnable languages and fi-
delity of intergenerational transmission, as the hand-fixed
net described above. This may result from Boolean nets
inhabiting a rugged fitness landscape, in which adaptation
is unlikely. And it may possibly, upon further investiga-
tion, tend to confirm the Chomskyan view that the human
capacity for language acquisition is not the result of natu-
ral selection. No such conclusion can yet be firmly drawn,
however, because this paper has not exhausted all possible
ways of identifying a dynamical system with the language
organ, or of successfully creating such a system through an
evolutionary process.
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